Version 43.53 by Xiaoling on 2023/05/16 16:13

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33
34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
36 * Open-Source hardware/software
37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
44
45
46 == 1.3 Specification ==
47
48
49 (% style="color:#037691" %)**Common DC Characteristics:**
50
51 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
52 * Operating Temperature: -40 ~~ 85°C
53
54 (% style="color:#037691" %)**I/O Interface:**
55
56 * Battery output (2.6v ~~ 3.6v depends on battery)
57 * +5v controllable output
58 * 3 x Interrupt or Digital IN/OUT pins
59 * 3 x one-wire interfaces
60 * 1 x UART Interface
61 * 1 x I2C Interface
62
63 (% style="color:#037691" %)**LoRa Spec:**
64
65 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
66 * Max +22 dBm constant RF output vs.
67 * RX sensitivity: down to -139 dBm.
68 * Excellent blocking immunity
69
70 (% style="color:#037691" %)**Battery:**
71
72 * Li/SOCI2 un-chargeable battery
73 * Capacity: 8500mAh
74 * Self-Discharge: <1% / Year @ 25°C
75 * Max continuously current: 130mA
76 * Max boost current: 2A, 1 second
77
78 (% style="color:#037691" %)**Power Consumption**
79
80 * Sleep Mode: 5uA @ 3.3v
81 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82
83
84
85 == 1.4 Sleep mode and working mode ==
86
87
88 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
89
90 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
91
92
93 == 1.5 Button & LEDs ==
94
95
96 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97
98
99 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
100 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
104 )))
105 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
106 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
107 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
108 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
109 )))
110 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111
112
113
114 == 1.6 BLE connection ==
115
116
117 SN50v3-LB supports BLE remote configure.
118
119
120 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
121
122 * Press button to send an uplink
123 * Press button to active device.
124 * Device Power on or reset.
125
126 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
127
128
129 == 1.7 Pin Definitions ==
130
131
132 [[image:image-20230513102034-2.png]]
133
134
135 == 1.8 Mechanical ==
136
137
138 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
139
140 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
141
142 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143
144
145 == Hole Option ==
146
147
148 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
149
150 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
151
152 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
153
154
155 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
156
157 == 2.1 How it works ==
158
159
160 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
161
162
163 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
164
165
166 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
167
168 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
169
170
171 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
172
173 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
174
175 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
176
177
178 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
179
180
181 (% style="color:blue" %)**Register the device**
182
183 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
184
185
186 (% style="color:blue" %)**Add APP EUI and DEV EUI**
187
188 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
189
190
191 (% style="color:blue" %)**Add APP EUI in the application**
192
193
194 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
195
196
197 (% style="color:blue" %)**Add APP KEY**
198
199 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
200
201
202 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
203
204
205 Press the button for 5 seconds to activate the SN50v3-LB.
206
207 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
208
209 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
210
211
212 == 2.3 ​Uplink Payload ==
213
214 === 2.3.1 Device Status, FPORT~=5 ===
215
216
217 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
218
219 The Payload format is as below.
220
221
222 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
223 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
224 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
225 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
226
227 Example parse in TTNv3
228
229
230 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
231
232 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233
234 (% style="color:#037691" %)**Frequency Band**:
235
236 *0x01: EU868
237
238 *0x02: US915
239
240 *0x03: IN865
241
242 *0x04: AU915
243
244 *0x05: KZ865
245
246 *0x06: RU864
247
248 *0x07: AS923
249
250 *0x08: AS923-1
251
252 *0x09: AS923-2
253
254 *0x0a: AS923-3
255
256 *0x0b: CN470
257
258 *0x0c: EU433
259
260 *0x0d: KR920
261
262 *0x0e: MA869
263
264
265 (% style="color:#037691" %)**Sub-Band**:
266
267 AU915 and US915:value 0x00 ~~ 0x08
268
269 CN470: value 0x0B ~~ 0x0C
270
271 Other Bands: Always 0x00
272
273
274 (% style="color:#037691" %)**Battery Info**:
275
276 Check the battery voltage.
277
278 Ex1: 0x0B45 = 2885mV
279
280 Ex2: 0x0B49 = 2889mV
281
282
283 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284
285
286 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
287
288 For example:
289
290 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
291
292
293 (% style="color:red" %) **Important Notice:**
294
295 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
296 1. All modes share the same Payload Explanation from HERE.
297 1. By default, the device will send an uplink message every 20 minutes.
298
299
300
301 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
302
303
304 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
305
306 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
307 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
308 |**Value**|Bat|(% style="width:191px" %)(((
309 Temperature(DS18B20)(PC13)
310 )))|(% style="width:78px" %)(((
311 ADC(PA4)
312 )))|(% style="width:216px" %)(((
313 Digital in(PB15)&Digital Interrupt(PA8)
314 )))|(% style="width:308px" %)(((
315 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
316 )))|(% style="width:154px" %)(((
317 Humidity(SHT20 or SHT31)
318 )))
319
320 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
321
322
323
324 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325
326
327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328
329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 |(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 |**Value**|BAT|(% style="width:196px" %)(((
332 Temperature(DS18B20)(PC13)
333 )))|(% style="width:87px" %)(((
334 ADC(PA4)
335 )))|(% style="width:189px" %)(((
336 Digital in(PB15) & Digital Interrupt(PA8)
337 )))|(% style="width:208px" %)(((
338 Distance measure by:1) LIDAR-Lite V3HP
339 Or 2) Ultrasonic Sensor
340 )))|(% style="width:117px" %)Reserved
341
342 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
343
344
345 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
346
347 [[image:image-20230512173758-5.png||height="563" width="712"]]
348
349
350 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
351
352 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
353
354 [[image:image-20230512173903-6.png||height="596" width="715"]]
355
356
357 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
358
359 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
360 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
361 |**Value**|BAT|(% style="width:183px" %)(((
362 Temperature(DS18B20)(PC13)
363 )))|(% style="width:173px" %)(((
364 Digital in(PB15) & Digital Interrupt(PA8)
365 )))|(% style="width:84px" %)(((
366 ADC(PA4)
367 )))|(% style="width:323px" %)(((
368 Distance measure by:1)TF-Mini plus LiDAR
369 Or 
370 2) TF-Luna LiDAR
371 )))|(% style="width:188px" %)Distance signal  strength
372
373 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
374
375
376 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
377
378 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
379
380 [[image:image-20230512180609-7.png||height="555" width="802"]]
381
382
383 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
384
385 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
386
387 [[image:image-20230513105207-4.png||height="469" width="802"]]
388
389
390 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
391
392
393 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
394
395 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
396 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
397 **Size(bytes)**
398 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
399 |**Value**|(% style="width:68px" %)(((
400 ADC1(PA4)
401 )))|(% style="width:75px" %)(((
402 ADC2(PA5)
403 )))|(((
404 ADC3(PA8)
405 )))|(((
406 Digital Interrupt(PB15)
407 )))|(% style="width:304px" %)(((
408 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
409 )))|(% style="width:163px" %)(((
410 Humidity(SHT20 or SHT31)
411 )))|(% style="width:53px" %)Bat
412
413 [[image:image-20230513110214-6.png]]
414
415
416 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
417
418
419 This mode has total 11 bytes. As shown below:
420
421 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
422 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
423 |**Value**|BAT|(% style="width:186px" %)(((
424 Temperature1(DS18B20)(PC13)
425 )))|(% style="width:82px" %)(((
426 ADC(PA4)
427 )))|(% style="width:210px" %)(((
428 Digital in(PB15) & Digital Interrupt(PA8) 
429 )))|(% style="width:191px" %)Temperature2(DS18B20)
430 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
431
432 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
433
434 [[image:image-20230513134006-1.png||height="559" width="736"]]
435
436
437
438 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
439
440
441 [[image:image-20230512164658-2.png||height="532" width="729"]]
442
443 Each HX711 need to be calibrated before used. User need to do below two steps:
444
445 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
446 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
447 1. (((
448 Weight has 4 bytes, the unit is g.
449
450
451
452 )))
453
454 For example:
455
456 **AT+GETSENSORVALUE =0**
457
458 Response:  Weight is 401 g
459
460 Check the response of this command and adjust the value to match the real value for thing.
461
462 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
463 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
464 **Size(bytes)**
465 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
466 |**Value**|BAT|(% style="width:193px" %)(((
467 Temperature(DS18B20)
468 (PC13)
469 )))|(% style="width:85px" %)(((
470 ADC(PA4)
471 )))|(% style="width:186px" %)(((
472 Digital in(PB15) &
473 Digital Interrupt(PA8)
474 )))|(% style="width:100px" %)Weight
475
476 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
477
478
479
480 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
481
482
483 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
484
485 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
486
487 [[image:image-20230512181814-9.png||height="543" width="697"]]
488
489
490 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
491
492 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
493 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
494 |**Value**|BAT|(% style="width:256px" %)(((
495 Temperature(DS18B20)(PC13)
496 )))|(% style="width:108px" %)(((
497 ADC(PA4)
498 )))|(% style="width:126px" %)(((
499 Digital in(PB15)
500 )))|(% style="width:145px" %)(((
501 Count(PA8)
502 )))
503
504 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
505
506
507
508 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
509
510
511 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
512 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
513 **Size(bytes)**
514 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
515 |**Value**|BAT|(% style="width:188px" %)(((
516 Temperature(DS18B20)
517 (PC13)
518 )))|(% style="width:83px" %)(((
519 ADC(PA5)
520 )))|(% style="width:184px" %)(((
521 Digital Interrupt1(PA8)
522 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
523
524 [[image:image-20230513111203-7.png||height="324" width="975"]]
525
526
527 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
528
529
530 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
531 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
532 **Size(bytes)**
533 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
534 |**Value**|BAT|(% style="width:207px" %)(((
535 Temperature(DS18B20)
536 (PC13)
537 )))|(% style="width:94px" %)(((
538 ADC1(PA4)
539 )))|(% style="width:198px" %)(((
540 Digital Interrupt(PB15)
541 )))|(% style="width:84px" %)(((
542 ADC2(PA5)
543 )))|(% style="width:82px" %)(((
544 ADC3(PA8)
545 )))
546
547 [[image:image-20230513111231-8.png||height="335" width="900"]]
548
549
550 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
551
552
553 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
554 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
555 **Size(bytes)**
556 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
557 |**Value**|BAT|(((
558 Temperature1(DS18B20)
559 (PC13)
560 )))|(((
561 Temperature2(DS18B20)
562 (PB9)
563 )))|(((
564 Digital Interrupt
565 (PB15)
566 )))|(% style="width:193px" %)(((
567 Temperature3(DS18B20)
568 (PB8)
569 )))|(% style="width:78px" %)(((
570 Count1(PA8)
571 )))|(% style="width:78px" %)(((
572 Count2(PA4)
573 )))
574
575 [[image:image-20230513111255-9.png||height="341" width="899"]]
576
577 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
578
579 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
580
581 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
582
583 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
584
585
586 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
587
588 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
589
590 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
591
592
593 === 2.3.3  ​Decode payload ===
594
595
596 While using TTN V3 network, you can add the payload format to decode the payload.
597
598 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
599
600 The payload decoder function for TTN V3 are here:
601
602 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
603
604
605 ==== 2.3.3.1 Battery Info ====
606
607
608 Check the battery voltage for SN50v3.
609
610 Ex1: 0x0B45 = 2885mV
611
612 Ex2: 0x0B49 = 2889mV
613
614
615 ==== 2.3.3.2  Temperature (DS18B20) ====
616
617
618 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
619
620 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
621
622 (% style="color:blue" %)**Connection:**
623
624 [[image:image-20230512180718-8.png||height="538" width="647"]]
625
626
627 (% style="color:blue" %)**Example**:
628
629 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
630
631 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
632
633 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
634
635
636 ==== 2.3.3.3 Digital Input ====
637
638
639 The digital input for pin PB15,
640
641 * When PB15 is high, the bit 1 of payload byte 6 is 1.
642 * When PB15 is low, the bit 1 of payload byte 6 is 0.
643
644 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
645 (((
646 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
647
648 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
649
650
651 )))
652
653 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
654
655
656 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
657
658 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
659
660 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
661
662 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
663
664
665 ==== 2.3.3.5 Digital Interrupt ====
666
667
668 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
669
670 (% style="color:blue" %)** Interrupt connection method:**
671
672 [[image:image-20230513105351-5.png||height="147" width="485"]]
673
674
675 (% style="color:blue" %)**Example to use with door sensor :**
676
677 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
678
679 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
680
681 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
682
683
684 (% style="color:blue" %)**Below is the installation example:**
685
686 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
687
688 * (((
689 One pin to SN50_v3's PA8 pin
690 )))
691 * (((
692 The other pin to SN50_v3's VDD pin
693 )))
694
695 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
696
697 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
698
699 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
700
701 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
702
703 The above photos shows the two parts of the magnetic switch fitted to a door.
704
705 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
706
707 The command is:
708
709 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
710
711 Below shows some screen captures in TTN V3:
712
713 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
714
715
716 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
717
718 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
719
720
721 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
722
723
724 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
725
726 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
727
728 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
729
730 Below is the connection to SHT20/ SHT31. The connection is as below:
731
732
733 [[image:image-20230513103633-3.png||height="448" width="716"]]
734
735 The device will be able to get the I2C sensor data now and upload to IoT Server.
736
737 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
738
739 Convert the read byte to decimal and divide it by ten.
740
741 **Example:**
742
743 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
744
745 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
746
747 If you want to use other I2C device, please refer the SHT20 part source code as reference.
748
749
750 ==== 2.3.3.7  ​Distance Reading ====
751
752
753 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
754
755
756 ==== 2.3.3.8 Ultrasonic Sensor ====
757
758
759 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
760
761 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
762
763 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
764
765 The picture below shows the connection:
766
767 [[image:image-20230512173903-6.png||height="596" width="715"]]
768
769
770 Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
771
772 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
773
774 **Example:**
775
776 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
777
778
779 ==== 2.3.3.9  Battery Output - BAT pin ====
780
781
782 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
783
784
785 ==== 2.3.3.10  +5V Output ====
786
787
788 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
789
790 The 5V output time can be controlled by AT Command.
791
792 (% style="color:blue" %)**AT+5VT=1000**
793
794 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
795
796 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
797
798
799 ==== 2.3.3.11  BH1750 Illumination Sensor ====
800
801
802 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
803
804 [[image:image-20230512172447-4.png||height="416" width="712"]]
805
806
807 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
808
809
810 ==== 2.3.3.12  Working MOD ====
811
812
813 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
814
815 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
816
817 Case 7^^th^^ Byte >> 2 & 0x1f:
818
819 * 0: MOD1
820 * 1: MOD2
821 * 2: MOD3
822 * 3: MOD4
823 * 4: MOD5
824 * 5: MOD6
825 * 6: MOD7
826 * 7: MOD8
827 * 8: MOD9
828
829
830
831 == 2.4 Payload Decoder file ==
832
833
834 In TTN, use can add a custom payload so it shows friendly reading
835
836 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
837
838 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
839
840
841 == 2.5 Frequency Plans ==
842
843
844 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
845
846 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
847
848
849 = 3. Configure SN50v3-LB =
850
851 == 3.1 Configure Methods ==
852
853
854 SN50v3-LB supports below configure method:
855
856 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
857 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
858 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
859
860
861
862 == 3.2 General Commands ==
863
864
865 These commands are to configure:
866
867 * General system settings like: uplink interval.
868 * LoRaWAN protocol & radio related command.
869
870 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
871
872 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
873
874
875 == 3.3 Commands special design for SN50v3-LB ==
876
877
878 These commands only valid for S31x-LB, as below:
879
880
881 === 3.3.1 Set Transmit Interval Time ===
882
883
884 Feature: Change LoRaWAN End Node Transmit Interval.
885
886 (% style="color:blue" %)**AT Command: AT+TDC**
887
888 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
889 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
890 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
891 30000
892 OK
893 the interval is 30000ms = 30s
894 )))
895 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
896 OK
897 Set transmit interval to 60000ms = 60 seconds
898 )))
899
900 (% style="color:blue" %)**Downlink Command: 0x01**
901
902 Format: Command Code (0x01) followed by 3 bytes time value.
903
904 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
905
906 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
907 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
908
909
910
911 === 3.3.2 Get Device Status ===
912
913
914 Send a LoRaWAN downlink to ask the device to send its status.
915
916 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
917
918 Sensor will upload Device Status via FPORT=5. See payload section for detail.
919
920
921 === 3.3.3 Set Interrupt Mode ===
922
923
924 Feature, Set Interrupt mode for GPIO_EXIT.
925
926 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
927
928 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
929 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
930 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
931 0
932 OK
933 the mode is 0 =Disable Interrupt
934 )))
935 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
936 Set Transmit Interval
937 0. (Disable Interrupt),
938 ~1. (Trigger by rising and falling edge)
939 2. (Trigger by falling edge)
940 3. (Trigger by rising edge)
941 )))|(% style="width:157px" %)OK
942 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
943 Set Transmit Interval
944
945 trigger by rising edge.
946 )))|(% style="width:157px" %)OK
947 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
948
949 (% style="color:blue" %)**Downlink Command: 0x06**
950
951 Format: Command Code (0x06) followed by 3 bytes.
952
953 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
954
955 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
956 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
957 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
958 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
959
960
961
962 === 3.3.4 Set Power Output Duration ===
963
964
965 Control the output duration 5V . Before each sampling, device will
966
967 ~1. first enable the power output to external sensor,
968
969 2. keep it on as per duration, read sensor value and construct uplink payload
970
971 3. final, close the power output.
972
973 (% style="color:blue" %)**AT Command: AT+5VT**
974
975 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
976 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
977 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
978 500(default)
979 OK
980 )))
981 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
982 Close after a delay of 1000 milliseconds.
983 )))|(% style="width:157px" %)OK
984
985 (% style="color:blue" %)**Downlink Command: 0x07**
986
987 Format: Command Code (0x07) followed by 2 bytes.
988
989 The first and second bytes are the time to turn on.
990
991 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
992 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
993
994
995
996 === 3.3.5 Set Weighing parameters ===
997
998
999 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1000
1001 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1002
1003 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1004 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1005 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1006 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1007 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1008
1009 (% style="color:blue" %)**Downlink Command: 0x08**
1010
1011 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1012
1013 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1014
1015 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1016
1017 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1018 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1019 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1020
1021
1022
1023 === 3.3.6 Set Digital pulse count value ===
1024
1025
1026 Feature: Set the pulse count value.
1027
1028 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1029
1030 (% style="color:blue" %)**AT Command: AT+SETCNT**
1031
1032 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1033 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1034 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1035 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1036
1037 (% style="color:blue" %)**Downlink Command: 0x09**
1038
1039 Format: Command Code (0x09) followed by 5 bytes.
1040
1041 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1042
1043 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1044 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1045
1046
1047
1048 === 3.3.7 Set Workmode ===
1049
1050
1051 Feature: Switch working mode.
1052
1053 (% style="color:blue" %)**AT Command: AT+MOD**
1054
1055 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1056 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1057 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1058 OK
1059 )))
1060 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1061 OK
1062 Attention:Take effect after ATZ
1063 )))
1064
1065 (% style="color:blue" %)**Downlink Command: 0x0A**
1066
1067 Format: Command Code (0x0A) followed by 1 bytes.
1068
1069 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1070 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1071
1072
1073
1074 = 4. Battery & Power Consumption =
1075
1076
1077 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1078
1079 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1080
1081
1082 = 5. OTA Firmware update =
1083
1084
1085 (% class="wikigeneratedid" %)
1086 User can change firmware SN50v3-LB to:
1087
1088 * Change Frequency band/ region.
1089 * Update with new features.
1090 * Fix bugs.
1091
1092 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1093
1094
1095 Methods to Update Firmware:
1096
1097 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1098 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1099
1100
1101
1102 = 6. FAQ =
1103
1104 == 6.1 Where can i find source code of SN50v3-LB? ==
1105
1106
1107 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1108 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1109
1110
1111
1112 = 7. Order Info =
1113
1114
1115 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1116
1117 (% style="color:red" %)**XX**(%%): The default frequency band
1118
1119 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1120 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1121 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1122 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1123 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1124 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1125 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1126 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1127
1128 (% style="color:red" %)**YY: ** (%%)Hole Option
1129
1130 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1131 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1132 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1133 * (% style="color:red" %)**NH**(%%): No Hole
1134
1135
1136
1137 = 8. ​Packing Info =
1138
1139
1140 (% style="color:#037691" %)**Package Includes**:
1141
1142 * SN50v3-LB LoRaWAN Generic Node
1143
1144 (% style="color:#037691" %)**Dimension and weight**:
1145
1146 * Device Size: cm
1147 * Device Weight: g
1148 * Package Size / pcs : cm
1149 * Weight / pcs : g
1150
1151
1152
1153 = 9. Support =
1154
1155
1156 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1157
1158 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]