Version 44.3 by Xiaoling on 2023/05/18 09:02

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33
34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
36 * Open-Source hardware/software
37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
44 == 1.3 Specification ==
45
46
47 (% style="color:#037691" %)**Common DC Characteristics:**
48
49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
50 * Operating Temperature: -40 ~~ 85°C
51
52 (% style="color:#037691" %)**I/O Interface:**
53
54 * Battery output (2.6v ~~ 3.6v depends on battery)
55 * +5v controllable output
56 * 3 x Interrupt or Digital IN/OUT pins
57 * 3 x one-wire interfaces
58 * 1 x UART Interface
59 * 1 x I2C Interface
60
61 (% style="color:#037691" %)**LoRa Spec:**
62
63 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
64 * Max +22 dBm constant RF output vs.
65 * RX sensitivity: down to -139 dBm.
66 * Excellent blocking immunity
67
68 (% style="color:#037691" %)**Battery:**
69
70 * Li/SOCI2 un-chargeable battery
71 * Capacity: 8500mAh
72 * Self-Discharge: <1% / Year @ 25°C
73 * Max continuously current: 130mA
74 * Max boost current: 2A, 1 second
75
76 (% style="color:#037691" %)**Power Consumption**
77
78 * Sleep Mode: 5uA @ 3.3v
79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80
81 == 1.4 Sleep mode and working mode ==
82
83
84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85
86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
87
88
89 == 1.5 Button & LEDs ==
90
91
92 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
93
94
95 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
96 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
97 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
98 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
99 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
100 )))
101 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
102 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
103 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
104 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
105 )))
106 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
107
108 == 1.6 BLE connection ==
109
110
111 SN50v3-LB supports BLE remote configure.
112
113
114 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
115
116 * Press button to send an uplink
117 * Press button to active device.
118 * Device Power on or reset.
119
120 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
121
122
123 == 1.7 Pin Definitions ==
124
125
126 [[image:image-20230513102034-2.png]]
127
128
129 == 1.8 Mechanical ==
130
131
132 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
133
134 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
135
136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137
138
139 == Hole Option ==
140
141
142 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
143
144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
145
146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147
148
149 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
150
151 == 2.1 How it works ==
152
153
154 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155
156
157 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
158
159
160 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
161
162 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163
164
165 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
166
167 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
168
169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
170
171
172 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
173
174
175 (% style="color:blue" %)**Register the device**
176
177 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
178
179
180 (% style="color:blue" %)**Add APP EUI and DEV EUI**
181
182 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
183
184
185 (% style="color:blue" %)**Add APP EUI in the application**
186
187
188 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
189
190
191 (% style="color:blue" %)**Add APP KEY**
192
193 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
194
195
196 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
197
198
199 Press the button for 5 seconds to activate the SN50v3-LB.
200
201 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
202
203 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
204
205
206 == 2.3 ​Uplink Payload ==
207
208 === 2.3.1 Device Status, FPORT~=5 ===
209
210
211 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
212
213 The Payload format is as below.
214
215
216 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
217 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
218 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
219 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
220
221 Example parse in TTNv3
222
223
224 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
225
226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227
228 (% style="color:#037691" %)**Frequency Band**:
229
230 *0x01: EU868
231
232 *0x02: US915
233
234 *0x03: IN865
235
236 *0x04: AU915
237
238 *0x05: KZ865
239
240 *0x06: RU864
241
242 *0x07: AS923
243
244 *0x08: AS923-1
245
246 *0x09: AS923-2
247
248 *0x0a: AS923-3
249
250 *0x0b: CN470
251
252 *0x0c: EU433
253
254 *0x0d: KR920
255
256 *0x0e: MA869
257
258
259 (% style="color:#037691" %)**Sub-Band**:
260
261 AU915 and US915:value 0x00 ~~ 0x08
262
263 CN470: value 0x0B ~~ 0x0C
264
265 Other Bands: Always 0x00
266
267
268 (% style="color:#037691" %)**Battery Info**:
269
270 Check the battery voltage.
271
272 Ex1: 0x0B45 = 2885mV
273
274 Ex2: 0x0B49 = 2889mV
275
276
277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
278
279
280 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
281
282 For example:
283
284 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
285
286
287 (% style="color:red" %) **Important Notice:**
288
289 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
290
291 2. All modes share the same Payload Explanation from HERE.
292
293 3. By default, the device will send an uplink message every 20 minutes.
294
295
296 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
297
298
299 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
300
301 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
302 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
303 |**Value**|Bat|(% style="width:191px" %)(((
304 Temperature(DS18B20)(PC13)
305 )))|(% style="width:78px" %)(((
306 ADC(PA4)
307 )))|(% style="width:216px" %)(((
308 Digital in(PB15)&Digital Interrupt(PA8)
309 )))|(% style="width:308px" %)(((
310 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
311 )))|(% style="width:154px" %)(((
312 Humidity(SHT20 or SHT31)
313 )))
314
315 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
316
317
318
319 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
320
321
322 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
323
324 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
325 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
326 |**Value**|BAT|(% style="width:196px" %)(((
327 Temperature(DS18B20)(PC13)
328 )))|(% style="width:87px" %)(((
329 ADC(PA4)
330 )))|(% style="width:189px" %)(((
331 Digital in(PB15) & Digital Interrupt(PA8)
332 )))|(% style="width:208px" %)(((
333 Distance measure by:1) LIDAR-Lite V3HP
334 Or
335 2) Ultrasonic Sensor
336 )))|(% style="width:117px" %)Reserved
337
338 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
339
340
341 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
342
343 [[image:image-20230512173758-5.png||height="563" width="712"]]
344
345
346 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
347
348 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
349
350 [[image:image-20230512173903-6.png||height="596" width="715"]]
351
352
353 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
354
355 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
356 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
357 |**Value**|BAT|(% style="width:183px" %)(((
358 Temperature(DS18B20)(PC13)
359 )))|(% style="width:173px" %)(((
360 Digital in(PB15) & Digital Interrupt(PA8)
361 )))|(% style="width:84px" %)(((
362 ADC(PA4)
363 )))|(% style="width:323px" %)(((
364 Distance measure by:1)TF-Mini plus LiDAR
365 Or 
366 2) TF-Luna LiDAR
367 )))|(% style="width:188px" %)Distance signal  strength
368
369 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
370
371
372 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
373
374 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
375
376 [[image:image-20230512180609-7.png||height="555" width="802"]]
377
378
379 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
380
381 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
382
383 [[image:image-20230513105207-4.png||height="469" width="802"]]
384
385
386 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
387
388
389 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
390
391 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
392 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
393 **Size(bytes)**
394 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
395 |**Value**|(% style="width:68px" %)(((
396 ADC1(PA4)
397 )))|(% style="width:75px" %)(((
398 ADC2(PA5)
399 )))|(((
400 ADC3(PA8)
401 )))|(((
402 Digital Interrupt(PB15)
403 )))|(% style="width:304px" %)(((
404 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
405 )))|(% style="width:163px" %)(((
406 Humidity(SHT20 or SHT31)
407 )))|(% style="width:53px" %)Bat
408
409 [[image:image-20230513110214-6.png]]
410
411
412 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
413
414
415 This mode has total 11 bytes. As shown below:
416
417 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
419 |**Value**|BAT|(% style="width:186px" %)(((
420 Temperature1(DS18B20)(PC13)
421 )))|(% style="width:82px" %)(((
422 ADC(PA4)
423 )))|(% style="width:210px" %)(((
424 Digital in(PB15) & Digital Interrupt(PA8) 
425 )))|(% style="width:191px" %)Temperature2(DS18B20)
426 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
427
428 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
429
430 [[image:image-20230513134006-1.png||height="559" width="736"]]
431
432
433
434 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
435
436
437 [[image:image-20230512164658-2.png||height="532" width="729"]]
438
439 Each HX711 need to be calibrated before used. User need to do below two steps:
440
441 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
443 1. (((
444 Weight has 4 bytes, the unit is g.
445
446
447
448 )))
449
450 For example:
451
452 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
453
454 Response:  Weight is 401 g
455
456 Check the response of this command and adjust the value to match the real value for thing.
457
458 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
459 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
460 **Size(bytes)**
461 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
462 |**Value**|BAT|(% style="width:193px" %)(((
463 Temperature(DS18B20)(PC13)
464 )))|(% style="width:85px" %)(((
465 ADC(PA4)
466 )))|(% style="width:186px" %)(((
467 Digital in(PB15) & Digital Interrupt(PA8)
468 )))|(% style="width:100px" %)Weight
469
470 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
471
472
473
474 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
475
476
477 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
478
479 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
480
481 [[image:image-20230512181814-9.png||height="543" width="697"]]
482
483
484 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
485
486 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
488 |**Value**|BAT|(% style="width:256px" %)(((
489 Temperature(DS18B20)(PC13)
490 )))|(% style="width:108px" %)(((
491 ADC(PA4)
492 )))|(% style="width:126px" %)(((
493 Digital in(PB15)
494 )))|(% style="width:145px" %)(((
495 Count(PA8)
496 )))
497
498 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
499
500
501
502 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
503
504
505 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
506 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
507 **Size(bytes)**
508 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
509 |**Value**|BAT|(% style="width:188px" %)(((
510 Temperature(DS18B20)
511 (PC13)
512 )))|(% style="width:83px" %)(((
513 ADC(PA5)
514 )))|(% style="width:184px" %)(((
515 Digital Interrupt1(PA8)
516 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
517
518 [[image:image-20230513111203-7.png||height="324" width="975"]]
519
520
521 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
522
523
524 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
525 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
526 **Size(bytes)**
527 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
528 |**Value**|BAT|(% style="width:207px" %)(((
529 Temperature(DS18B20)
530 (PC13)
531 )))|(% style="width:94px" %)(((
532 ADC1(PA4)
533 )))|(% style="width:198px" %)(((
534 Digital Interrupt(PB15)
535 )))|(% style="width:84px" %)(((
536 ADC2(PA5)
537 )))|(% style="width:82px" %)(((
538 ADC3(PA8)
539 )))
540
541 [[image:image-20230513111231-8.png||height="335" width="900"]]
542
543
544 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
545
546
547 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
548 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
549 **Size(bytes)**
550 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
551 |**Value**|BAT|(((
552 Temperature
553 (DS18B20)(PC13)
554 )))|(((
555 Temperature2
556 (DS18B20)(PB9)
557 )))|(((
558 Digital Interrupt
559 (PB15)
560 )))|(% style="width:193px" %)(((
561 Temperature3
562 (DS18B20)(PB8)
563 )))|(% style="width:78px" %)(((
564 Count1(PA8)
565 )))|(% style="width:78px" %)(((
566 Count2(PA4)
567 )))
568
569 [[image:image-20230513111255-9.png||height="341" width="899"]]
570
571 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
572
573 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
574
575 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
576
577 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
578
579
580 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
581
582 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
583
584 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
585
586
587 === 2.3.3  ​Decode payload ===
588
589
590 While using TTN V3 network, you can add the payload format to decode the payload.
591
592 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
593
594 The payload decoder function for TTN V3 are here:
595
596 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
597
598
599 ==== 2.3.3.1 Battery Info ====
600
601
602 Check the battery voltage for SN50v3-LB.
603
604 Ex1: 0x0B45 = 2885mV
605
606 Ex2: 0x0B49 = 2889mV
607
608
609 ==== 2.3.3.2  Temperature (DS18B20) ====
610
611
612 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
613
614 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
615
616 (% style="color:blue" %)**Connection:**
617
618 [[image:image-20230512180718-8.png||height="538" width="647"]]
619
620
621 (% style="color:blue" %)**Example**:
622
623 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
624
625 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
626
627 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
628
629
630 ==== 2.3.3.3 Digital Input ====
631
632
633 The digital input for pin PB15,
634
635 * When PB15 is high, the bit 1 of payload byte 6 is 1.
636 * When PB15 is low, the bit 1 of payload byte 6 is 0.
637
638 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
639 (((
640 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
641
642 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
643
644
645 )))
646
647 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
648
649
650 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
651
652 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
653
654 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
655
656
657 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
658
659
660 ==== 2.3.3.5 Digital Interrupt ====
661
662
663 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
664
665 (% style="color:blue" %)** Interrupt connection method:**
666
667 [[image:image-20230513105351-5.png||height="147" width="485"]]
668
669
670 (% style="color:blue" %)**Example to use with door sensor :**
671
672 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
673
674 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
675
676 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
677
678
679 (% style="color:blue" %)**Below is the installation example:**
680
681 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
682
683 * (((
684 One pin to SN50v3-LB's PA8 pin
685 )))
686 * (((
687 The other pin to SN50v3-LB's VDD pin
688 )))
689
690 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
691
692 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
693
694 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
695
696 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
697
698 The above photos shows the two parts of the magnetic switch fitted to a door.
699
700 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
701
702 The command is:
703
704 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
705
706 Below shows some screen captures in TTN V3:
707
708 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
709
710
711 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
712
713 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
714
715
716 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
717
718
719 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
720
721 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
722
723 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
724
725
726 Below is the connection to SHT20/ SHT31. The connection is as below:
727
728 [[image:image-20230513103633-3.png||height="448" width="716"]]
729
730 The device will be able to get the I2C sensor data now and upload to IoT Server.
731
732 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
733
734 Convert the read byte to decimal and divide it by ten.
735
736 **Example:**
737
738 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
739
740 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
741
742 If you want to use other I2C device, please refer the SHT20 part source code as reference.
743
744
745 ==== 2.3.3.7  ​Distance Reading ====
746
747
748 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
749
750
751 ==== 2.3.3.8 Ultrasonic Sensor ====
752
753
754 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
755
756 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
757
758 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
759
760 The picture below shows the connection:
761
762 [[image:image-20230512173903-6.png||height="596" width="715"]]
763
764
765 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
766
767 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
768
769 **Example:**
770
771 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
772
773
774 ==== 2.3.3.9  Battery Output - BAT pin ====
775
776
777 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
778
779
780 ==== 2.3.3.10  +5V Output ====
781
782
783 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
784
785 The 5V output time can be controlled by AT Command.
786
787 (% style="color:blue" %)**AT+5VT=1000**
788
789 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
790
791 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
792
793
794 ==== 2.3.3.11  BH1750 Illumination Sensor ====
795
796
797 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
798
799 [[image:image-20230512172447-4.png||height="416" width="712"]]
800
801
802 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
803
804
805 ==== 2.3.3.12  Working MOD ====
806
807
808 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
809
810 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
811
812 Case 7^^th^^ Byte >> 2 & 0x1f:
813
814 * 0: MOD1
815 * 1: MOD2
816 * 2: MOD3
817 * 3: MOD4
818 * 4: MOD5
819 * 5: MOD6
820 * 6: MOD7
821 * 7: MOD8
822 * 8: MOD9
823
824 == 2.4 Payload Decoder file ==
825
826
827 In TTN, use can add a custom payload so it shows friendly reading
828
829 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
830
831 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
832
833
834 == 2.5 Frequency Plans ==
835
836
837 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
838
839 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
840
841
842 = 3. Configure SN50v3-LB =
843
844 == 3.1 Configure Methods ==
845
846
847 SN50v3-LB supports below configure method:
848
849 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
850 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
851 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
852
853 == 3.2 General Commands ==
854
855
856 These commands are to configure:
857
858 * General system settings like: uplink interval.
859 * LoRaWAN protocol & radio related command.
860
861 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
862
863 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
864
865
866 == 3.3 Commands special design for SN50v3-LB ==
867
868
869 These commands only valid for SN50v3-LB, as below:
870
871
872 === 3.3.1 Set Transmit Interval Time ===
873
874
875 Feature: Change LoRaWAN End Node Transmit Interval.
876
877 (% style="color:blue" %)**AT Command: AT+TDC**
878
879 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
880 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
881 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
882 30000
883 OK
884 the interval is 30000ms = 30s
885 )))
886 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
887 OK
888 Set transmit interval to 60000ms = 60 seconds
889 )))
890
891 (% style="color:blue" %)**Downlink Command: 0x01**
892
893 Format: Command Code (0x01) followed by 3 bytes time value.
894
895 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
896
897 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
898 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
899
900 === 3.3.2 Get Device Status ===
901
902
903 Send a LoRaWAN downlink to ask the device to send its status.
904
905 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
906
907 Sensor will upload Device Status via FPORT=5. See payload section for detail.
908
909
910 === 3.3.3 Set Interrupt Mode ===
911
912
913 Feature, Set Interrupt mode for GPIO_EXIT.
914
915 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
916
917 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
918 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
919 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
920 0
921 OK
922 the mode is 0 =Disable Interrupt
923 )))
924 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
925 Set Transmit Interval
926 0. (Disable Interrupt),
927 ~1. (Trigger by rising and falling edge)
928 2. (Trigger by falling edge)
929 3. (Trigger by rising edge)
930 )))|(% style="width:157px" %)OK
931 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
932 Set Transmit Interval
933 trigger by rising edge.
934 )))|(% style="width:157px" %)OK
935 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
936
937 (% style="color:blue" %)**Downlink Command: 0x06**
938
939 Format: Command Code (0x06) followed by 3 bytes.
940
941 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
942
943 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
944 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
945 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
946 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
947
948 === 3.3.4 Set Power Output Duration ===
949
950
951 Control the output duration 5V . Before each sampling, device will
952
953 ~1. first enable the power output to external sensor,
954
955 2. keep it on as per duration, read sensor value and construct uplink payload
956
957 3. final, close the power output.
958
959 (% style="color:blue" %)**AT Command: AT+5VT**
960
961 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
962 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
963 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
964 500(default)
965 OK
966 )))
967 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
968 Close after a delay of 1000 milliseconds.
969 )))|(% style="width:157px" %)OK
970
971 (% style="color:blue" %)**Downlink Command: 0x07**
972
973 Format: Command Code (0x07) followed by 2 bytes.
974
975 The first and second bytes are the time to turn on.
976
977 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
978 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
979
980 === 3.3.5 Set Weighing parameters ===
981
982
983 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
984
985 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
986
987 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
988 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
989 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
990 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
991 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
992
993 (% style="color:blue" %)**Downlink Command: 0x08**
994
995 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
996
997 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
998
999 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1000
1001 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1002 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1003 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1004
1005 === 3.3.6 Set Digital pulse count value ===
1006
1007
1008 Feature: Set the pulse count value.
1009
1010 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1011
1012 (% style="color:blue" %)**AT Command: AT+SETCNT**
1013
1014 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1015 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1016 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1017 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1018
1019 (% style="color:blue" %)**Downlink Command: 0x09**
1020
1021 Format: Command Code (0x09) followed by 5 bytes.
1022
1023 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1024
1025 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1026 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1027
1028 === 3.3.7 Set Workmode ===
1029
1030
1031 Feature: Switch working mode.
1032
1033 (% style="color:blue" %)**AT Command: AT+MOD**
1034
1035 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1036 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1037 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1038 OK
1039 )))
1040 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1041 OK
1042 Attention:Take effect after ATZ
1043 )))
1044
1045 (% style="color:blue" %)**Downlink Command: 0x0A**
1046
1047 Format: Command Code (0x0A) followed by 1 bytes.
1048
1049 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1050 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1051
1052 = 4. Battery & Power Consumption =
1053
1054
1055 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1056
1057 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1058
1059
1060 = 5. OTA Firmware update =
1061
1062
1063 (% class="wikigeneratedid" %)
1064 User can change firmware SN50v3-LB to:
1065
1066 * Change Frequency band/ region.
1067 * Update with new features.
1068 * Fix bugs.
1069
1070 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1071
1072
1073 Methods to Update Firmware:
1074
1075 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1076 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1077
1078 = 6. FAQ =
1079
1080 == 6.1 Where can i find source code of SN50v3-LB? ==
1081
1082
1083 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1084 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1085
1086 = 7. Order Info =
1087
1088
1089 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1090
1091 (% style="color:red" %)**XX**(%%): The default frequency band
1092
1093 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1094 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1095 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1096 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1097 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1098 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1099 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1100 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1101
1102 (% style="color:red" %)**YY: ** (%%)Hole Option
1103
1104 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1105 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1106 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1107 * (% style="color:red" %)**NH**(%%): No Hole
1108
1109 = 8. ​Packing Info =
1110
1111
1112 (% style="color:#037691" %)**Package Includes**:
1113
1114 * SN50v3-LB LoRaWAN Generic Node
1115
1116 (% style="color:#037691" %)**Dimension and weight**:
1117
1118 * Device Size: cm
1119 * Device Weight: g
1120 * Package Size / pcs : cm
1121 * Weight / pcs : g
1122
1123 = 9. Support =
1124
1125
1126 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1127
1128 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]