Version 43.9 by Xiaoling on 2023/05/16 13:51

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
35 * Open-Source hardware/software
36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
45
46 (% style="color:#037691" %)**Common DC Characteristics:**
47
48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
49 * Operating Temperature: -40 ~~ 85°C
50
51 (% style="color:#037691" %)**I/O Interface:**
52
53 * Battery output (2.6v ~~ 3.6v depends on battery)
54 * +5v controllable output
55 * 3 x Interrupt or Digital IN/OUT pins
56 * 3 x one-wire interfaces
57 * 1 x UART Interface
58 * 1 x I2C Interface
59
60 (% style="color:#037691" %)**LoRa Spec:**
61
62 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
63 * Max +22 dBm constant RF output vs.
64 * RX sensitivity: down to -139 dBm.
65 * Excellent blocking immunity
66
67 (% style="color:#037691" %)**Battery:**
68
69 * Li/SOCI2 un-chargeable battery
70 * Capacity: 8500mAh
71 * Self-Discharge: <1% / Year @ 25°C
72 * Max continuously current: 130mA
73 * Max boost current: 2A, 1 second
74
75 (% style="color:#037691" %)**Power Consumption**
76
77 * Sleep Mode: 5uA @ 3.3v
78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79
80 == 1.4 Sleep mode and working mode ==
81
82
83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84
85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86
87
88 == 1.5 Button & LEDs ==
89
90
91 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92
93
94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 )))
100 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 )))
105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106
107 == 1.6 BLE connection ==
108
109
110 SN50v3-LB supports BLE remote configure.
111
112
113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114
115 * Press button to send an uplink
116 * Press button to active device.
117 * Device Power on or reset.
118
119 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120
121
122 == 1.7 Pin Definitions ==
123
124
125 [[image:image-20230513102034-2.png]]
126
127
128 == 1.8 Mechanical ==
129
130
131 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136
137
138 == Hole Option ==
139
140
141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142
143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144
145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146
147
148 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
149
150 == 2.1 How it works ==
151
152
153 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154
155
156 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
157
158
159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160
161 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162
163
164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
165
166 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
167
168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
169
170
171 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
172
173
174 (% style="color:blue" %)**Register the device**
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
177
178
179 (% style="color:blue" %)**Add APP EUI and DEV EUI**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI in the application**
185
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
188
189
190 (% style="color:blue" %)**Add APP KEY**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193
194
195 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
196
197
198 Press the button for 5 seconds to activate the SN50v3-LB.
199
200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201
202 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
203
204
205 == 2.3 ​Uplink Payload ==
206
207 === 2.3.1 Device Status, FPORT~=5 ===
208
209
210 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
211
212 The Payload format is as below.
213
214
215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219
220 Example parse in TTNv3
221
222
223 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
224
225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226
227 (% style="color:#037691" %)**Frequency Band**:
228
229 *0x01: EU868
230
231 *0x02: US915
232
233 *0x03: IN865
234
235 *0x04: AU915
236
237 *0x05: KZ865
238
239 *0x06: RU864
240
241 *0x07: AS923
242
243 *0x08: AS923-1
244
245 *0x09: AS923-2
246
247 *0x0a: AS923-3
248
249 *0x0b: CN470
250
251 *0x0c: EU433
252
253 *0x0d: KR920
254
255 *0x0e: MA869
256
257
258 (% style="color:#037691" %)**Sub-Band**:
259
260 AU915 and US915:value 0x00 ~~ 0x08
261
262 CN470: value 0x0B ~~ 0x0C
263
264 Other Bands: Always 0x00
265
266
267 (% style="color:#037691" %)**Battery Info**:
268
269 Check the battery voltage.
270
271 Ex1: 0x0B45 = 2885mV
272
273 Ex2: 0x0B49 = 2889mV
274
275
276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277
278
279 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280
281 For example:
282
283 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284
285
286 (% style="color:red" %) **Important Notice:**
287
288 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 1. All modes share the same Payload Explanation from HERE.
290 1. By default, the device will send an uplink message every 20 minutes.
291
292 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293
294
295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296
297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 |(% style="background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:191px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:78px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:216px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:308px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:154px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 |**Value**|Bat|(% style="width:191px" %)(((
300 Temperature(DS18B20)
301 (PC13)
302 )))|(% style="width:78px" %)(((
303 ADC
304 (PA4)
305 )))|(% style="width:216px" %)(((
306 Digital in(PB15) &
307 Digital Interrupt(PA8)
308 )))|(% style="width:308px" %)(((
309 Temperature
310 (SHT20 or SHT31 or BH1750 Illumination Sensor)
311 )))|(% style="width:154px" %)(((
312 Humidity
313 (SHT20 or SHT31)
314 )))
315
316 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
317
318
319 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
320
321 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
322
323 (% style="width:1011px" %)
324 |**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
325 |**Value**|BAT|(% style="width:196px" %)(((
326 Temperature(DS18B20)
327 (PC13)
328 )))|(% style="width:87px" %)(((
329 ADC
330 (PA4)
331 )))|(% style="width:189px" %)(((
332 Digital in(PB15) &
333 Digital Interrupt(PA8)
334 )))|(% style="width:208px" %)(((
335 Distance measure by:
336 1) LIDAR-Lite V3HP
337 Or
338 2) Ultrasonic Sensor
339 )))|(% style="width:117px" %)Reserved
340
341 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
342
343 **Connection of LIDAR-Lite V3HP:**
344
345 [[image:image-20230512173758-5.png||height="563" width="712"]]
346
347 **Connection to Ultrasonic Sensor:**
348
349 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
350
351 [[image:image-20230512173903-6.png||height="596" width="715"]]
352
353 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
354
355 (% style="width:1113px" %)
356 |**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
357 |**Value**|BAT|(% style="width:183px" %)(((
358 Temperature(DS18B20)
359 (PC13)
360 )))|(% style="width:173px" %)(((
361 Digital in(PB15) &
362 Digital Interrupt(PA8)
363 )))|(% style="width:84px" %)(((
364 ADC
365 (PA4)
366 )))|(% style="width:323px" %)(((
367 Distance measure by:1)TF-Mini plus LiDAR
368 Or 
369 2) TF-Luna LiDAR
370 )))|(% style="width:188px" %)Distance signal  strength
371
372 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
373
374 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
375
376 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
377
378 [[image:image-20230512180609-7.png||height="555" width="802"]]
379
380 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
381
382 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
383
384 [[image:image-20230513105207-4.png||height="469" width="802"]]
385
386
387 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
388
389 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
390
391 (% style="width:1031px" %)
392 |=(((
393 **Size(bytes)**
394 )))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
395 |**Value**|(% style="width:68px" %)(((
396 ADC1
397 (PA4)
398 )))|(% style="width:75px" %)(((
399 ADC2
400 (PA5)
401 )))|(((
402 ADC3
403 (PA8)
404 )))|(((
405 Digital Interrupt(PB15)
406 )))|(% style="width:304px" %)(((
407 Temperature
408 (SHT20 or SHT31 or BH1750 Illumination Sensor)
409 )))|(% style="width:163px" %)(((
410 Humidity
411 (SHT20 or SHT31)
412 )))|(% style="width:53px" %)Bat
413
414 [[image:image-20230513110214-6.png]]
415
416
417 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
418
419
420 This mode has total 11 bytes. As shown below:
421
422 (% style="width:1017px" %)
423 |**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
424 |**Value**|BAT|(% style="width:186px" %)(((
425 Temperature1(DS18B20)
426 (PC13)
427 )))|(% style="width:82px" %)(((
428 ADC
429 (PA4)
430 )))|(% style="width:210px" %)(((
431 Digital in(PB15) &
432 Digital Interrupt(PA8) 
433 )))|(% style="width:191px" %)Temperature2(DS18B20)
434 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)
435 (PB8)
436
437 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
438
439 [[image:image-20230513134006-1.png||height="559" width="736"]]
440
441
442 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
443
444 [[image:image-20230512164658-2.png||height="532" width="729"]]
445
446 Each HX711 need to be calibrated before used. User need to do below two steps:
447
448 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
449 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
450 1. (((
451 Weight has 4 bytes, the unit is g.
452 )))
453
454 For example:
455
456 **AT+GETSENSORVALUE =0**
457
458 Response:  Weight is 401 g
459
460 Check the response of this command and adjust the value to match the real value for thing.
461
462 (% style="width:767px" %)
463 |=(((
464 **Size(bytes)**
465 )))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
466 |**Value**|BAT|(% style="width:193px" %)(((
467 Temperature(DS18B20)
468 (PC13)
469 )))|(% style="width:85px" %)(((
470 ADC
471 (PA4)
472 )))|(% style="width:186px" %)(((
473 Digital in(PB15) &
474 Digital Interrupt(PA8)
475 )))|(% style="width:100px" %)Weight
476
477 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
478
479
480 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
481
482 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
483
484 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
485
486 [[image:image-20230512181814-9.png||height="543" width="697"]]
487
488 **Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
489
490 (% style="width:961px" %)
491 |=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
492 |**Value**|BAT|(% style="width:256px" %)(((
493 Temperature(DS18B20)
494
495 (PC13)
496 )))|(% style="width:108px" %)(((
497 ADC
498 (PA4)
499 )))|(% style="width:126px" %)(((
500 Digital in
501 (PB15)
502 )))|(% style="width:145px" %)(((
503 Count
504 (PA8)
505 )))
506
507 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
508
509
510 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
511
512 (% style="width:1108px" %)
513 |=(((
514 **Size(bytes)**
515 )))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
516 |**Value**|BAT|(% style="width:188px" %)(((
517 Temperature(DS18B20)
518 (PC13)
519 )))|(% style="width:83px" %)(((
520 ADC
521 (PA5)
522 )))|(% style="width:184px" %)(((
523 Digital Interrupt1(PA8)
524 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
525
526 [[image:image-20230513111203-7.png||height="324" width="975"]]
527
528 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
529
530 (% style="width:922px" %)
531 |=(((
532 **Size(bytes)**
533 )))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
534 |**Value**|BAT|(% style="width:207px" %)(((
535 Temperature(DS18B20)
536 (PC13)
537 )))|(% style="width:94px" %)(((
538 ADC1
539 (PA4)
540 )))|(% style="width:198px" %)(((
541 Digital Interrupt(PB15)
542 )))|(% style="width:84px" %)(((
543 ADC2
544 (PA5)
545 )))|(% style="width:82px" %)(((
546 ADC3
547 (PA8)
548 )))
549
550 [[image:image-20230513111231-8.png||height="335" width="900"]]
551
552
553 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
554
555 (% style="width:1010px" %)
556 |=(((
557 **Size(bytes)**
558 )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
559 |**Value**|BAT|(((
560 Temperature1(DS18B20)
561 (PC13)
562 )))|(((
563 Temperature2(DS18B20)
564 (PB9)
565 )))|(((
566 Digital Interrupt
567 (PB15)
568 )))|(% style="width:193px" %)(((
569 Temperature3(DS18B20)
570 (PB8)
571 )))|(% style="width:78px" %)(((
572 Count1
573 (PA8)
574 )))|(% style="width:78px" %)(((
575 Count2
576 (PA4)
577 )))
578
579 [[image:image-20230513111255-9.png||height="341" width="899"]]
580
581 **The newly added AT command is issued correspondingly:**
582
583 **~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
584
585 **~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
586
587 **~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
588
589 **AT+SETCNT=aa,bb** 
590
591 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
592
593 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
594
595
596
597 === 2.3.3  ​Decode payload ===
598
599 While using TTN V3 network, you can add the payload format to decode the payload.
600
601 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
602
603 The payload decoder function for TTN V3 are here:
604
605 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
606
607
608 ==== 2.3.3.1 Battery Info ====
609
610 Check the battery voltage for SN50v3.
611
612 Ex1: 0x0B45 = 2885mV
613
614 Ex2: 0x0B49 = 2889mV
615
616
617 ==== 2.3.3.2  Temperature (DS18B20) ====
618
619 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
620
621 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
622
623 **Connection:**
624
625 [[image:image-20230512180718-8.png||height="538" width="647"]]
626
627 **Example**:
628
629 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
630
631 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
632
633 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
634
635
636 ==== 2.3.3.3 Digital Input ====
637
638 The digital input for pin PB15,
639
640 * When PB15 is high, the bit 1 of payload byte 6 is 1.
641 * When PB15 is low, the bit 1 of payload byte 6 is 0.
642
643 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
644 (((
645 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
646
647 (% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
648 )))
649
650 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
651
652 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
653
654 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
655
656 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
657
658 (% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
659
660
661 ==== 2.3.3.5 Digital Interrupt ====
662
663 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
664
665 (% style="color:blue" %)**~ Interrupt connection method:**
666
667 [[image:image-20230513105351-5.png||height="147" width="485"]]
668
669 (% style="color:blue" %)**Example to use with door sensor :**
670
671 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
672
673 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
674
675 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
676
677 (% style="color:blue" %)**~ Below is the installation example:**
678
679 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
680
681 * (((
682 One pin to SN50_v3's PA8 pin
683 )))
684 * (((
685 The other pin to SN50_v3's VDD pin
686 )))
687
688 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
689
690 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
691
692 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
693
694 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
695
696 The above photos shows the two parts of the magnetic switch fitted to a door.
697
698 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
699
700 The command is:
701
702 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
703
704 Below shows some screen captures in TTN V3:
705
706 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
707
708 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
709
710 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
711
712
713 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
714
715 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
716
717 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
718
719 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
720
721 Below is the connection to SHT20/ SHT31. The connection is as below:
722
723
724 [[image:image-20230513103633-3.png||height="448" width="716"]]
725
726 The device will be able to get the I2C sensor data now and upload to IoT Server.
727
728 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
729
730 Convert the read byte to decimal and divide it by ten.
731
732 **Example:**
733
734 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
735
736 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
737
738 If you want to use other I2C device, please refer the SHT20 part source code as reference.
739
740
741 ==== 2.3.3.7  ​Distance Reading ====
742
743 Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
744
745
746 ==== 2.3.3.8 Ultrasonic Sensor ====
747
748 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
749
750 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
751
752 The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
753
754 The picture below shows the connection:
755
756 [[image:image-20230512173903-6.png||height="596" width="715"]]
757
758 Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
759
760 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
761
762 **Example:**
763
764 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
765
766
767
768 ==== 2.3.3.9  Battery Output - BAT pin ====
769
770 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
771
772
773 ==== 2.3.3.10  +5V Output ====
774
775 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
776
777 The 5V output time can be controlled by AT Command.
778
779 (% style="color:blue" %)**AT+5VT=1000**
780
781 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
782
783 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
784
785
786
787 ==== 2.3.3.11  BH1750 Illumination Sensor ====
788
789 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
790
791 [[image:image-20230512172447-4.png||height="416" width="712"]]
792
793 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
794
795
796 ==== 2.3.3.12  Working MOD ====
797
798 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
799
800 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
801
802 Case 7^^th^^ Byte >> 2 & 0x1f:
803
804 * 0: MOD1
805 * 1: MOD2
806 * 2: MOD3
807 * 3: MOD4
808 * 4: MOD5
809 * 5: MOD6
810 * 6: MOD7
811 * 7: MOD8
812 * 8: MOD9
813
814
815
816 == 2.4 Payload Decoder file ==
817
818
819 In TTN, use can add a custom payload so it shows friendly reading
820
821 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
822
823 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
824
825
826
827 == 2.5 Frequency Plans ==
828
829
830 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
831
832 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
833
834
835 = 3. Configure SN50v3-LB =
836
837 == 3.1 Configure Methods ==
838
839
840 SN50v3-LB supports below configure method:
841
842 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
843 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
844 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
845
846 == 3.2 General Commands ==
847
848
849 These commands are to configure:
850
851 * General system settings like: uplink interval.
852 * LoRaWAN protocol & radio related command.
853
854 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
855
856 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
857
858
859 == 3.3 Commands special design for SN50v3-LB ==
860
861
862 These commands only valid for S31x-LB, as below:
863
864
865 === 3.3.1 Set Transmit Interval Time ===
866
867 Feature: Change LoRaWAN End Node Transmit Interval.
868
869 (% style="color:blue" %)**AT Command: AT+TDC**
870
871 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
872 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
873 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
874 30000
875 OK
876 the interval is 30000ms = 30s
877 )))
878 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
879 OK
880 Set transmit interval to 60000ms = 60 seconds
881 )))
882
883 (% style="color:blue" %)**Downlink Command: 0x01**
884
885 Format: Command Code (0x01) followed by 3 bytes time value.
886
887 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
888
889 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
890 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
891
892
893
894 === 3.3.2 Get Device Status ===
895
896 Send a LoRaWAN downlink to ask the device to send its status.
897
898 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
899
900 Sensor will upload Device Status via FPORT=5. See payload section for detail.
901
902
903 === 3.3.3 Set Interrupt Mode ===
904
905 Feature, Set Interrupt mode for GPIO_EXIT.
906
907 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
908
909 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
910 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
911 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
912 0
913 OK
914 the mode is 0 =Disable Interrupt
915 )))
916 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
917 Set Transmit Interval
918 0. (Disable Interrupt),
919 ~1. (Trigger by rising and falling edge)
920 2. (Trigger by falling edge)
921 3. (Trigger by rising edge)
922 )))|(% style="width:157px" %)OK
923 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
924 Set Transmit Interval
925
926 trigger by rising edge.
927 )))|(% style="width:157px" %)OK
928 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
929
930 (% style="color:blue" %)**Downlink Command: 0x06**
931
932 Format: Command Code (0x06) followed by 3 bytes.
933
934 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
935
936 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
937 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
938 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
939 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
940
941
942
943 === 3.3.4 Set Power Output Duration ===
944
945 Control the output duration 5V . Before each sampling, device will
946
947 ~1. first enable the power output to external sensor,
948
949 2. keep it on as per duration, read sensor value and construct uplink payload
950
951 3. final, close the power output.
952
953 (% style="color:blue" %)**AT Command: AT+5VT**
954
955 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
956 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
957 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
958 500(default)
959 OK
960 )))
961 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
962 Close after a delay of 1000 milliseconds.
963 )))|(% style="width:157px" %)OK
964
965 (% style="color:blue" %)**Downlink Command: 0x07**
966
967 Format: Command Code (0x07) followed by 2 bytes.
968
969 The first and second bytes are the time to turn on.
970
971 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
972 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
973
974
975
976 === 3.3.5 Set Weighing parameters ===
977
978 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
979
980 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
981
982 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
983 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
984 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
985 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
986 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
987
988 (% style="color:blue" %)**Downlink Command: 0x08**
989
990 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
991
992 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
993
994 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
995
996 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
997 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
998 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
999
1000
1001
1002 === 3.3.6 Set Digital pulse count value ===
1003
1004 Feature: Set the pulse count value.
1005
1006 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1007
1008 (% style="color:blue" %)**AT Command: AT+SETCNT**
1009
1010 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1011 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1012 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1013 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1014
1015 (% style="color:blue" %)**Downlink Command: 0x09**
1016
1017 Format: Command Code (0x09) followed by 5 bytes.
1018
1019 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1020
1021 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1022 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1023
1024
1025
1026 === 3.3.7 Set Workmode ===
1027
1028 Feature: Switch working mode.
1029
1030 (% style="color:blue" %)**AT Command: AT+MOD**
1031
1032 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1033 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1034 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1035 OK
1036 )))
1037 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1038 OK
1039 Attention:Take effect after ATZ
1040 )))
1041
1042 (% style="color:blue" %)**Downlink Command: 0x0A**
1043
1044 Format: Command Code (0x0A) followed by 1 bytes.
1045
1046 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1047 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1048
1049
1050
1051 = 4. Battery & Power Consumption =
1052
1053
1054 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1055
1056 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1057
1058
1059 = 5. OTA Firmware update =
1060
1061
1062 (% class="wikigeneratedid" %)
1063 User can change firmware SN50v3-LB to:
1064
1065 * Change Frequency band/ region.
1066 * Update with new features.
1067 * Fix bugs.
1068
1069 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1070
1071
1072 Methods to Update Firmware:
1073
1074 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1075 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1076
1077 = 6. FAQ =
1078
1079 == 6.1 Where can i find source code of SN50v3-LB? ==
1080
1081 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1082 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1083
1084 = 7. Order Info =
1085
1086
1087 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1088
1089 (% style="color:red" %)**XX**(%%): The default frequency band
1090
1091 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1092 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1093 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1094 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1095 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1096 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1097 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1098 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1099
1100 (% style="color:red" %)**YY: ** (%%)Hole Option
1101
1102 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1103 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1104 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1105 * (% style="color:red" %)**NH**(%%): No Hole
1106
1107 = 8. ​Packing Info =
1108
1109 (% style="color:#037691" %)**Package Includes**:
1110
1111 * SN50v3-LB LoRaWAN Generic Node
1112
1113 (% style="color:#037691" %)**Dimension and weight**:
1114
1115 * Device Size: cm
1116 * Device Weight: g
1117 * Package Size / pcs : cm
1118 * Weight / pcs : g
1119
1120 = 9. Support =
1121
1122
1123 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1124 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]