Version 87.34 by Xiaoling on 2024/01/24 15:22

Show last authors
1
2
3 (% style="text-align:center" %)
4 [[image:image-20240103095714-2.png]]
5
6
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
23
24
25 (% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26
27 (% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
28
29 SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
30
31 SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
32
33 SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34
35 == 1.2 ​Features ==
36
37
38 * LoRaWAN 1.0.3 Class A
39 * Ultra-low power consumption
40 * Open-Source hardware/software
41 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
42 * Support Bluetooth v5.1 and LoRaWAN remote configure
43 * Support wireless OTA update firmware
44 * Uplink on periodically
45 * Downlink to change configure
46 * 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 * Solar panel + 3000mAh Li-on battery (SN50v3-LS)
48
49 == 1.3 Specification ==
50
51
52 (% style="color:#037691" %)**Common DC Characteristics:**
53
54 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
55 * Operating Temperature: -40 ~~ 85°C
56
57 (% style="color:#037691" %)**I/O Interface:**
58
59 * Battery output (2.6v ~~ 3.6v depends on battery)
60 * +5v controllable output
61 * 3 x Interrupt or Digital IN/OUT pins
62 * 3 x one-wire interfaces
63 * 1 x UART Interface
64 * 1 x I2C Interface
65
66 (% style="color:#037691" %)**LoRa Spec:**
67
68 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
69 * Max +22 dBm constant RF output vs.
70 * RX sensitivity: down to -139 dBm.
71 * Excellent blocking immunity
72
73 (% style="color:#037691" %)**Battery:**
74
75 * Li/SOCI2 un-chargeable battery
76 * Capacity: 8500mAh
77 * Self-Discharge: <1% / Year @ 25°C
78 * Max continuously current: 130mA
79 * Max boost current: 2A, 1 second
80
81 (% style="color:#037691" %)**Power Consumption**
82
83 * Sleep Mode: 5uA @ 3.3v
84 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
85
86 == 1.4 Sleep mode and working mode ==
87
88
89 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90
91 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
92
93
94 == 1.5 Button & LEDs ==
95
96
97 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
98
99 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
100 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
104 )))
105 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
106 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
107 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
108 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
109 )))
110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111
112 == 1.6 BLE connection ==
113
114
115 SN50v3-LB/LS supports BLE remote configure.
116
117
118 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
119
120 * Press button to send an uplink
121 * Press button to active device.
122 * Device Power on or reset.
123
124 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
125
126
127 == 1.7 Pin Definitions ==
128
129
130 [[image:image-20230610163213-1.png||height="404" width="699"]]
131
132
133 == 1.8 Mechanical ==
134
135 === 1.8.1 for LB version ===
136
137
138 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139
140
141 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
142
143 === 1.8.2 for LS version ===
144
145 [[image:image-20231231203439-3.png||height="385" width="886"]]
146
147
148 == 1.9 Hole Option ==
149
150
151 SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
152
153 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
154
155 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
156
157
158 = 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
159
160 == 2.1 How it works ==
161
162
163 The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164
165
166 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
167
168
169 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
170
171 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
172
173
174 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
175
176 Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
177
178 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
179
180
181 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
182
183
184 (% style="color:blue" %)**Register the device**
185
186 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
187
188
189 (% style="color:blue" %)**Add APP EUI and DEV EUI**
190
191 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
192
193
194 (% style="color:blue" %)**Add APP EUI in the application**
195
196
197 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
198
199
200 (% style="color:blue" %)**Add APP KEY**
201
202 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
203
204
205 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
206
207
208 Press the button for 5 seconds to activate the SN50v3-LB/LS.
209
210 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
211
212 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
213
214
215 == 2.3 ​Uplink Payload ==
216
217 === 2.3.1 Device Status, FPORT~=5 ===
218
219
220 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
221
222 The Payload format is as below.
223
224
225 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
226 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
227 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
228 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
229
230 Example parse in TTNv3
231
232
233 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
234
235 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
236
237 (% style="color:#037691" %)**Frequency Band**:
238
239 0x01: EU868
240
241 0x02: US915
242
243 0x03: IN865
244
245 0x04: AU915
246
247 0x05: KZ865
248
249 0x06: RU864
250
251 0x07: AS923
252
253 0x08: AS923-1
254
255 0x09: AS923-2
256
257 0x0a: AS923-3
258
259 0x0b: CN470
260
261 0x0c: EU433
262
263 0x0d: KR920
264
265 0x0e: MA869
266
267
268 (% style="color:#037691" %)**Sub-Band**:
269
270 AU915 and US915:value 0x00 ~~ 0x08
271
272 CN470: value 0x0B ~~ 0x0C
273
274 Other Bands: Always 0x00
275
276
277 (% style="color:#037691" %)**Battery Info**:
278
279 Check the battery voltage.
280
281 Ex1: 0x0B45 = 2885mV
282
283 Ex2: 0x0B49 = 2889mV
284
285
286 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
287
288
289 SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
290
291 For example:
292
293 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
294
295
296 (% style="color:red" %) **Important Notice:**
297
298 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
299
300 2. All modes share the same Payload Explanation from HERE.
301
302 3. By default, the device will send an uplink message every 20 minutes.
303
304
305 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
306
307
308 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
309
310 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
311 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
312 |Value|Bat|(% style="width:191px" %)(((
313 Temperature(DS18B20)(PC13)
314 )))|(% style="width:78px" %)(((
315 ADC(PA4)
316 )))|(% style="width:216px" %)(((
317 Digital in(PB15)&Digital Interrupt(PA8)
318 )))|(% style="width:308px" %)(((
319 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
320 )))|(% style="width:154px" %)(((
321 Humidity(SHT20 or SHT31)
322 )))
323
324 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
325
326
327 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
328
329
330 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
331
332 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
333 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
334 |Value|BAT|(% style="width:196px" %)(((
335 Temperature(DS18B20)(PC13)
336 )))|(% style="width:87px" %)(((
337 ADC(PA4)
338 )))|(% style="width:189px" %)(((
339 Digital in(PB15) & Digital Interrupt(PA8)
340 )))|(% style="width:208px" %)(((
341 Distance measure by: 1) LIDAR-Lite V3HP
342 Or 2) Ultrasonic Sensor
343 )))|(% style="width:117px" %)Reserved
344
345 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
346
347
348 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
349
350 [[image:image-20230512173758-5.png||height="563" width="712"]]
351
352
353 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
354
355 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
356
357 [[image:image-20230512173903-6.png||height="596" width="715"]]
358
359
360 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
361
362 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
363 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
364 |Value|BAT|(% style="width:183px" %)(((
365 Temperature(DS18B20)(PC13)
366 )))|(% style="width:173px" %)(((
367 Digital in(PB15) & Digital Interrupt(PA8)
368 )))|(% style="width:84px" %)(((
369 ADC(PA4)
370 )))|(% style="width:323px" %)(((
371 Distance measure by:1)TF-Mini plus LiDAR
372 Or 2) TF-Luna LiDAR
373 )))|(% style="width:188px" %)Distance signal  strength
374
375 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
376
377
378 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
379
380 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
381
382 [[image:image-20230512180609-7.png||height="555" width="802"]]
383
384
385 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
386
387 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
388
389 [[image:image-20230610170047-1.png||height="452" width="799"]]
390
391
392 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
393
394
395 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
396
397 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
398 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
399 **Size(bytes)**
400 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
401 |Value|(% style="width:68px" %)(((
402 ADC1(PA4)
403 )))|(% style="width:75px" %)(((
404 ADC2(PA5)
405 )))|(((
406 ADC3(PA8)
407 )))|(((
408 Digital Interrupt(PB15)
409 )))|(% style="width:304px" %)(((
410 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
411 )))|(% style="width:163px" %)(((
412 Humidity(SHT20 or SHT31)
413 )))|(% style="width:53px" %)Bat
414
415 [[image:image-20230513110214-6.png]]
416
417
418 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
419
420
421 This mode has total 11 bytes. As shown below:
422
423 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
424 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**
425 |Value|BAT|(% style="width:186px" %)(((
426 Temperature1(DS18B20)(PC13)
427 )))|(% style="width:82px" %)(((
428 ADC(PA4)
429 )))|(% style="width:210px" %)(((
430 Digital in(PB15) & Digital Interrupt(PA8) 
431 )))|(% style="width:191px" %)Temperature2(DS18B20)
432 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
433
434 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
435
436
437 [[image:image-20230513134006-1.png||height="559" width="736"]]
438
439
440 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
441
442
443 [[image:image-20230512164658-2.png||height="532" width="729"]]
444
445 Each HX711 need to be calibrated before used. User need to do below two steps:
446
447 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
448 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
449 1. (((
450 Weight has 4 bytes, the unit is g.
451
452
453
454 )))
455
456 For example:
457
458 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
459
460 Response:  Weight is 401 g
461
462 Check the response of this command and adjust the value to match the real value for thing.
463
464 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
465 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
466 **Size(bytes)**
467 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
468 |Value|BAT|(% style="width:193px" %)(((
469 Temperature(DS18B20)(PC13)
470 )))|(% style="width:85px" %)(((
471 ADC(PA4)
472 )))|(% style="width:186px" %)(((
473 Digital in(PB15) & Digital Interrupt(PA8)
474 )))|(% style="width:100px" %)Weight
475
476 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
477
478
479 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
480
481
482 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
483
484 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
485
486 [[image:image-20230512181814-9.png||height="543" width="697"]]
487
488
489 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
490
491 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
492 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
493 |Value|BAT|(% style="width:256px" %)(((
494 Temperature(DS18B20)(PC13)
495 )))|(% style="width:108px" %)(((
496 ADC(PA4)
497 )))|(% style="width:126px" %)(((
498 Digital in(PB15)
499 )))|(% style="width:145px" %)(((
500 Count(PA8)
501 )))
502
503 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
504
505
506 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
507
508
509 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
510 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
511 **Size(bytes)**
512 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
513 |Value|BAT|(% style="width:188px" %)(((
514 Temperature(DS18B20)
515 (PC13)
516 )))|(% style="width:83px" %)(((
517 ADC(PA5)
518 )))|(% style="width:184px" %)(((
519 Digital Interrupt1(PA8)
520 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
521
522 [[image:image-20230513111203-7.png||height="324" width="975"]]
523
524
525 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
526
527
528 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
529 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
530 **Size(bytes)**
531 )))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
532 |Value|BAT|(% style="width:207px" %)(((
533 Temperature(DS18B20)
534 (PC13)
535 )))|(% style="width:94px" %)(((
536 ADC1(PA4)
537 )))|(% style="width:198px" %)(((
538 Digital Interrupt(PB15)
539 )))|(% style="width:84px" %)(((
540 ADC2(PA5)
541 )))|(% style="width:82px" %)(((
542 ADC3(PA8)
543 )))
544
545 [[image:image-20230513111231-8.png||height="335" width="900"]]
546
547
548 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
549
550
551 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
552 |=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
553 **Size(bytes)**
554 )))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
555 |Value|BAT|(((
556 Temperature
557 (DS18B20)(PC13)
558 )))|(((
559 Temperature2
560 (DS18B20)(PB9)
561 )))|(((
562 Digital Interrupt
563 (PB15)
564 )))|(% style="width:193px" %)(((
565 Temperature3
566 (DS18B20)(PB8)
567 )))|(% style="width:78px" %)(((
568 Count1(PA8)
569 )))|(% style="width:78px" %)(((
570 Count2(PA4)
571 )))
572
573 [[image:image-20230513111255-9.png||height="341" width="899"]]
574
575 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
576
577 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
578
579 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
580
581 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
582
583
584 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
585
586 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
587
588 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
589
590
591 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
592
593
594 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
595
596 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
597
598 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
599
600
601 ===== 2.3.2.10.a  Uplink, PWM input capture =====
602
603
604 [[image:image-20230817172209-2.png||height="439" width="683"]]
605
606 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
607 |(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
608 |Value|Bat|(% style="width:191px" %)(((
609 Temperature(DS18B20)(PC13)
610 )))|(% style="width:78px" %)(((
611 ADC(PA4)
612 )))|(% style="width:135px" %)(((
613 PWM_Setting
614 &Digital Interrupt(PA8)
615 )))|(% style="width:70px" %)(((
616 Pulse period
617 )))|(% style="width:89px" %)(((
618 Duration of high level
619 )))
620
621 [[image:image-20230817170702-1.png||height="161" width="1044"]]
622
623
624 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
625
626 **Frequency:**
627
628 (% class="MsoNormal" %)
629 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
630
631 (% class="MsoNormal" %)
632 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
633
634
635 (% class="MsoNormal" %)
636 **Duty cycle:**
637
638 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
639
640 [[image:image-20230818092200-1.png||height="344" width="627"]]
641
642
643 ===== 2.3.2.10.b  Uplink, PWM output =====
644
645
646 [[image:image-20230817172209-2.png||height="439" width="683"]]
647
648 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
649
650 a is the time delay of the output, the unit is ms.
651
652 b is the output frequency, the unit is HZ.
653
654 c is the duty cycle of the output, the unit is %.
655
656 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
657
658 aa is the time delay of the output, the unit is ms.
659
660 bb is the output frequency, the unit is HZ.
661
662 cc is the duty cycle of the output, the unit is %.
663
664
665 For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
666
667 The oscilloscope displays as follows:
668
669 [[image:image-20231213102404-1.jpeg||height="688" width="821"]]
670
671
672 ===== 2.3.2.10.c  Downlink, PWM output =====
673
674
675 [[image:image-20230817173800-3.png||height="412" width="685"]]
676
677 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
678
679 xx xx xx is the output frequency, the unit is HZ.
680
681 yy is the duty cycle of the output, the unit is %.
682
683 zz zz is the time delay of the output, the unit is ms.
684
685
686 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
687
688 The oscilloscope displays as follows:
689
690 [[image:image-20230817173858-5.png||height="634" width="843"]]
691
692
693 === 2.3.3  ​Decode payload ===
694
695
696 While using TTN V3 network, you can add the payload format to decode the payload.
697
698 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
699
700 The payload decoder function for TTN V3 are here:
701
702 SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
703
704
705 ==== 2.3.3.1 Battery Info ====
706
707
708 Check the battery voltage for SN50v3-LB/LS.
709
710 Ex1: 0x0B45 = 2885mV
711
712 Ex2: 0x0B49 = 2889mV
713
714
715 ==== 2.3.3.2  Temperature (DS18B20) ====
716
717
718 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
719
720 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
721
722 (% style="color:blue" %)**Connection:**
723
724 [[image:image-20230512180718-8.png||height="538" width="647"]]
725
726
727 (% style="color:blue" %)**Example**:
728
729 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
730
731 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
732
733 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
734
735
736 ==== 2.3.3.3 Digital Input ====
737
738
739 The digital input for pin PB15,
740
741 * When PB15 is high, the bit 1 of payload byte 6 is 1.
742 * When PB15 is low, the bit 1 of payload byte 6 is 0.
743
744 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
745 (((
746 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
747
748 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
749
750
751 )))
752
753 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
754
755
756 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
757
758 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
759
760 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
761
762
763 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
764
765
766 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
767
768 [[image:image-20230811113449-1.png||height="370" width="608"]]
769
770
771
772 ==== 2.3.3.5 Digital Interrupt ====
773
774
775 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
776
777 (% style="color:blue" %)** Interrupt connection method:**
778
779 [[image:image-20230513105351-5.png||height="147" width="485"]]
780
781
782 (% style="color:blue" %)**Example to use with door sensor :**
783
784 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
785
786 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
787
788 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
789
790
791 (% style="color:blue" %)**Below is the installation example:**
792
793 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
794
795 * (((
796 One pin to SN50v3-LB/LS's PA8 pin
797 )))
798 * (((
799 The other pin to SN50v3-LB/LS's VDD pin
800 )))
801
802 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
803
804 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
805
806 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
807
808 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
809
810 The above photos shows the two parts of the magnetic switch fitted to a door.
811
812 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
813
814 The command is:
815
816 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
817
818 Below shows some screen captures in TTN V3:
819
820 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
821
822
823 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
824
825 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
826
827
828 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
829
830
831 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
832
833 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
834
835 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
836
837
838 Below is the connection to SHT20/ SHT31. The connection is as below:
839
840 [[image:image-20230610170152-2.png||height="501" width="846"]]
841
842
843 The device will be able to get the I2C sensor data now and upload to IoT Server.
844
845 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
846
847 Convert the read byte to decimal and divide it by ten.
848
849 **Example:**
850
851 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
852
853 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
854
855 If you want to use other I2C device, please refer the SHT20 part source code as reference.
856
857
858 ==== 2.3.3.7  ​Distance Reading ====
859
860
861 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
862
863
864 ==== 2.3.3.8 Ultrasonic Sensor ====
865
866
867 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
868
869 The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
870
871 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
872
873 The picture below shows the connection:
874
875 [[image:image-20230512173903-6.png||height="596" width="715"]]
876
877
878 Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
879
880 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
881
882 **Example:**
883
884 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
885
886
887 ==== 2.3.3.9  Battery Output - BAT pin ====
888
889
890 The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
891
892
893 ==== 2.3.3.10  +5V Output ====
894
895
896 SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
897
898 The 5V output time can be controlled by AT Command.
899
900 (% style="color:blue" %)**AT+5VT=1000**
901
902 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
903
904 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
905
906
907 ==== 2.3.3.11  BH1750 Illumination Sensor ====
908
909
910 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
911
912 [[image:image-20230512172447-4.png||height="416" width="712"]]
913
914
915 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
916
917
918 ==== 2.3.3.12  PWM MOD ====
919
920
921 * (((
922 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
923 )))
924 * (((
925 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
926 )))
927
928 [[image:image-20230817183249-3.png||height="320" width="417"]]
929
930 * (((
931 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
932 )))
933 * (((
934 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
935 )))
936 * (((
937 PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
938
939 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
940
941 a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
942
943 b) If the output duration is more than 30 seconds, better to use external power source. 
944 )))
945
946 ==== 2.3.3.13  Working MOD ====
947
948
949 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
950
951 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
952
953 Case 7^^th^^ Byte >> 2 & 0x1f:
954
955 * 0: MOD1
956 * 1: MOD2
957 * 2: MOD3
958 * 3: MOD4
959 * 4: MOD5
960 * 5: MOD6
961 * 6: MOD7
962 * 7: MOD8
963 * 8: MOD9
964 * 9: MOD10
965
966 == 2.4 Payload Decoder file ==
967
968
969 In TTN, use can add a custom payload so it shows friendly reading
970
971 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
972
973 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
974
975
976 == 2.5 Frequency Plans ==
977
978
979 The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
980
981 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
982
983
984 = 3. Configure SN50v3-LB/LS =
985
986 == 3.1 Configure Methods ==
987
988
989 SN50v3-LB/LS supports below configure method:
990
991 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
992 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
993 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
994
995 == 3.2 General Commands ==
996
997
998 These commands are to configure:
999
1000 * General system settings like: uplink interval.
1001 * LoRaWAN protocol & radio related command.
1002
1003 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1004
1005 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1006
1007
1008 == 3.3 Commands special design for SN50v3-LB/LS ==
1009
1010
1011 These commands only valid for SN50v3-LB/LS, as below:
1012
1013
1014 === 3.3.1 Set Transmit Interval Time ===
1015
1016
1017 Feature: Change LoRaWAN End Node Transmit Interval.
1018
1019 (% style="color:blue" %)**AT Command: AT+TDC**
1020
1021 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1022 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
1023 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1024 30000
1025 OK
1026 the interval is 30000ms = 30s
1027 )))
1028 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
1029 OK
1030 Set transmit interval to 60000ms = 60 seconds
1031 )))
1032
1033 (% style="color:blue" %)**Downlink Command: 0x01**
1034
1035 Format: Command Code (0x01) followed by 3 bytes time value.
1036
1037 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1038
1039 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1040 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1041
1042 === 3.3.2 Get Device Status ===
1043
1044
1045 Send a LoRaWAN downlink to ask the device to send its status.
1046
1047 (% style="color:blue" %)**Downlink Payload: 0x26 01**
1048
1049 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1050
1051
1052 === 3.3.3 Set Interrupt Mode ===
1053
1054
1055 Feature, Set Interrupt mode for GPIO_EXIT.
1056
1057 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1058
1059 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1060 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1061 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1062 0
1063 OK
1064 the mode is 0 =Disable Interrupt
1065 )))
1066 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1067 Set Transmit Interval
1068 0. (Disable Interrupt),
1069 ~1. (Trigger by rising and falling edge)
1070 2. (Trigger by falling edge)
1071 3. (Trigger by rising edge)
1072 )))|(% style="width:157px" %)OK
1073 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1074 Set Transmit Interval
1075 trigger by rising edge.
1076 )))|(% style="width:157px" %)OK
1077 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1078
1079 (% style="color:blue" %)**Downlink Command: 0x06**
1080
1081 Format: Command Code (0x06) followed by 3 bytes.
1082
1083 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1084
1085 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1086 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1087 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1088 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1089
1090 === 3.3.4 Set Power Output Duration ===
1091
1092
1093 Control the output duration 5V . Before each sampling, device will
1094
1095 ~1. first enable the power output to external sensor,
1096
1097 2. keep it on as per duration, read sensor value and construct uplink payload
1098
1099 3. final, close the power output.
1100
1101 (% style="color:blue" %)**AT Command: AT+5VT**
1102
1103 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1104 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1105 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1106 500(default)
1107 OK
1108 )))
1109 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1110 Close after a delay of 1000 milliseconds.
1111 )))|(% style="width:157px" %)OK
1112
1113 (% style="color:blue" %)**Downlink Command: 0x07**
1114
1115 Format: Command Code (0x07) followed by 2 bytes.
1116
1117 The first and second bytes are the time to turn on.
1118
1119 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1120 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1121
1122 === 3.3.5 Set Weighing parameters ===
1123
1124
1125 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1126
1127 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1128
1129 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1130 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1131 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1132 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1133 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1134
1135 (% style="color:blue" %)**Downlink Command: 0x08**
1136
1137 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1138
1139 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1140
1141 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1142
1143 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1144 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1145 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1146
1147 === 3.3.6 Set Digital pulse count value ===
1148
1149
1150 Feature: Set the pulse count value.
1151
1152 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1153
1154 (% style="color:blue" %)**AT Command: AT+SETCNT**
1155
1156 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1157 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1158 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1159 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1160
1161 (% style="color:blue" %)**Downlink Command: 0x09**
1162
1163 Format: Command Code (0x09) followed by 5 bytes.
1164
1165 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1166
1167 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1168 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1169
1170 === 3.3.7 Set Workmode ===
1171
1172
1173 Feature: Switch working mode.
1174
1175 (% style="color:blue" %)**AT Command: AT+MOD**
1176
1177 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1178 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1179 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1180 OK
1181 )))
1182 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1183 OK
1184 Attention:Take effect after ATZ
1185 )))
1186
1187 (% style="color:blue" %)**Downlink Command: 0x0A**
1188
1189 Format: Command Code (0x0A) followed by 1 bytes.
1190
1191 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1192 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1193
1194 === 3.3.8 PWM setting ===
1195
1196
1197 Feature: Set the time acquisition unit for PWM input capture.
1198
1199 (% style="color:blue" %)**AT Command: AT+PWMSET**
1200
1201 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1202 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1203 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1204 0(default)
1205 OK
1206 )))
1207 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1208 OK
1209
1210 )))
1211 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1212
1213 (% style="color:blue" %)**Downlink Command: 0x0C**
1214
1215 Format: Command Code (0x0C) followed by 1 bytes.
1216
1217 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219
1220 **Feature: Set PWM output time, output frequency and output duty cycle.**
1221
1222 (% style="color:blue" %)**AT Command: AT+PWMOUT**
1223
1224 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 |=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1226 |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 0,0,0(default)
1228 OK
1229 )))
1230 |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1231 OK
1232
1233 )))
1234 |(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1235 The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1236
1237
1238 )))|(% style="width:137px" %)(((
1239 OK
1240 )))
1241
1242 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1243 |=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1244 |(% colspan="1" rowspan="3" style="width:155px" %)(((
1245 AT+PWMOUT=a,b,c
1246
1247
1248 )))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1249 Set PWM output time, output frequency and output duty cycle.
1250
1251 (((
1252
1253 )))
1254
1255 (((
1256
1257 )))
1258 )))|(% style="width:242px" %)(((
1259 a: Output time (unit: seconds)
1260 The value ranges from 0 to 65535.
1261 When a=65535, PWM will always output.
1262 )))
1263 |(% style="width:242px" %)(((
1264 b: Output frequency (unit: HZ)
1265 )))
1266 |(% style="width:242px" %)(((
1267 c: Output duty cycle (unit: %)
1268 The value ranges from 0 to 100.
1269 )))
1270
1271 (% style="color:blue" %)**Downlink Command: 0x0B01**
1272
1273 Format: Command Code (0x0B01) followed by 6 bytes.
1274
1275 Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1276
1277 * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1278 * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1279
1280 = 4. Battery & Power Cons =
1281
1282
1283 SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1284
1285 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1286
1287
1288 = 5. OTA Firmware update =
1289
1290
1291 (% class="wikigeneratedid" %)
1292 **User can change firmware SN50v3-LB/LS to:**
1293
1294 * Change Frequency band/ region.
1295 * Update with new features.
1296 * Fix bugs.
1297
1298 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1299
1300 **Methods to Update Firmware:**
1301
1302 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1303 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1304
1305 = 6. FAQ =
1306
1307 == 6.1 Where can i find source code of SN50v3-LB/LS? ==
1308
1309
1310 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1311 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1312
1313 == 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1314
1315
1316 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1317
1318
1319 == 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1320
1321
1322 When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1323
1324 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1325
1326 [[image:image-20230810121434-1.png||height="242" width="656"]]
1327
1328
1329 = 7. Order Info =
1330
1331
1332 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1333
1334 (% style="color:red" %)**XX**(%%): The default frequency band
1335
1336 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1337 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1338 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1339 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1340 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1341 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1342 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1343 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1344
1345 (% style="color:red" %)**YY: ** (%%)Hole Option
1346
1347 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1348 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1349 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1350 * (% style="color:red" %)**NH**(%%): No Hole
1351
1352 = 8. ​Packing Info =
1353
1354
1355 (% style="color:#037691" %)**Package Includes**:
1356
1357 * SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1358
1359 (% style="color:#037691" %)**Dimension and weight**:
1360
1361 * Device Size: cm
1362 * Device Weight: g
1363 * Package Size / pcs : cm
1364 * Weight / pcs : g
1365
1366 = 9. Support =
1367
1368
1369 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1370
1371 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]