Version 87.2 by Xiaoling on 2024/01/03 09:58

Show last authors
1
2
3 (% style="text-align:center" %)
4 [[image:image-20240103095714-2.png]]
5
6
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
23
24
25 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26
27 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
28
29 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
30
31 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
32
33 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34
35 == 1.2 ​Features ==
36
37
38 * LoRaWAN 1.0.3 Class A
39 * Ultra-low power consumption
40 * Open-Source hardware/software
41 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
42 * Support Bluetooth v5.1 and LoRaWAN remote configure
43 * Support wireless OTA update firmware
44 * Uplink on periodically
45 * Downlink to change configure
46 * 8500mAh Battery for long term use
47
48 == 1.3 Specification ==
49
50
51 (% style="color:#037691" %)**Common DC Characteristics:**
52
53 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 * Operating Temperature: -40 ~~ 85°C
55
56 (% style="color:#037691" %)**I/O Interface:**
57
58 * Battery output (2.6v ~~ 3.6v depends on battery)
59 * +5v controllable output
60 * 3 x Interrupt or Digital IN/OUT pins
61 * 3 x one-wire interfaces
62 * 1 x UART Interface
63 * 1 x I2C Interface
64
65 (% style="color:#037691" %)**LoRa Spec:**
66
67 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
68 * Max +22 dBm constant RF output vs.
69 * RX sensitivity: down to -139 dBm.
70 * Excellent blocking immunity
71
72 (% style="color:#037691" %)**Battery:**
73
74 * Li/SOCI2 un-chargeable battery
75 * Capacity: 8500mAh
76 * Self-Discharge: <1% / Year @ 25°C
77 * Max continuously current: 130mA
78 * Max boost current: 2A, 1 second
79
80 (% style="color:#037691" %)**Power Consumption**
81
82 * Sleep Mode: 5uA @ 3.3v
83 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
84
85 == 1.4 Sleep mode and working mode ==
86
87
88 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
89
90 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
91
92
93 == 1.5 Button & LEDs ==
94
95
96 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
97
98
99 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
100 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
104 )))
105 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
106 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
107 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
108 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
109 )))
110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111
112 == 1.6 BLE connection ==
113
114
115 SN50v3-LB supports BLE remote configure.
116
117
118 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
119
120 * Press button to send an uplink
121 * Press button to active device.
122 * Device Power on or reset.
123
124 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
125
126
127 == 1.7 Pin Definitions ==
128
129
130 [[image:image-20230610163213-1.png||height="404" width="699"]]
131
132
133 == 1.8 Mechanical ==
134
135 === 1.8.1 for LB version ===
136
137
138 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139
140
141 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
142
143 === 1.8.2 for LS version ===
144
145 [[image:image-20231231203439-3.png||height="385" width="886"]]
146
147
148 == 1.9 Hole Option ==
149
150
151 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
152
153 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
154
155 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
156
157
158 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
159
160 == 2.1 How it works ==
161
162
163 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164
165
166 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
167
168
169 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
170
171 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
172
173
174 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
175
176 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
177
178 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
179
180
181 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
182
183
184 (% style="color:blue" %)**Register the device**
185
186 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
187
188
189 (% style="color:blue" %)**Add APP EUI and DEV EUI**
190
191 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
192
193
194 (% style="color:blue" %)**Add APP EUI in the application**
195
196
197 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
198
199
200 (% style="color:blue" %)**Add APP KEY**
201
202 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
203
204
205 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
206
207
208 Press the button for 5 seconds to activate the SN50v3-LB.
209
210 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
211
212 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
213
214
215 == 2.3 ​Uplink Payload ==
216
217 === 2.3.1 Device Status, FPORT~=5 ===
218
219
220 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
221
222 The Payload format is as below.
223
224
225 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
226 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
227 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
228 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
229
230 Example parse in TTNv3
231
232
233 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
234
235 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
236
237 (% style="color:#037691" %)**Frequency Band**:
238
239 0x01: EU868
240
241 0x02: US915
242
243 0x03: IN865
244
245 0x04: AU915
246
247 0x05: KZ865
248
249 0x06: RU864
250
251 0x07: AS923
252
253 0x08: AS923-1
254
255 0x09: AS923-2
256
257 0x0a: AS923-3
258
259 0x0b: CN470
260
261 0x0c: EU433
262
263 0x0d: KR920
264
265 0x0e: MA869
266
267
268 (% style="color:#037691" %)**Sub-Band**:
269
270 AU915 and US915:value 0x00 ~~ 0x08
271
272 CN470: value 0x0B ~~ 0x0C
273
274 Other Bands: Always 0x00
275
276
277 (% style="color:#037691" %)**Battery Info**:
278
279 Check the battery voltage.
280
281 Ex1: 0x0B45 = 2885mV
282
283 Ex2: 0x0B49 = 2889mV
284
285
286 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
287
288
289 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
290
291 For example:
292
293 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
294
295
296 (% style="color:red" %) **Important Notice:**
297
298 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
299
300 2. All modes share the same Payload Explanation from HERE.
301
302 3. By default, the device will send an uplink message every 20 minutes.
303
304
305 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
306
307
308 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
309
310 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
311 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
312 |Value|Bat|(% style="width:191px" %)(((
313 Temperature(DS18B20)(PC13)
314 )))|(% style="width:78px" %)(((
315 ADC(PA4)
316 )))|(% style="width:216px" %)(((
317 Digital in(PB15)&Digital Interrupt(PA8)
318 )))|(% style="width:308px" %)(((
319 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
320 )))|(% style="width:154px" %)(((
321 Humidity(SHT20 or SHT31)
322 )))
323
324 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
325
326
327 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
328
329
330 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
331
332 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
333 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
334 |Value|BAT|(% style="width:196px" %)(((
335 Temperature(DS18B20)(PC13)
336 )))|(% style="width:87px" %)(((
337 ADC(PA4)
338 )))|(% style="width:189px" %)(((
339 Digital in(PB15) & Digital Interrupt(PA8)
340 )))|(% style="width:208px" %)(((
341 Distance measure by: 1) LIDAR-Lite V3HP
342 Or 2) Ultrasonic Sensor
343 )))|(% style="width:117px" %)Reserved
344
345 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
346
347
348 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
349
350 [[image:image-20230512173758-5.png||height="563" width="712"]]
351
352
353 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
354
355 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
356
357 [[image:image-20230512173903-6.png||height="596" width="715"]]
358
359
360 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
361
362 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
363 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
364 |Value|BAT|(% style="width:183px" %)(((
365 Temperature(DS18B20)(PC13)
366 )))|(% style="width:173px" %)(((
367 Digital in(PB15) & Digital Interrupt(PA8)
368 )))|(% style="width:84px" %)(((
369 ADC(PA4)
370 )))|(% style="width:323px" %)(((
371 Distance measure by:1)TF-Mini plus LiDAR
372 Or 2) TF-Luna LiDAR
373 )))|(% style="width:188px" %)Distance signal  strength
374
375 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
376
377
378 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
379
380 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
381
382 [[image:image-20230512180609-7.png||height="555" width="802"]]
383
384
385 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
386
387 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
388
389 [[image:image-20230610170047-1.png||height="452" width="799"]]
390
391
392 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
393
394
395 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
396
397 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
398 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
399 **Size(bytes)**
400 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
401 |Value|(% style="width:68px" %)(((
402 ADC1(PA4)
403 )))|(% style="width:75px" %)(((
404 ADC2(PA5)
405 )))|(((
406 ADC3(PA8)
407 )))|(((
408 Digital Interrupt(PB15)
409 )))|(% style="width:304px" %)(((
410 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
411 )))|(% style="width:163px" %)(((
412 Humidity(SHT20 or SHT31)
413 )))|(% style="width:53px" %)Bat
414
415 [[image:image-20230513110214-6.png]]
416
417
418 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
419
420
421 This mode has total 11 bytes. As shown below:
422
423 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
424 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
425 |Value|BAT|(% style="width:186px" %)(((
426 Temperature1(DS18B20)(PC13)
427 )))|(% style="width:82px" %)(((
428 ADC(PA4)
429 )))|(% style="width:210px" %)(((
430 Digital in(PB15) & Digital Interrupt(PA8) 
431 )))|(% style="width:191px" %)Temperature2(DS18B20)
432 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
433
434 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
435
436
437 [[image:image-20230513134006-1.png||height="559" width="736"]]
438
439
440 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
441
442
443 [[image:image-20230512164658-2.png||height="532" width="729"]]
444
445 Each HX711 need to be calibrated before used. User need to do below two steps:
446
447 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
448 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
449 1. (((
450 Weight has 4 bytes, the unit is g.
451
452
453
454 )))
455
456 For example:
457
458 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
459
460 Response:  Weight is 401 g
461
462 Check the response of this command and adjust the value to match the real value for thing.
463
464 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
465 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
466 **Size(bytes)**
467 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
468 |Value|BAT|(% style="width:193px" %)(((
469 Temperature(DS18B20)(PC13)
470 )))|(% style="width:85px" %)(((
471 ADC(PA4)
472 )))|(% style="width:186px" %)(((
473 Digital in(PB15) & Digital Interrupt(PA8)
474 )))|(% style="width:100px" %)Weight
475
476 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
477
478
479 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
480
481
482 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
483
484 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
485
486 [[image:image-20230512181814-9.png||height="543" width="697"]]
487
488
489 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
490
491 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
492 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
493 |Value|BAT|(% style="width:256px" %)(((
494 Temperature(DS18B20)(PC13)
495 )))|(% style="width:108px" %)(((
496 ADC(PA4)
497 )))|(% style="width:126px" %)(((
498 Digital in(PB15)
499 )))|(% style="width:145px" %)(((
500 Count(PA8)
501 )))
502
503 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
504
505
506 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
507
508
509 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
510 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
511 **Size(bytes)**
512 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
513 |Value|BAT|(% style="width:188px" %)(((
514 Temperature(DS18B20)
515 (PC13)
516 )))|(% style="width:83px" %)(((
517 ADC(PA5)
518 )))|(% style="width:184px" %)(((
519 Digital Interrupt1(PA8)
520 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
521
522 [[image:image-20230513111203-7.png||height="324" width="975"]]
523
524
525 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
526
527
528 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
529 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
530 **Size(bytes)**
531 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
532 |Value|BAT|(% style="width:207px" %)(((
533 Temperature(DS18B20)
534 (PC13)
535 )))|(% style="width:94px" %)(((
536 ADC1(PA4)
537 )))|(% style="width:198px" %)(((
538 Digital Interrupt(PB15)
539 )))|(% style="width:84px" %)(((
540 ADC2(PA5)
541 )))|(% style="width:82px" %)(((
542 ADC3(PA8)
543 )))
544
545 [[image:image-20230513111231-8.png||height="335" width="900"]]
546
547
548 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
549
550
551 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
552 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
553 **Size(bytes)**
554 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
555 |Value|BAT|(((
556 Temperature
557 (DS18B20)(PC13)
558 )))|(((
559 Temperature2
560 (DS18B20)(PB9)
561 )))|(((
562 Digital Interrupt
563 (PB15)
564 )))|(% style="width:193px" %)(((
565 Temperature3
566 (DS18B20)(PB8)
567 )))|(% style="width:78px" %)(((
568 Count1(PA8)
569 )))|(% style="width:78px" %)(((
570 Count2(PA4)
571 )))
572
573 [[image:image-20230513111255-9.png||height="341" width="899"]]
574
575 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
576
577 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
578
579 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
580
581 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
582
583
584 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
585
586 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
587
588 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
589
590
591 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
592
593 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
594
595 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
596
597 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
598
599
600 ===== 2.3.2.10.a  Uplink, PWM input capture =====
601
602
603 [[image:image-20230817172209-2.png||height="439" width="683"]]
604
605 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
606 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
607 |Value|Bat|(% style="width:191px" %)(((
608 Temperature(DS18B20)(PC13)
609 )))|(% style="width:78px" %)(((
610 ADC(PA4)
611 )))|(% style="width:135px" %)(((
612 PWM_Setting
613 &Digital Interrupt(PA8)
614 )))|(% style="width:70px" %)(((
615 Pulse period
616 )))|(% style="width:89px" %)(((
617 Duration of high level
618 )))
619
620 [[image:image-20230817170702-1.png||height="161" width="1044"]]
621
622
623 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
624
625 **Frequency:**
626
627 (% class="MsoNormal" %)
628 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
629
630 (% class="MsoNormal" %)
631 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
632
633
634 (% class="MsoNormal" %)
635 **Duty cycle:**
636
637 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
638
639 [[image:image-20230818092200-1.png||height="344" width="627"]]
640
641 ===== 2.3.2.10.b  Uplink, PWM output =====
642
643 [[image:image-20230817172209-2.png||height="439" width="683"]]
644
645 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
646
647 a is the time delay of the output, the unit is ms.
648
649 b is the output frequency, the unit is HZ.
650
651 c is the duty cycle of the output, the unit is %.
652
653 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
654
655 aa is the time delay of the output, the unit is ms.
656
657 bb is the output frequency, the unit is HZ.
658
659 cc is the duty cycle of the output, the unit is %.
660
661
662 For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
663
664 The oscilloscope displays as follows:
665
666 [[image:image-20231213102404-1.jpeg||height="780" width="932"]]
667
668
669 ===== 2.3.2.10.c  Downlink, PWM output =====
670
671
672 [[image:image-20230817173800-3.png||height="412" width="685"]]
673
674 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
675
676 xx xx xx is the output frequency, the unit is HZ.
677
678 yy is the duty cycle of the output, the unit is %.
679
680 zz zz is the time delay of the output, the unit is ms.
681
682
683 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
684
685 The oscilloscope displays as follows:
686
687 [[image:image-20230817173858-5.png||height="694" width="921"]]
688
689
690 === 2.3.3  ​Decode payload ===
691
692
693 While using TTN V3 network, you can add the payload format to decode the payload.
694
695 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
696
697 The payload decoder function for TTN V3 are here:
698
699 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
700
701
702 ==== 2.3.3.1 Battery Info ====
703
704
705 Check the battery voltage for SN50v3-LB.
706
707 Ex1: 0x0B45 = 2885mV
708
709 Ex2: 0x0B49 = 2889mV
710
711
712 ==== 2.3.3.2  Temperature (DS18B20) ====
713
714
715 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
716
717 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
718
719 (% style="color:blue" %)**Connection:**
720
721 [[image:image-20230512180718-8.png||height="538" width="647"]]
722
723
724 (% style="color:blue" %)**Example**:
725
726 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
727
728 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
729
730 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
731
732
733 ==== 2.3.3.3 Digital Input ====
734
735
736 The digital input for pin PB15,
737
738 * When PB15 is high, the bit 1 of payload byte 6 is 1.
739 * When PB15 is low, the bit 1 of payload byte 6 is 0.
740
741 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
742 (((
743 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
744
745 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
746
747
748 )))
749
750 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
751
752
753 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
754
755 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
756
757 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
758
759
760 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
761
762
763 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
764
765 [[image:image-20230811113449-1.png||height="370" width="608"]]
766
767 ==== 2.3.3.5 Digital Interrupt ====
768
769
770 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
771
772 (% style="color:blue" %)** Interrupt connection method:**
773
774 [[image:image-20230513105351-5.png||height="147" width="485"]]
775
776
777 (% style="color:blue" %)**Example to use with door sensor :**
778
779 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
780
781 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
782
783 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
784
785
786 (% style="color:blue" %)**Below is the installation example:**
787
788 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
789
790 * (((
791 One pin to SN50v3-LB's PA8 pin
792 )))
793 * (((
794 The other pin to SN50v3-LB's VDD pin
795 )))
796
797 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
798
799 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
800
801 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
802
803 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
804
805 The above photos shows the two parts of the magnetic switch fitted to a door.
806
807 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
808
809 The command is:
810
811 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
812
813 Below shows some screen captures in TTN V3:
814
815 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
816
817
818 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
819
820 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
821
822
823 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
824
825
826 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
827
828 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
829
830 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
831
832
833 Below is the connection to SHT20/ SHT31. The connection is as below:
834
835 [[image:image-20230610170152-2.png||height="501" width="846"]]
836
837
838 The device will be able to get the I2C sensor data now and upload to IoT Server.
839
840 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
841
842 Convert the read byte to decimal and divide it by ten.
843
844 **Example:**
845
846 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
847
848 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
849
850 If you want to use other I2C device, please refer the SHT20 part source code as reference.
851
852
853 ==== 2.3.3.7  ​Distance Reading ====
854
855
856 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
857
858
859 ==== 2.3.3.8 Ultrasonic Sensor ====
860
861
862 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
863
864 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
865
866 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
867
868 The picture below shows the connection:
869
870 [[image:image-20230512173903-6.png||height="596" width="715"]]
871
872
873 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
874
875 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
876
877 **Example:**
878
879 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
880
881
882 ==== 2.3.3.9  Battery Output - BAT pin ====
883
884
885 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
886
887
888 ==== 2.3.3.10  +5V Output ====
889
890
891 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
892
893 The 5V output time can be controlled by AT Command.
894
895 (% style="color:blue" %)**AT+5VT=1000**
896
897 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
898
899 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
900
901
902 ==== 2.3.3.11  BH1750 Illumination Sensor ====
903
904
905 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
906
907 [[image:image-20230512172447-4.png||height="416" width="712"]]
908
909
910 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
911
912
913 ==== 2.3.3.12  PWM MOD ====
914
915
916 * (((
917 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
918 )))
919 * (((
920 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
921 )))
922
923 [[image:image-20230817183249-3.png||height="320" width="417"]]
924
925 * (((
926 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
927 )))
928 * (((
929 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
930 )))
931 * (((
932 PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
933
934 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
935
936 a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
937
938 b) If the output duration is more than 30 seconds, better to use external power source. 
939
940
941
942 )))
943
944 ==== 2.3.3.13  Working MOD ====
945
946
947 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
948
949 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
950
951 Case 7^^th^^ Byte >> 2 & 0x1f:
952
953 * 0: MOD1
954 * 1: MOD2
955 * 2: MOD3
956 * 3: MOD4
957 * 4: MOD5
958 * 5: MOD6
959 * 6: MOD7
960 * 7: MOD8
961 * 8: MOD9
962 * 9: MOD10
963
964 == 2.4 Payload Decoder file ==
965
966
967 In TTN, use can add a custom payload so it shows friendly reading
968
969 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
970
971 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
972
973
974 == 2.5 Frequency Plans ==
975
976
977 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
978
979 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
980
981
982 = 3. Configure SN50v3-LB =
983
984 == 3.1 Configure Methods ==
985
986
987 SN50v3-LB supports below configure method:
988
989 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
990 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
991 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
992
993 == 3.2 General Commands ==
994
995
996 These commands are to configure:
997
998 * General system settings like: uplink interval.
999 * LoRaWAN protocol & radio related command.
1000
1001 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1002
1003 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1004
1005
1006 == 3.3 Commands special design for SN50v3-LB ==
1007
1008
1009 These commands only valid for SN50v3-LB, as below:
1010
1011
1012 === 3.3.1 Set Transmit Interval Time ===
1013
1014
1015 Feature: Change LoRaWAN End Node Transmit Interval.
1016
1017 (% style="color:blue" %)**AT Command: AT+TDC**
1018
1019 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1020 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1021 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1022 30000
1023 OK
1024 the interval is 30000ms = 30s
1025 )))
1026 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
1027 OK
1028 Set transmit interval to 60000ms = 60 seconds
1029 )))
1030
1031 (% style="color:blue" %)**Downlink Command: 0x01**
1032
1033 Format: Command Code (0x01) followed by 3 bytes time value.
1034
1035 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1036
1037 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1038 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1039
1040 === 3.3.2 Get Device Status ===
1041
1042
1043 Send a LoRaWAN downlink to ask the device to send its status.
1044
1045 (% style="color:blue" %)**Downlink Payload: 0x26 01**
1046
1047 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1048
1049
1050 === 3.3.3 Set Interrupt Mode ===
1051
1052
1053 Feature, Set Interrupt mode for GPIO_EXIT.
1054
1055 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1056
1057 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1058 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1059 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1060 0
1061 OK
1062 the mode is 0 =Disable Interrupt
1063 )))
1064 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1065 Set Transmit Interval
1066 0. (Disable Interrupt),
1067 ~1. (Trigger by rising and falling edge)
1068 2. (Trigger by falling edge)
1069 3. (Trigger by rising edge)
1070 )))|(% style="width:157px" %)OK
1071 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1072 Set Transmit Interval
1073 trigger by rising edge.
1074 )))|(% style="width:157px" %)OK
1075 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1076
1077 (% style="color:blue" %)**Downlink Command: 0x06**
1078
1079 Format: Command Code (0x06) followed by 3 bytes.
1080
1081 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1082
1083 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1084 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1085 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1086 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1087
1088 === 3.3.4 Set Power Output Duration ===
1089
1090
1091 Control the output duration 5V . Before each sampling, device will
1092
1093 ~1. first enable the power output to external sensor,
1094
1095 2. keep it on as per duration, read sensor value and construct uplink payload
1096
1097 3. final, close the power output.
1098
1099 (% style="color:blue" %)**AT Command: AT+5VT**
1100
1101 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1102 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1103 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1104 500(default)
1105 OK
1106 )))
1107 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1108 Close after a delay of 1000 milliseconds.
1109 )))|(% style="width:157px" %)OK
1110
1111 (% style="color:blue" %)**Downlink Command: 0x07**
1112
1113 Format: Command Code (0x07) followed by 2 bytes.
1114
1115 The first and second bytes are the time to turn on.
1116
1117 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1118 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1119
1120 === 3.3.5 Set Weighing parameters ===
1121
1122
1123 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1124
1125 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1126
1127 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1128 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1129 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1130 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1131 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1132
1133 (% style="color:blue" %)**Downlink Command: 0x08**
1134
1135 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1136
1137 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1138
1139 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1140
1141 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1142 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1143 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1144
1145 === 3.3.6 Set Digital pulse count value ===
1146
1147
1148 Feature: Set the pulse count value.
1149
1150 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1151
1152 (% style="color:blue" %)**AT Command: AT+SETCNT**
1153
1154 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1155 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1156 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1157 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1158
1159 (% style="color:blue" %)**Downlink Command: 0x09**
1160
1161 Format: Command Code (0x09) followed by 5 bytes.
1162
1163 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1164
1165 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1166 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1167
1168 === 3.3.7 Set Workmode ===
1169
1170
1171 Feature: Switch working mode.
1172
1173 (% style="color:blue" %)**AT Command: AT+MOD**
1174
1175 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1176 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1177 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1178 OK
1179 )))
1180 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1181 OK
1182 Attention:Take effect after ATZ
1183 )))
1184
1185 (% style="color:blue" %)**Downlink Command: 0x0A**
1186
1187 Format: Command Code (0x0A) followed by 1 bytes.
1188
1189 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1190 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1191
1192 (% id="H3.3.8PWMsetting" %)
1193 === 3.3.8 PWM setting ===
1194
1195
1196 (% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1197
1198 (% style="color:blue" %)**AT Command: AT+PWMSET**
1199
1200 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1201 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1202 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1203 0(default)
1204
1205 OK
1206 )))
1207 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1208 OK
1209
1210 )))
1211 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1212
1213 (% style="color:blue" %)**Downlink Command: 0x0C**
1214
1215 Format: Command Code (0x0C) followed by 1 bytes.
1216
1217 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219
1220 (% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1221
1222 (% style="color:blue" %)**AT Command: AT+PWMOUT**
1223
1224 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 |=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1226 |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 0,0,0(default)
1228
1229 OK
1230 )))
1231 |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1232 OK
1233
1234 )))
1235 |(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1236 The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1237
1238
1239 )))|(% style="width:137px" %)(((
1240 OK
1241 )))
1242
1243 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1244 |=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1245 |(% colspan="1" rowspan="3" style="width:155px" %)(((
1246 AT+PWMOUT=a,b,c
1247
1248
1249 )))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1250 Set PWM output time, output frequency and output duty cycle.
1251
1252 (((
1253
1254 )))
1255
1256 (((
1257
1258 )))
1259 )))|(% style="width:242px" %)(((
1260 a: Output time (unit: seconds)
1261
1262 The value ranges from 0 to 65535.
1263
1264 When a=65535, PWM will always output.
1265 )))
1266 |(% style="width:242px" %)(((
1267 b: Output frequency (unit: HZ)
1268 )))
1269 |(% style="width:242px" %)(((
1270 c: Output duty cycle (unit: %)
1271
1272 The value ranges from 0 to 100.
1273 )))
1274
1275 (% style="color:blue" %)**Downlink Command: 0x0B01**
1276
1277 Format: Command Code (0x0B01) followed by 6 bytes.
1278
1279 Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1280
1281 * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1282 * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1283
1284 = 4. Battery & Power Cons =
1285
1286
1287 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1288
1289 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1290
1291
1292 = 5. OTA Firmware update =
1293
1294
1295 (% class="wikigeneratedid" %)
1296 **User can change firmware SN50v3-LB to:**
1297
1298 * Change Frequency band/ region.
1299 * Update with new features.
1300 * Fix bugs.
1301
1302 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1303
1304 **Methods to Update Firmware:**
1305
1306 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1307 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1308
1309 = 6. FAQ =
1310
1311 == 6.1 Where can i find source code of SN50v3-LB? ==
1312
1313
1314 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1315 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1316
1317 == 6.2 How to generate PWM Output in SN50v3-LB? ==
1318
1319
1320 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1321
1322
1323 == 6.3 How to put several sensors to a SN50v3-LB? ==
1324
1325
1326 When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1327
1328 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1329
1330 [[image:image-20230810121434-1.png||height="242" width="656"]]
1331
1332
1333 = 7. Order Info =
1334
1335
1336 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1337
1338 (% style="color:red" %)**XX**(%%): The default frequency band
1339
1340 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1341 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1342 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1343 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1344 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1345 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1346 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1347 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1348
1349 (% style="color:red" %)**YY: ** (%%)Hole Option
1350
1351 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1352 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1353 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1354 * (% style="color:red" %)**NH**(%%): No Hole
1355
1356 = 8. ​Packing Info =
1357
1358
1359 (% style="color:#037691" %)**Package Includes**:
1360
1361 * SN50v3-LB LoRaWAN Generic Node
1362
1363 (% style="color:#037691" %)**Dimension and weight**:
1364
1365 * Device Size: cm
1366 * Device Weight: g
1367 * Package Size / pcs : cm
1368 * Weight / pcs : g
1369
1370 = 9. Support =
1371
1372
1373 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1374
1375 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]