Version 74.3 by Xiaoling on 2023/08/19 15:41

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33
34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
36 * Open-Source hardware/software
37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
44 == 1.3 Specification ==
45
46
47 (% style="color:#037691" %)**Common DC Characteristics:**
48
49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
50 * Operating Temperature: -40 ~~ 85°C
51
52 (% style="color:#037691" %)**I/O Interface:**
53
54 * Battery output (2.6v ~~ 3.6v depends on battery)
55 * +5v controllable output
56 * 3 x Interrupt or Digital IN/OUT pins
57 * 3 x one-wire interfaces
58 * 1 x UART Interface
59 * 1 x I2C Interface
60
61 (% style="color:#037691" %)**LoRa Spec:**
62
63 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
64 * Max +22 dBm constant RF output vs.
65 * RX sensitivity: down to -139 dBm.
66 * Excellent blocking immunity
67
68 (% style="color:#037691" %)**Battery:**
69
70 * Li/SOCI2 un-chargeable battery
71 * Capacity: 8500mAh
72 * Self-Discharge: <1% / Year @ 25°C
73 * Max continuously current: 130mA
74 * Max boost current: 2A, 1 second
75
76 (% style="color:#037691" %)**Power Consumption**
77
78 * Sleep Mode: 5uA @ 3.3v
79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80
81 == 1.4 Sleep mode and working mode ==
82
83
84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85
86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
87
88
89 == 1.5 Button & LEDs ==
90
91
92 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
93
94
95 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
96 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
97 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
98 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
99 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
100 )))
101 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
102 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
103 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
104 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
105 )))
106 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
107
108 == 1.6 BLE connection ==
109
110
111 SN50v3-LB supports BLE remote configure.
112
113
114 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
115
116 * Press button to send an uplink
117 * Press button to active device.
118 * Device Power on or reset.
119
120 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
121
122
123 == 1.7 Pin Definitions ==
124
125
126 [[image:image-20230610163213-1.png||height="404" width="699"]]
127
128
129 == 1.8 Mechanical ==
130
131
132 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
133
134 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
135
136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137
138
139 == 1.9 Hole Option ==
140
141
142 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
143
144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
145
146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147
148
149 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
150
151 == 2.1 How it works ==
152
153
154 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155
156
157 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
158
159
160 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
161
162 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163
164
165 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
166
167 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
168
169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
170
171
172 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
173
174
175 (% style="color:blue" %)**Register the device**
176
177 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
178
179
180 (% style="color:blue" %)**Add APP EUI and DEV EUI**
181
182 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
183
184
185 (% style="color:blue" %)**Add APP EUI in the application**
186
187
188 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
189
190
191 (% style="color:blue" %)**Add APP KEY**
192
193 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
194
195
196 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
197
198
199 Press the button for 5 seconds to activate the SN50v3-LB.
200
201 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
202
203 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
204
205
206 == 2.3 ​Uplink Payload ==
207
208 === 2.3.1 Device Status, FPORT~=5 ===
209
210
211 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
212
213 The Payload format is as below.
214
215
216 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
217 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
218 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
219 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
220
221 Example parse in TTNv3
222
223
224 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
225
226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227
228 (% style="color:#037691" %)**Frequency Band**:
229
230 0x01: EU868
231
232 0x02: US915
233
234 0x03: IN865
235
236 0x04: AU915
237
238 0x05: KZ865
239
240 0x06: RU864
241
242 0x07: AS923
243
244 0x08: AS923-1
245
246 0x09: AS923-2
247
248 0x0a: AS923-3
249
250 0x0b: CN470
251
252 0x0c: EU433
253
254 0x0d: KR920
255
256 0x0e: MA869
257
258
259 (% style="color:#037691" %)**Sub-Band**:
260
261 AU915 and US915:value 0x00 ~~ 0x08
262
263 CN470: value 0x0B ~~ 0x0C
264
265 Other Bands: Always 0x00
266
267
268 (% style="color:#037691" %)**Battery Info**:
269
270 Check the battery voltage.
271
272 Ex1: 0x0B45 = 2885mV
273
274 Ex2: 0x0B49 = 2889mV
275
276
277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
278
279
280 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
281
282 For example:
283
284 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
285
286
287 (% style="color:red" %) **Important Notice:**
288
289 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
290
291 2. All modes share the same Payload Explanation from HERE.
292
293 3. By default, the device will send an uplink message every 20 minutes.
294
295
296 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
297
298
299 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
300
301 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
302 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
303 |Value|Bat|(% style="width:191px" %)(((
304 Temperature(DS18B20)(PC13)
305 )))|(% style="width:78px" %)(((
306 ADC(PA4)
307 )))|(% style="width:216px" %)(((
308 Digital in(PB15)&Digital Interrupt(PA8)
309 )))|(% style="width:308px" %)(((
310 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
311 )))|(% style="width:154px" %)(((
312 Humidity(SHT20 or SHT31)
313 )))
314
315 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
316
317
318 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
319
320
321 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
322
323 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
325 |Value|BAT|(% style="width:196px" %)(((
326 Temperature(DS18B20)(PC13)
327 )))|(% style="width:87px" %)(((
328 ADC(PA4)
329 )))|(% style="width:189px" %)(((
330 Digital in(PB15) & Digital Interrupt(PA8)
331 )))|(% style="width:208px" %)(((
332 Distance measure by: 1) LIDAR-Lite V3HP
333 Or 2) Ultrasonic Sensor
334 )))|(% style="width:117px" %)Reserved
335
336 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
337
338
339 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
340
341 [[image:image-20230512173758-5.png||height="563" width="712"]]
342
343
344 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
345
346 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
347
348 [[image:image-20230512173903-6.png||height="596" width="715"]]
349
350
351 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
352
353 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
354 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
355 |Value|BAT|(% style="width:183px" %)(((
356 Temperature(DS18B20)(PC13)
357 )))|(% style="width:173px" %)(((
358 Digital in(PB15) & Digital Interrupt(PA8)
359 )))|(% style="width:84px" %)(((
360 ADC(PA4)
361 )))|(% style="width:323px" %)(((
362 Distance measure by:1)TF-Mini plus LiDAR
363 Or 2) TF-Luna LiDAR
364 )))|(% style="width:188px" %)Distance signal  strength
365
366 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
367
368
369 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
370
371 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
372
373 [[image:image-20230512180609-7.png||height="555" width="802"]]
374
375
376 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
377
378 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
379
380 [[image:image-20230610170047-1.png||height="452" width="799"]]
381
382
383 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
384
385
386 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
387
388 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
389 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
390 **Size(bytes)**
391 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
392 |Value|(% style="width:68px" %)(((
393 ADC1(PA4)
394 )))|(% style="width:75px" %)(((
395 ADC2(PA5)
396 )))|(((
397 ADC3(PA8)
398 )))|(((
399 Digital Interrupt(PB15)
400 )))|(% style="width:304px" %)(((
401 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
402 )))|(% style="width:163px" %)(((
403 Humidity(SHT20 or SHT31)
404 )))|(% style="width:53px" %)Bat
405
406 [[image:image-20230513110214-6.png]]
407
408
409 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
410
411
412 This mode has total 11 bytes. As shown below:
413
414 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
415 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
416 |Value|BAT|(% style="width:186px" %)(((
417 Temperature1(DS18B20)(PC13)
418 )))|(% style="width:82px" %)(((
419 ADC(PA4)
420 )))|(% style="width:210px" %)(((
421 Digital in(PB15) & Digital Interrupt(PA8) 
422 )))|(% style="width:191px" %)Temperature2(DS18B20)
423 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
424
425 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
426
427
428 [[image:image-20230513134006-1.png||height="559" width="736"]]
429
430
431 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
432
433
434 [[image:image-20230512164658-2.png||height="532" width="729"]]
435
436 Each HX711 need to be calibrated before used. User need to do below two steps:
437
438 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
439 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
440 1. (((
441 Weight has 4 bytes, the unit is g.
442
443
444
445 )))
446
447 For example:
448
449 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
450
451 Response:  Weight is 401 g
452
453 Check the response of this command and adjust the value to match the real value for thing.
454
455 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
456 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
457 **Size(bytes)**
458 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
459 |Value|BAT|(% style="width:193px" %)(((
460 Temperature(DS18B20)(PC13)
461 )))|(% style="width:85px" %)(((
462 ADC(PA4)
463 )))|(% style="width:186px" %)(((
464 Digital in(PB15) & Digital Interrupt(PA8)
465 )))|(% style="width:100px" %)Weight
466
467 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
468
469
470 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
471
472
473 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
474
475 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
476
477 [[image:image-20230512181814-9.png||height="543" width="697"]]
478
479
480 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
481
482 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
483 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
484 |Value|BAT|(% style="width:256px" %)(((
485 Temperature(DS18B20)(PC13)
486 )))|(% style="width:108px" %)(((
487 ADC(PA4)
488 )))|(% style="width:126px" %)(((
489 Digital in(PB15)
490 )))|(% style="width:145px" %)(((
491 Count(PA8)
492 )))
493
494 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
495
496
497 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
498
499
500 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
501 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
502 **Size(bytes)**
503 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
504 |Value|BAT|(% style="width:188px" %)(((
505 Temperature(DS18B20)
506 (PC13)
507 )))|(% style="width:83px" %)(((
508 ADC(PA5)
509 )))|(% style="width:184px" %)(((
510 Digital Interrupt1(PA8)
511 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
512
513 [[image:image-20230513111203-7.png||height="324" width="975"]]
514
515
516 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
517
518
519 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
520 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
521 **Size(bytes)**
522 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
523 |Value|BAT|(% style="width:207px" %)(((
524 Temperature(DS18B20)
525 (PC13)
526 )))|(% style="width:94px" %)(((
527 ADC1(PA4)
528 )))|(% style="width:198px" %)(((
529 Digital Interrupt(PB15)
530 )))|(% style="width:84px" %)(((
531 ADC2(PA5)
532 )))|(% style="width:82px" %)(((
533 ADC3(PA8)
534 )))
535
536 [[image:image-20230513111231-8.png||height="335" width="900"]]
537
538
539 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
540
541
542 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
543 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
544 **Size(bytes)**
545 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
546 |Value|BAT|(((
547 Temperature
548 (DS18B20)(PC13)
549 )))|(((
550 Temperature2
551 (DS18B20)(PB9)
552 )))|(((
553 Digital Interrupt
554 (PB15)
555 )))|(% style="width:193px" %)(((
556 Temperature3
557 (DS18B20)(PB8)
558 )))|(% style="width:78px" %)(((
559 Count1(PA8)
560 )))|(% style="width:78px" %)(((
561 Count2(PA4)
562 )))
563
564 [[image:image-20230513111255-9.png||height="341" width="899"]]
565
566 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
567
568 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
569
570 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
571
572 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
573
574
575 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
576
577 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
578
579 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
580
581
582 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
583
584
585 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586
587 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588
589
590 ===== 2.3.2.10.a  Uplink, PWM input capture =====
591
592
593 [[image:image-20230817172209-2.png||height="439" width="683"]]
594
595 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
596 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
597 |Value|Bat|(% style="width:191px" %)(((
598 Temperature(DS18B20)(PC13)
599 )))|(% style="width:78px" %)(((
600 ADC(PA4)
601 )))|(% style="width:135px" %)(((
602 PWM_Setting
603
604 &Digital Interrupt(PA8)
605 )))|(% style="width:70px" %)(((
606 Pulse period
607 )))|(% style="width:89px" %)(((
608 Duration of high level
609 )))
610
611 [[image:image-20230817170702-1.png||height="161" width="1044"]]
612
613
614 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
615
616 Frequency:
617
618 (% class="MsoNormal" %)
619 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0,**(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
620
621 (% class="MsoNormal" %)
622 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1,**(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
623
624 (% class="MsoNormal" %)
625 Duty cycle:
626
627 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
628
629 [[image:image-20230818092200-1.png||height="344" width="627"]]
630
631
632 ===== 2.3.2.10.b  Downlink, PWM output =====
633
634
635 [[image:image-20230817173800-3.png||height="412" width="685"]]
636
637 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
638
639 xx xx xx is the output frequency, the unit is HZ.
640
641 yy is the duty cycle of the output, the unit is %.
642
643 zz zz is the time delay of the output, the unit is ms.
644
645
646 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
647
648 The oscilloscope displays as follows:
649
650 [[image:image-20230817173858-5.png||height="694" width="921"]]
651
652
653 === 2.3.3  ​Decode payload ===
654
655
656 While using TTN V3 network, you can add the payload format to decode the payload.
657
658 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
659
660 The payload decoder function for TTN V3 are here:
661
662 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
663
664
665 ==== 2.3.3.1 Battery Info ====
666
667
668 Check the battery voltage for SN50v3-LB.
669
670 Ex1: 0x0B45 = 2885mV
671
672 Ex2: 0x0B49 = 2889mV
673
674
675 ==== 2.3.3.2  Temperature (DS18B20) ====
676
677
678 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
679
680 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
681
682 (% style="color:blue" %)**Connection:**
683
684 [[image:image-20230512180718-8.png||height="538" width="647"]]
685
686
687 (% style="color:blue" %)**Example**:
688
689 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
690
691 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
692
693 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
694
695
696 ==== 2.3.3.3 Digital Input ====
697
698
699 The digital input for pin PB15,
700
701 * When PB15 is high, the bit 1 of payload byte 6 is 1.
702 * When PB15 is low, the bit 1 of payload byte 6 is 0.
703
704 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
705 (((
706 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
707
708 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
709
710
711 )))
712
713 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
714
715
716 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
717
718 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
719
720 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
721
722
723 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
724
725
726 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
727
728 [[image:image-20230811113449-1.png||height="370" width="608"]]
729
730 ==== 2.3.3.5 Digital Interrupt ====
731
732
733 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
734
735 (% style="color:blue" %)** Interrupt connection method:**
736
737 [[image:image-20230513105351-5.png||height="147" width="485"]]
738
739
740 (% style="color:blue" %)**Example to use with door sensor :**
741
742 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
743
744 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
745
746 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
747
748
749 (% style="color:blue" %)**Below is the installation example:**
750
751 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
752
753 * (((
754 One pin to SN50v3-LB's PA8 pin
755 )))
756 * (((
757 The other pin to SN50v3-LB's VDD pin
758 )))
759
760 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
761
762 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
763
764 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
765
766 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
767
768 The above photos shows the two parts of the magnetic switch fitted to a door.
769
770 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
771
772 The command is:
773
774 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
775
776 Below shows some screen captures in TTN V3:
777
778 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
779
780
781 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
782
783 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
784
785
786 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
787
788
789 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
790
791 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
792
793 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
794
795
796 Below is the connection to SHT20/ SHT31. The connection is as below:
797
798 [[image:image-20230610170152-2.png||height="501" width="846"]]
799
800
801 The device will be able to get the I2C sensor data now and upload to IoT Server.
802
803 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
804
805 Convert the read byte to decimal and divide it by ten.
806
807 **Example:**
808
809 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
810
811 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
812
813 If you want to use other I2C device, please refer the SHT20 part source code as reference.
814
815
816 ==== 2.3.3.7  ​Distance Reading ====
817
818
819 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
820
821
822 ==== 2.3.3.8 Ultrasonic Sensor ====
823
824
825 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
826
827 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
828
829 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
830
831 The picture below shows the connection:
832
833 [[image:image-20230512173903-6.png||height="596" width="715"]]
834
835
836 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
837
838 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
839
840 **Example:**
841
842 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
843
844
845 ==== 2.3.3.9  Battery Output - BAT pin ====
846
847
848 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
849
850
851 ==== 2.3.3.10  +5V Output ====
852
853
854 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
855
856 The 5V output time can be controlled by AT Command.
857
858 (% style="color:blue" %)**AT+5VT=1000**
859
860 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
861
862 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
863
864
865 ==== 2.3.3.11  BH1750 Illumination Sensor ====
866
867
868 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
869
870 [[image:image-20230512172447-4.png||height="416" width="712"]]
871
872
873 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
874
875
876 ==== 2.3.3.12  PWM MOD ====
877
878
879 * (((
880 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
881 )))
882 * (((
883 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
884 )))
885
886 [[image:image-20230817183249-3.png||height="320" width="417"]]
887
888 * (((
889 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
890 )))
891 * (((
892 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
893
894
895 )))
896
897 ==== 2.3.3.13  Working MOD ====
898
899
900 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
901
902 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
903
904 Case 7^^th^^ Byte >> 2 & 0x1f:
905
906 * 0: MOD1
907 * 1: MOD2
908 * 2: MOD3
909 * 3: MOD4
910 * 4: MOD5
911 * 5: MOD6
912 * 6: MOD7
913 * 7: MOD8
914 * 8: MOD9
915 * 9: MOD10
916
917 == 2.4 Payload Decoder file ==
918
919
920 In TTN, use can add a custom payload so it shows friendly reading
921
922 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
923
924 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
925
926
927 == 2.5 Frequency Plans ==
928
929
930 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
931
932 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
933
934
935 = 3. Configure SN50v3-LB =
936
937 == 3.1 Configure Methods ==
938
939
940 SN50v3-LB supports below configure method:
941
942 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
943 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
944 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
945
946 == 3.2 General Commands ==
947
948
949 These commands are to configure:
950
951 * General system settings like: uplink interval.
952 * LoRaWAN protocol & radio related command.
953
954 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
955
956 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
957
958
959 == 3.3 Commands special design for SN50v3-LB ==
960
961
962 These commands only valid for SN50v3-LB, as below:
963
964
965 === 3.3.1 Set Transmit Interval Time ===
966
967
968 Feature: Change LoRaWAN End Node Transmit Interval.
969
970 (% style="color:blue" %)**AT Command: AT+TDC**
971
972 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
973 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
974 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
975 30000
976 OK
977 the interval is 30000ms = 30s
978 )))
979 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
980 OK
981 Set transmit interval to 60000ms = 60 seconds
982 )))
983
984 (% style="color:blue" %)**Downlink Command: 0x01**
985
986 Format: Command Code (0x01) followed by 3 bytes time value.
987
988 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
989
990 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
991 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
992
993 === 3.3.2 Get Device Status ===
994
995
996 Send a LoRaWAN downlink to ask the device to send its status.
997
998 (% style="color:blue" %)**Downlink Payload: 0x26 01**
999
1000 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1001
1002
1003 === 3.3.3 Set Interrupt Mode ===
1004
1005
1006 Feature, Set Interrupt mode for GPIO_EXIT.
1007
1008 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1009
1010 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1011 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1012 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1013 0
1014 OK
1015 the mode is 0 =Disable Interrupt
1016 )))
1017 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1018 Set Transmit Interval
1019 0. (Disable Interrupt),
1020 ~1. (Trigger by rising and falling edge)
1021 2. (Trigger by falling edge)
1022 3. (Trigger by rising edge)
1023 )))|(% style="width:157px" %)OK
1024 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1025 Set Transmit Interval
1026 trigger by rising edge.
1027 )))|(% style="width:157px" %)OK
1028 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1029
1030 (% style="color:blue" %)**Downlink Command: 0x06**
1031
1032 Format: Command Code (0x06) followed by 3 bytes.
1033
1034 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1035
1036 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1037 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1038 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1039 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1040
1041 === 3.3.4 Set Power Output Duration ===
1042
1043
1044 Control the output duration 5V . Before each sampling, device will
1045
1046 ~1. first enable the power output to external sensor,
1047
1048 2. keep it on as per duration, read sensor value and construct uplink payload
1049
1050 3. final, close the power output.
1051
1052 (% style="color:blue" %)**AT Command: AT+5VT**
1053
1054 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1055 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1056 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1057 500(default)
1058 OK
1059 )))
1060 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1061 Close after a delay of 1000 milliseconds.
1062 )))|(% style="width:157px" %)OK
1063
1064 (% style="color:blue" %)**Downlink Command: 0x07**
1065
1066 Format: Command Code (0x07) followed by 2 bytes.
1067
1068 The first and second bytes are the time to turn on.
1069
1070 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1071 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1072
1073 === 3.3.5 Set Weighing parameters ===
1074
1075
1076 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1077
1078 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1079
1080 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1081 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1082 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1083 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1084 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1085
1086 (% style="color:blue" %)**Downlink Command: 0x08**
1087
1088 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1089
1090 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1091
1092 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1093
1094 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1095 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1096 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1097
1098 === 3.3.6 Set Digital pulse count value ===
1099
1100
1101 Feature: Set the pulse count value.
1102
1103 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1104
1105 (% style="color:blue" %)**AT Command: AT+SETCNT**
1106
1107 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1108 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1109 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1110 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1111
1112 (% style="color:blue" %)**Downlink Command: 0x09**
1113
1114 Format: Command Code (0x09) followed by 5 bytes.
1115
1116 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1117
1118 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1119 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1120
1121 === 3.3.7 Set Workmode ===
1122
1123
1124 Feature: Switch working mode.
1125
1126 (% style="color:blue" %)**AT Command: AT+MOD**
1127
1128 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1129 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1130 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1131 OK
1132 )))
1133 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1134 OK
1135 Attention:Take effect after ATZ
1136 )))
1137
1138 (% style="color:blue" %)**Downlink Command: 0x0A**
1139
1140 Format: Command Code (0x0A) followed by 1 bytes.
1141
1142 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1143 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1144
1145 === 3.3.8 PWM setting ===
1146
1147 Feature: Set the time acquisition unit for PWM input capture.
1148
1149 (% style="color:blue" %)**AT Command: AT+PWMSET**
1150
1151 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1152 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1153 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1154 0(default)
1155
1156 OK
1157 )))
1158 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1159 OK
1160
1161 )))
1162 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1163
1164 (% style="color:blue" %)**Downlink Command: 0x0C**
1165
1166 Format: Command Code (0x0C) followed by 1 bytes.
1167
1168 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1169 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1170
1171 = 4. Battery & Power Consumption =
1172
1173
1174 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1175
1176 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1177
1178
1179 = 5. OTA Firmware update =
1180
1181
1182 (% class="wikigeneratedid" %)
1183 **User can change firmware SN50v3-LB to:**
1184
1185 * Change Frequency band/ region.
1186 * Update with new features.
1187 * Fix bugs.
1188
1189 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1190
1191 **Methods to Update Firmware:**
1192
1193 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1194 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1195
1196 = 6. FAQ =
1197
1198 == 6.1 Where can i find source code of SN50v3-LB? ==
1199
1200
1201 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1202 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1203
1204 == 6.2 How to generate PWM Output in SN50v3-LB? ==
1205
1206
1207 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1208
1209
1210 == 6.3 How to put several sensors to a SN50v3-LB? ==
1211
1212
1213 When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1214
1215 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1216
1217 [[image:image-20230810121434-1.png||height="242" width="656"]]
1218
1219
1220 = 7. Order Info =
1221
1222
1223 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1224
1225 (% style="color:red" %)**XX**(%%): The default frequency band
1226
1227 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1228 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1229 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1230 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1231 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1232 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1233 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1234 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1235
1236 (% style="color:red" %)**YY: ** (%%)Hole Option
1237
1238 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1239 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1240 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1241 * (% style="color:red" %)**NH**(%%): No Hole
1242
1243 = 8. ​Packing Info =
1244
1245
1246 (% style="color:#037691" %)**Package Includes**:
1247
1248 * SN50v3-LB LoRaWAN Generic Node
1249
1250 (% style="color:#037691" %)**Dimension and weight**:
1251
1252 * Device Size: cm
1253 * Device Weight: g
1254 * Package Size / pcs : cm
1255 * Weight / pcs : g
1256
1257 = 9. Support =
1258
1259
1260 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1261
1262 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]