Version 44.5 by Saxer Lin on 2023/05/23 17:48

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33
34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
36 * Open-Source hardware/software
37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
44
45 == 1.3 Specification ==
46
47
48 (% style="color:#037691" %)**Common DC Characteristics:**
49
50 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
51 * Operating Temperature: -40 ~~ 85°C
52
53 (% style="color:#037691" %)**I/O Interface:**
54
55 * Battery output (2.6v ~~ 3.6v depends on battery)
56 * +5v controllable output
57 * 3 x Interrupt or Digital IN/OUT pins
58 * 3 x one-wire interfaces
59 * 1 x UART Interface
60 * 1 x I2C Interface
61
62 (% style="color:#037691" %)**LoRa Spec:**
63
64 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
65 * Max +22 dBm constant RF output vs.
66 * RX sensitivity: down to -139 dBm.
67 * Excellent blocking immunity
68
69 (% style="color:#037691" %)**Battery:**
70
71 * Li/SOCI2 un-chargeable battery
72 * Capacity: 8500mAh
73 * Self-Discharge: <1% / Year @ 25°C
74 * Max continuously current: 130mA
75 * Max boost current: 2A, 1 second
76
77 (% style="color:#037691" %)**Power Consumption**
78
79 * Sleep Mode: 5uA @ 3.3v
80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81
82
83 == 1.4 Sleep mode and working mode ==
84
85
86 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
87
88 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
89
90
91 == 1.5 Button & LEDs ==
92
93
94 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
95
96
97 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
98 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
99 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
100 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
101 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
102 )))
103 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
104 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
105 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
106 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
107 )))
108 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109
110
111 == 1.6 BLE connection ==
112
113
114 SN50v3-LB supports BLE remote configure.
115
116
117 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
118
119 * Press button to send an uplink
120 * Press button to active device.
121 * Device Power on or reset.
122
123 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
124
125
126 == 1.7 Pin Definitions ==
127
128
129 [[image:image-20230513102034-2.png]]
130
131
132 == 1.8 Mechanical ==
133
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
136
137 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138
139 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140
141
142 == 1.9 Hole Option ==
143
144
145 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
146
147 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
148
149 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
150
151
152 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
153
154 == 2.1 How it works ==
155
156
157 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158
159
160 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
161
162
163 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
164
165 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166
167
168 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
169
170 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
171
172 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
173
174
175 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
176
177
178 (% style="color:blue" %)**Register the device**
179
180 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
181
182
183 (% style="color:blue" %)**Add APP EUI and DEV EUI**
184
185 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
186
187
188 (% style="color:blue" %)**Add APP EUI in the application**
189
190
191 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
192
193
194 (% style="color:blue" %)**Add APP KEY**
195
196 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
197
198
199 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
200
201
202 Press the button for 5 seconds to activate the SN50v3-LB.
203
204 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
205
206 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
207
208
209 == 2.3 ​Uplink Payload ==
210
211 === 2.3.1 Device Status, FPORT~=5 ===
212
213
214 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
215
216 The Payload format is as below.
217
218
219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
221 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
222 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
223
224 Example parse in TTNv3
225
226
227 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
228
229 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
230
231 (% style="color:#037691" %)**Frequency Band**:
232
233 *0x01: EU868
234
235 *0x02: US915
236
237 *0x03: IN865
238
239 *0x04: AU915
240
241 *0x05: KZ865
242
243 *0x06: RU864
244
245 *0x07: AS923
246
247 *0x08: AS923-1
248
249 *0x09: AS923-2
250
251 *0x0a: AS923-3
252
253 *0x0b: CN470
254
255 *0x0c: EU433
256
257 *0x0d: KR920
258
259 *0x0e: MA869
260
261
262 (% style="color:#037691" %)**Sub-Band**:
263
264 AU915 and US915:value 0x00 ~~ 0x08
265
266 CN470: value 0x0B ~~ 0x0C
267
268 Other Bands: Always 0x00
269
270
271 (% style="color:#037691" %)**Battery Info**:
272
273 Check the battery voltage.
274
275 Ex1: 0x0B45 = 2885mV
276
277 Ex2: 0x0B49 = 2889mV
278
279
280 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
281
282
283 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
284
285 For example:
286
287 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288
289
290 (% style="color:red" %) **Important Notice:**
291
292 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
293
294 2. All modes share the same Payload Explanation from HERE.
295
296 3. By default, the device will send an uplink message every 20 minutes.
297
298
299 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
300
301
302 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
303
304 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
305 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
306 |**Value**|Bat|(% style="width:191px" %)(((
307 Temperature(DS18B20)(PC13)
308 )))|(% style="width:78px" %)(((
309 ADC(PA4)
310 )))|(% style="width:216px" %)(((
311 Digital in(PB15)&Digital Interrupt(PA8)
312 )))|(% style="width:308px" %)(((
313 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
314 )))|(% style="width:154px" %)(((
315 Humidity(SHT20 or SHT31)
316 )))
317
318 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
319
320
321 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
322
323
324 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
325
326 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
327 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
328 |**Value**|BAT|(% style="width:196px" %)(((
329 Temperature(DS18B20)(PC13)
330 )))|(% style="width:87px" %)(((
331 ADC(PA4)
332 )))|(% style="width:189px" %)(((
333 Digital in(PB15) & Digital Interrupt(PA8)
334 )))|(% style="width:208px" %)(((
335 Distance measure by:1) LIDAR-Lite V3HP
336 Or
337 2) Ultrasonic Sensor
338 )))|(% style="width:117px" %)Reserved
339
340 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
341
342
343 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
344
345 [[image:image-20230512173758-5.png||height="563" width="712"]]
346
347
348 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
349
350 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
351
352 [[image:image-20230512173903-6.png||height="596" width="715"]]
353
354
355 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
356
357 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
358 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
359 |**Value**|BAT|(% style="width:183px" %)(((
360 Temperature(DS18B20)(PC13)
361 )))|(% style="width:173px" %)(((
362 Digital in(PB15) & Digital Interrupt(PA8)
363 )))|(% style="width:84px" %)(((
364 ADC(PA4)
365 )))|(% style="width:323px" %)(((
366 Distance measure by:1)TF-Mini plus LiDAR
367 Or 
368 2) TF-Luna LiDAR
369 )))|(% style="width:188px" %)Distance signal  strength
370
371 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
372
373
374 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
375
376 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
377
378 [[image:image-20230512180609-7.png||height="555" width="802"]]
379
380
381 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
382
383 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
384
385 [[image:image-20230513105207-4.png||height="469" width="802"]]
386
387
388 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
389
390
391 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
392
393 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
394 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
395 **Size(bytes)**
396 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
397 |**Value**|(% style="width:68px" %)(((
398 ADC1(PA4)
399 )))|(% style="width:75px" %)(((
400 ADC2(PA5)
401 )))|(((
402 ADC3(PA8)
403 )))|(((
404 Digital Interrupt(PB15)
405 )))|(% style="width:304px" %)(((
406 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
407 )))|(% style="width:163px" %)(((
408 Humidity(SHT20 or SHT31)
409 )))|(% style="width:53px" %)Bat
410
411 [[image:image-20230513110214-6.png]]
412
413
414 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
415
416
417 This mode has total 11 bytes. As shown below:
418
419 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
420 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
421 |**Value**|BAT|(% style="width:186px" %)(((
422 Temperature1(DS18B20)(PC13)
423 )))|(% style="width:82px" %)(((
424 ADC(PA4)
425 )))|(% style="width:210px" %)(((
426 Digital in(PB15) & Digital Interrupt(PA8) 
427 )))|(% style="width:191px" %)Temperature2(DS18B20)
428 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
429
430 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
431
432
433 [[image:image-20230513134006-1.png||height="559" width="736"]]
434
435
436 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
437
438
439 [[image:image-20230512164658-2.png||height="532" width="729"]]
440
441 Each HX711 need to be calibrated before used. User need to do below two steps:
442
443 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
444 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
445 1. (((
446 Weight has 4 bytes, the unit is g.
447
448
449
450 )))
451
452 For example:
453
454 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
455
456 Response:  Weight is 401 g
457
458 Check the response of this command and adjust the value to match the real value for thing.
459
460 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
461 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
462 **Size(bytes)**
463 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
464 |**Value**|BAT|(% style="width:193px" %)(((
465 Temperature(DS18B20)(PC13)
466 )))|(% style="width:85px" %)(((
467 ADC(PA4)
468 )))|(% style="width:186px" %)(((
469 Digital in(PB15) & Digital Interrupt(PA8)
470 )))|(% style="width:100px" %)Weight
471
472 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
473
474
475
476 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
477
478
479 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
480
481 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
482
483 [[image:image-20230512181814-9.png||height="543" width="697"]]
484
485
486 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
487
488 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
489 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
490 |**Value**|BAT|(% style="width:256px" %)(((
491 Temperature(DS18B20)(PC13)
492 )))|(% style="width:108px" %)(((
493 ADC(PA4)
494 )))|(% style="width:126px" %)(((
495 Digital in(PB15)
496 )))|(% style="width:145px" %)(((
497 Count(PA8)
498 )))
499
500 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
501
502
503 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
504
505
506 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
507 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
508 **Size(bytes)**
509 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
510 |**Value**|BAT|(% style="width:188px" %)(((
511 Temperature(DS18B20)
512 (PC13)
513 )))|(% style="width:83px" %)(((
514 ADC(PA5)
515 )))|(% style="width:184px" %)(((
516 Digital Interrupt1(PA8)
517 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
518
519 [[image:image-20230513111203-7.png||height="324" width="975"]]
520
521
522 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
523
524
525 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
526 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
527 **Size(bytes)**
528 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 |**Value**|BAT|(% style="width:207px" %)(((
530 Temperature(DS18B20)
531 (PC13)
532 )))|(% style="width:94px" %)(((
533 ADC1(PA4)
534 )))|(% style="width:198px" %)(((
535 Digital Interrupt(PB15)
536 )))|(% style="width:84px" %)(((
537 ADC2(PA5)
538 )))|(% style="width:82px" %)(((
539 ADC3(PA8)
540 )))
541
542 [[image:image-20230513111231-8.png||height="335" width="900"]]
543
544
545 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
546
547
548 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
549 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
550 **Size(bytes)**
551 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 |**Value**|BAT|(((
553 Temperature
554 (DS18B20)(PC13)
555 )))|(((
556 Temperature2
557 (DS18B20)(PB9)
558 )))|(((
559 Digital Interrupt
560 (PB15)
561 )))|(% style="width:193px" %)(((
562 Temperature3
563 (DS18B20)(PB8)
564 )))|(% style="width:78px" %)(((
565 Count1(PA8)
566 )))|(% style="width:78px" %)(((
567 Count2(PA4)
568 )))
569
570 [[image:image-20230513111255-9.png||height="341" width="899"]]
571
572 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
573
574 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
575
576 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
577
578 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
579
580
581 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
582
583 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
584
585 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
586
587
588 === 2.3.3  ​Decode payload ===
589
590
591 While using TTN V3 network, you can add the payload format to decode the payload.
592
593 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
594
595 The payload decoder function for TTN V3 are here:
596
597 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
598
599
600 ==== 2.3.3.1 Battery Info ====
601
602
603 Check the battery voltage for SN50v3-LB.
604
605 Ex1: 0x0B45 = 2885mV
606
607 Ex2: 0x0B49 = 2889mV
608
609
610 ==== 2.3.3.2  Temperature (DS18B20) ====
611
612
613 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
614
615 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
616
617 (% style="color:blue" %)**Connection:**
618
619 [[image:image-20230512180718-8.png||height="538" width="647"]]
620
621
622 (% style="color:blue" %)**Example**:
623
624 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
625
626 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
627
628 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
629
630
631 ==== 2.3.3.3 Digital Input ====
632
633
634 The digital input for pin PB15,
635
636 * When PB15 is high, the bit 1 of payload byte 6 is 1.
637 * When PB15 is low, the bit 1 of payload byte 6 is 0.
638
639 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
640 (((
641 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
642
643 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
644
645
646 )))
647
648 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
649
650
651 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
652
653 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
654
655 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
656
657
658 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
659
660
661 ==== 2.3.3.5 Digital Interrupt ====
662
663
664 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
665
666 (% style="color:blue" %)** Interrupt connection method:**
667
668 [[image:image-20230513105351-5.png||height="147" width="485"]]
669
670
671 (% style="color:blue" %)**Example to use with door sensor :**
672
673 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
674
675 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
676
677 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
678
679
680 (% style="color:blue" %)**Below is the installation example:**
681
682 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
683
684 * (((
685 One pin to SN50v3-LB's PA8 pin
686 )))
687 * (((
688 The other pin to SN50v3-LB's VDD pin
689 )))
690
691 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
692
693 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
694
695 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
696
697 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
698
699 The above photos shows the two parts of the magnetic switch fitted to a door.
700
701 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
702
703 The command is:
704
705 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
706
707 Below shows some screen captures in TTN V3:
708
709 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
710
711
712 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
713
714 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
715
716
717 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
718
719
720 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
721
722 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
723
724 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
725
726
727 Below is the connection to SHT20/ SHT31. The connection is as below:
728
729 [[image:image-20230513103633-3.png||height="448" width="716"]]
730
731
732 The device will be able to get the I2C sensor data now and upload to IoT Server.
733
734 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
735
736 Convert the read byte to decimal and divide it by ten.
737
738 **Example:**
739
740 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
741
742 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
743
744 If you want to use other I2C device, please refer the SHT20 part source code as reference.
745
746
747 ==== 2.3.3.7  ​Distance Reading ====
748
749
750 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
751
752
753 ==== 2.3.3.8 Ultrasonic Sensor ====
754
755
756 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
757
758 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
759
760 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
761
762 The picture below shows the connection:
763
764 [[image:image-20230512173903-6.png||height="596" width="715"]]
765
766
767 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
768
769 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
770
771 **Example:**
772
773 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
774
775
776 ==== 2.3.3.9  Battery Output - BAT pin ====
777
778
779 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
780
781
782 ==== 2.3.3.10  +5V Output ====
783
784
785 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
786
787 The 5V output time can be controlled by AT Command.
788
789 (% style="color:blue" %)**AT+5VT=1000**
790
791 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
792
793 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
794
795
796 ==== 2.3.3.11  BH1750 Illumination Sensor ====
797
798
799 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
800
801 [[image:image-20230512172447-4.png||height="416" width="712"]]
802
803
804 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
805
806
807 ==== 2.3.3.12  Working MOD ====
808
809
810 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
811
812 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
813
814 Case 7^^th^^ Byte >> 2 & 0x1f:
815
816 * 0: MOD1
817 * 1: MOD2
818 * 2: MOD3
819 * 3: MOD4
820 * 4: MOD5
821 * 5: MOD6
822 * 6: MOD7
823 * 7: MOD8
824 * 8: MOD9
825
826
827 == 2.4 Payload Decoder file ==
828
829
830 In TTN, use can add a custom payload so it shows friendly reading
831
832 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
833
834 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
835
836
837 == 2.5 Frequency Plans ==
838
839
840 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
841
842 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
843
844
845 = 3. Configure SN50v3-LB =
846
847 == 3.1 Configure Methods ==
848
849
850 SN50v3-LB supports below configure method:
851
852 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
853 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
854 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
855
856
857 == 3.2 General Commands ==
858
859
860 These commands are to configure:
861
862 * General system settings like: uplink interval.
863 * LoRaWAN protocol & radio related command.
864
865 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
866
867 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
868
869
870 == 3.3 Commands special design for SN50v3-LB ==
871
872
873 These commands only valid for SN50v3-LB, as below:
874
875
876 === 3.3.1 Set Transmit Interval Time ===
877
878
879 Feature: Change LoRaWAN End Node Transmit Interval.
880
881 (% style="color:blue" %)**AT Command: AT+TDC**
882
883 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
884 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
885 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
886 30000
887 OK
888 the interval is 30000ms = 30s
889 )))
890 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
891 OK
892 Set transmit interval to 60000ms = 60 seconds
893 )))
894
895 (% style="color:blue" %)**Downlink Command: 0x01**
896
897 Format: Command Code (0x01) followed by 3 bytes time value.
898
899 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
900
901 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
902 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
903
904
905 === 3.3.2 Get Device Status ===
906
907
908 Send a LoRaWAN downlink to ask the device to send its status.
909
910 (% style="color:blue" %)**Downlink Payload: 0x26 01**
911
912 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
913
914
915 === 3.3.3 Set Interrupt Mode ===
916
917
918 Feature, Set Interrupt mode for GPIO_EXIT.
919
920 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
921
922 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
923 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
924 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
925 0
926 OK
927 the mode is 0 =Disable Interrupt
928 )))
929 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
930 Set Transmit Interval
931 0. (Disable Interrupt),
932 ~1. (Trigger by rising and falling edge)
933 2. (Trigger by falling edge)
934 3. (Trigger by rising edge)
935 )))|(% style="width:157px" %)OK
936 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
937 Set Transmit Interval
938 trigger by rising edge.
939 )))|(% style="width:157px" %)OK
940 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
941
942 (% style="color:blue" %)**Downlink Command: 0x06**
943
944 Format: Command Code (0x06) followed by 3 bytes.
945
946 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
947
948 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
949 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
950 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
951 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
952
953
954 === 3.3.4 Set Power Output Duration ===
955
956
957 Control the output duration 5V . Before each sampling, device will
958
959 ~1. first enable the power output to external sensor,
960
961 2. keep it on as per duration, read sensor value and construct uplink payload
962
963 3. final, close the power output.
964
965 (% style="color:blue" %)**AT Command: AT+5VT**
966
967 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
968 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
969 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
970 500(default)
971 OK
972 )))
973 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
974 Close after a delay of 1000 milliseconds.
975 )))|(% style="width:157px" %)OK
976
977 (% style="color:blue" %)**Downlink Command: 0x07**
978
979 Format: Command Code (0x07) followed by 2 bytes.
980
981 The first and second bytes are the time to turn on.
982
983 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
984 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
985
986
987 === 3.3.5 Set Weighing parameters ===
988
989
990 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
991
992 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
993
994 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
995 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
996 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
997 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
998 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
999
1000 (% style="color:blue" %)**Downlink Command: 0x08**
1001
1002 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1003
1004 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1005
1006 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1007
1008 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1009 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1010 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1011
1012
1013 === 3.3.6 Set Digital pulse count value ===
1014
1015
1016 Feature: Set the pulse count value.
1017
1018 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1019
1020 (% style="color:blue" %)**AT Command: AT+SETCNT**
1021
1022 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1023 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1024 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1025 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1026
1027 (% style="color:blue" %)**Downlink Command: 0x09**
1028
1029 Format: Command Code (0x09) followed by 5 bytes.
1030
1031 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1032
1033 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1034 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1035
1036
1037 === 3.3.7 Set Workmode ===
1038
1039
1040 Feature: Switch working mode.
1041
1042 (% style="color:blue" %)**AT Command: AT+MOD**
1043
1044 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1045 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1046 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1047 OK
1048 )))
1049 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1050 OK
1051 Attention:Take effect after ATZ
1052 )))
1053
1054 (% style="color:blue" %)**Downlink Command: 0x0A**
1055
1056 Format: Command Code (0x0A) followed by 1 bytes.
1057
1058 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1059 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1060
1061
1062 = 4. Battery & Power Consumption =
1063
1064
1065 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1066
1067 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1068
1069
1070 = 5. OTA Firmware update =
1071
1072
1073 (% class="wikigeneratedid" %)
1074 **User can change firmware SN50v3-LB to:**
1075
1076 * Change Frequency band/ region.
1077 * Update with new features.
1078 * Fix bugs.
1079
1080 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1081
1082 **Methods to Update Firmware:**
1083
1084 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1085 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1086
1087
1088 = 6. FAQ =
1089
1090 == 6.1 Where can i find source code of SN50v3-LB? ==
1091
1092
1093 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1094 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1095
1096
1097 = 7. Order Info =
1098
1099
1100 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1101
1102 (% style="color:red" %)**XX**(%%): The default frequency band
1103
1104 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1105 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1106 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1107 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1108 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1109 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1110 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1111 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1112
1113 (% style="color:red" %)**YY: ** (%%)Hole Option
1114
1115 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1116 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1117 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1118 * (% style="color:red" %)**NH**(%%): No Hole
1119
1120
1121 = 8. ​Packing Info =
1122
1123
1124 (% style="color:#037691" %)**Package Includes**:
1125
1126 * SN50v3-LB LoRaWAN Generic Node
1127
1128 (% style="color:#037691" %)**Dimension and weight**:
1129
1130 * Device Size: cm
1131 * Device Weight: g
1132 * Package Size / pcs : cm
1133 * Weight / pcs : g
1134
1135
1136 = 9. Support =
1137
1138
1139 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1140
1141 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]