Version 43.44 by Xiaoling on 2023/05/16 15:31

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33
34 * LoRaWAN 1.0.3 Class A
35 * Ultra-low power consumption
36 * Open-Source hardware/software
37 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
38 * Support Bluetooth v5.1 and LoRaWAN remote configure
39 * Support wireless OTA update firmware
40 * Uplink on periodically
41 * Downlink to change configure
42 * 8500mAh Battery for long term use
43
44 == 1.3 Specification ==
45
46
47 (% style="color:#037691" %)**Common DC Characteristics:**
48
49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
50 * Operating Temperature: -40 ~~ 85°C
51
52 (% style="color:#037691" %)**I/O Interface:**
53
54 * Battery output (2.6v ~~ 3.6v depends on battery)
55 * +5v controllable output
56 * 3 x Interrupt or Digital IN/OUT pins
57 * 3 x one-wire interfaces
58 * 1 x UART Interface
59 * 1 x I2C Interface
60
61 (% style="color:#037691" %)**LoRa Spec:**
62
63 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
64 * Max +22 dBm constant RF output vs.
65 * RX sensitivity: down to -139 dBm.
66 * Excellent blocking immunity
67
68 (% style="color:#037691" %)**Battery:**
69
70 * Li/SOCI2 un-chargeable battery
71 * Capacity: 8500mAh
72 * Self-Discharge: <1% / Year @ 25°C
73 * Max continuously current: 130mA
74 * Max boost current: 2A, 1 second
75
76 (% style="color:#037691" %)**Power Consumption**
77
78 * Sleep Mode: 5uA @ 3.3v
79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80
81 == 1.4 Sleep mode and working mode ==
82
83
84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85
86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
87
88
89 == 1.5 Button & LEDs ==
90
91
92 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
93
94
95 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
96 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
97 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
98 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
99 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
100 )))
101 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
102 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
103 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
104 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
105 )))
106 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
107
108 == 1.6 BLE connection ==
109
110
111 SN50v3-LB supports BLE remote configure.
112
113
114 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
115
116 * Press button to send an uplink
117 * Press button to active device.
118 * Device Power on or reset.
119
120 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
121
122
123 == 1.7 Pin Definitions ==
124
125
126 [[image:image-20230513102034-2.png]]
127
128
129 == 1.8 Mechanical ==
130
131
132 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
133
134 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
135
136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137
138
139 == Hole Option ==
140
141
142 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
143
144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
145
146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147
148
149 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
150
151 == 2.1 How it works ==
152
153
154 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155
156
157 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
158
159
160 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
161
162 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163
164
165 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
166
167 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
168
169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
170
171
172 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
173
174
175 (% style="color:blue" %)**Register the device**
176
177 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
178
179
180 (% style="color:blue" %)**Add APP EUI and DEV EUI**
181
182 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
183
184
185 (% style="color:blue" %)**Add APP EUI in the application**
186
187
188 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
189
190
191 (% style="color:blue" %)**Add APP KEY**
192
193 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
194
195
196 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
197
198
199 Press the button for 5 seconds to activate the SN50v3-LB.
200
201 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
202
203 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
204
205
206 == 2.3 ​Uplink Payload ==
207
208 === 2.3.1 Device Status, FPORT~=5 ===
209
210
211 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
212
213 The Payload format is as below.
214
215
216 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
217 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
218 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
219 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
220
221 Example parse in TTNv3
222
223
224 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
225
226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227
228 (% style="color:#037691" %)**Frequency Band**:
229
230 *0x01: EU868
231
232 *0x02: US915
233
234 *0x03: IN865
235
236 *0x04: AU915
237
238 *0x05: KZ865
239
240 *0x06: RU864
241
242 *0x07: AS923
243
244 *0x08: AS923-1
245
246 *0x09: AS923-2
247
248 *0x0a: AS923-3
249
250 *0x0b: CN470
251
252 *0x0c: EU433
253
254 *0x0d: KR920
255
256 *0x0e: MA869
257
258
259 (% style="color:#037691" %)**Sub-Band**:
260
261 AU915 and US915:value 0x00 ~~ 0x08
262
263 CN470: value 0x0B ~~ 0x0C
264
265 Other Bands: Always 0x00
266
267
268 (% style="color:#037691" %)**Battery Info**:
269
270 Check the battery voltage.
271
272 Ex1: 0x0B45 = 2885mV
273
274 Ex2: 0x0B49 = 2889mV
275
276
277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
278
279
280 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
281
282 For example:
283
284 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
285
286
287 (% style="color:red" %) **Important Notice:**
288
289 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
290 1. All modes share the same Payload Explanation from HERE.
291 1. By default, the device will send an uplink message every 20 minutes.
292
293 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
294
295
296 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
297
298 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
299 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
300 |**Value**|Bat|(% style="width:191px" %)(((
301 Temperature(DS18B20)(PC13)
302 )))|(% style="width:78px" %)(((
303 ADC(PA4)
304 )))|(% style="width:216px" %)(((
305 Digital in(PB15)&Digital Interrupt(PA8)
306 )))|(% style="width:308px" %)(((
307 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
308 )))|(% style="width:154px" %)(((
309 Humidity(SHT20 or SHT31)
310 )))
311
312 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
313
314
315 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
316
317 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
318
319 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
320 |(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
321 |**Value**|BAT|(% style="width:196px" %)(((
322 Temperature(DS18B20)(PC13)
323 )))|(% style="width:87px" %)(((
324 ADC(PA4)
325 )))|(% style="width:189px" %)(((
326 Digital in(PB15) & Digital Interrupt(PA8)
327 )))|(% style="width:208px" %)(((
328 Distance measure by:1) LIDAR-Lite V3HP
329 Or 2) Ultrasonic Sensor
330 )))|(% style="width:117px" %)Reserved
331
332 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
333
334 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
335
336 [[image:image-20230512173758-5.png||height="563" width="712"]]
337
338 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
339
340 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
341
342 [[image:image-20230512173903-6.png||height="596" width="715"]]
343
344 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
345
346 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
347 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
348 |**Value**|BAT|(% style="width:183px" %)(((
349 Temperature(DS18B20)(PC13)
350 )))|(% style="width:173px" %)(((
351 Digital in(PB15) & Digital Interrupt(PA8)
352 )))|(% style="width:84px" %)(((
353 ADC(PA4)
354 )))|(% style="width:323px" %)(((
355 Distance measure by:1)TF-Mini plus LiDAR
356 Or 
357 2) TF-Luna LiDAR
358 )))|(% style="width:188px" %)Distance signal  strength
359
360 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
361
362 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
363
364 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
365
366 [[image:image-20230512180609-7.png||height="555" width="802"]]
367
368 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
369
370 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
371
372 [[image:image-20230513105207-4.png||height="469" width="802"]]
373
374
375 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
376
377 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
378
379 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
380 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
381 **Size(bytes)**
382 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
383 |**Value**|(% style="width:68px" %)(((
384 ADC1(PA4)
385 )))|(% style="width:75px" %)(((
386 ADC2(PA5)
387 )))|(((
388 ADC3(PA8)
389 )))|(((
390 Digital Interrupt(PB15)
391 )))|(% style="width:304px" %)(((
392 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
393 )))|(% style="width:163px" %)(((
394 Humidity(SHT20 or SHT31)
395 )))|(% style="width:53px" %)Bat
396
397 [[image:image-20230513110214-6.png]]
398
399
400 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
401
402
403 This mode has total 11 bytes. As shown below:
404
405 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
406 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
407 |**Value**|BAT|(% style="width:186px" %)(((
408 Temperature1(DS18B20)(PC13)
409 )))|(% style="width:82px" %)(((
410 ADC(PA4)
411 )))|(% style="width:210px" %)(((
412 Digital in(PB15) & Digital Interrupt(PA8) 
413 )))|(% style="width:191px" %)Temperature2(DS18B20)
414 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
415
416 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
417
418 [[image:image-20230513134006-1.png||height="559" width="736"]]
419
420
421 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
422
423 [[image:image-20230512164658-2.png||height="532" width="729"]]
424
425 Each HX711 need to be calibrated before used. User need to do below two steps:
426
427 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
428 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
429 1. (((
430 Weight has 4 bytes, the unit is g.
431 )))
432
433 For example:
434
435 **AT+GETSENSORVALUE =0**
436
437 Response:  Weight is 401 g
438
439 Check the response of this command and adjust the value to match the real value for thing.
440
441 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
442 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
443 **Size(bytes)**
444 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
445 |**Value**|BAT|(% style="width:193px" %)(((
446 Temperature(DS18B20)
447 (PC13)
448 )))|(% style="width:85px" %)(((
449 ADC(PA4)
450 )))|(% style="width:186px" %)(((
451 Digital in(PB15) &
452 Digital Interrupt(PA8)
453 )))|(% style="width:100px" %)Weight
454
455 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
456
457
458 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
459
460 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
461
462 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
463
464 [[image:image-20230512181814-9.png||height="543" width="697"]]
465
466 (% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
467
468 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
469 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
470 |**Value**|BAT|(% style="width:256px" %)(((
471 Temperature(DS18B20)(PC13)
472 )))|(% style="width:108px" %)(((
473 ADC(PA4)
474 )))|(% style="width:126px" %)(((
475 Digital in(PB15)
476 )))|(% style="width:145px" %)(((
477 Count(PA8)
478 )))
479
480 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
481
482
483 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
484
485 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
486 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
487 **Size(bytes)**
488 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
489 |**Value**|BAT|(% style="width:188px" %)(((
490 Temperature(DS18B20)
491 (PC13)
492 )))|(% style="width:83px" %)(((
493 ADC(PA5)
494 )))|(% style="width:184px" %)(((
495 Digital Interrupt1(PA8)
496 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
497
498 [[image:image-20230513111203-7.png||height="324" width="975"]]
499
500 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
501
502 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
503 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
504 **Size(bytes)**
505 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
506 |**Value**|BAT|(% style="width:207px" %)(((
507 Temperature(DS18B20)
508 (PC13)
509 )))|(% style="width:94px" %)(((
510 ADC1(PA4)
511 )))|(% style="width:198px" %)(((
512 Digital Interrupt(PB15)
513 )))|(% style="width:84px" %)(((
514 ADC2(PA5)
515 )))|(% style="width:82px" %)(((
516 ADC3(PA8)
517 )))
518
519 [[image:image-20230513111231-8.png||height="335" width="900"]]
520
521
522 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
523
524 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
525 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
526 **Size(bytes)**
527 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
528 |**Value**|BAT|(((
529 Temperature1(DS18B20)
530 (PC13)
531 )))|(((
532 Temperature2(DS18B20)
533 (PB9)
534 )))|(((
535 Digital Interrupt
536 (PB15)
537 )))|(% style="width:193px" %)(((
538 Temperature3(DS18B20)
539 (PB8)
540 )))|(% style="width:78px" %)(((
541 Count1(PA8)
542 )))|(% style="width:78px" %)(((
543 Count2(PA4)
544 )))
545
546 [[image:image-20230513111255-9.png||height="341" width="899"]]
547
548 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
549
550 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
551
552 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
553
554 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
555
556
557 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
558
559 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
560
561 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
562
563
564
565 === 2.3.3  ​Decode payload ===
566
567 While using TTN V3 network, you can add the payload format to decode the payload.
568
569 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
570
571 The payload decoder function for TTN V3 are here:
572
573 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
574
575
576 ==== 2.3.3.1 Battery Info ====
577
578 Check the battery voltage for SN50v3.
579
580 Ex1: 0x0B45 = 2885mV
581
582 Ex2: 0x0B49 = 2889mV
583
584
585 ==== 2.3.3.2  Temperature (DS18B20) ====
586
587 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
588
589 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
590
591 (% style="color:blue" %)**Connection:**
592
593 [[image:image-20230512180718-8.png||height="538" width="647"]]
594
595 (% style="color:blue" %)**Example**:
596
597 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
598
599 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
600
601 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
602
603
604 ==== 2.3.3.3 Digital Input ====
605
606 The digital input for pin PB15,
607
608 * When PB15 is high, the bit 1 of payload byte 6 is 1.
609 * When PB15 is low, the bit 1 of payload byte 6 is 0.
610
611 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
612 (((
613 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
614
615 (% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
616 )))
617
618 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
619
620 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
621
622 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
623
624 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
625
626 (% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
627
628
629 ==== 2.3.3.5 Digital Interrupt ====
630
631 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
632
633 (% style="color:blue" %)** Interrupt connection method:**
634
635 [[image:image-20230513105351-5.png||height="147" width="485"]]
636
637 (% style="color:blue" %)**Example to use with door sensor :**
638
639 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
640
641 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
642
643 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
644
645 (% style="color:blue" %)** Below is the installation example:**
646
647 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
648
649 * (((
650 One pin to SN50_v3's PA8 pin
651 )))
652 * (((
653 The other pin to SN50_v3's VDD pin
654 )))
655
656 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
657
658 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
659
660 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
661
662 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
663
664 The above photos shows the two parts of the magnetic switch fitted to a door.
665
666 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
667
668 The command is:
669
670 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
671
672 Below shows some screen captures in TTN V3:
673
674 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
675
676 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
677
678 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
679
680
681 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
682
683 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
684
685 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
686
687 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
688
689 Below is the connection to SHT20/ SHT31. The connection is as below:
690
691
692 [[image:image-20230513103633-3.png||height="448" width="716"]]
693
694 The device will be able to get the I2C sensor data now and upload to IoT Server.
695
696 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
697
698 Convert the read byte to decimal and divide it by ten.
699
700 **Example:**
701
702 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
703
704 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
705
706 If you want to use other I2C device, please refer the SHT20 part source code as reference.
707
708
709 ==== 2.3.3.7  ​Distance Reading ====
710
711 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
712
713
714 ==== 2.3.3.8 Ultrasonic Sensor ====
715
716 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
717
718 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
719
720 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
721
722 The picture below shows the connection:
723
724 [[image:image-20230512173903-6.png||height="596" width="715"]]
725
726 Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
727
728 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
729
730 **Example:**
731
732 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
733
734
735
736 ==== 2.3.3.9  Battery Output - BAT pin ====
737
738 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
739
740
741 ==== 2.3.3.10  +5V Output ====
742
743 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
744
745 The 5V output time can be controlled by AT Command.
746
747 (% style="color:blue" %)**AT+5VT=1000**
748
749 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
750
751 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
752
753
754
755 ==== 2.3.3.11  BH1750 Illumination Sensor ====
756
757 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
758
759 [[image:image-20230512172447-4.png||height="416" width="712"]]
760
761 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
762
763
764 ==== 2.3.3.12  Working MOD ====
765
766 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
767
768 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
769
770 Case 7^^th^^ Byte >> 2 & 0x1f:
771
772 * 0: MOD1
773 * 1: MOD2
774 * 2: MOD3
775 * 3: MOD4
776 * 4: MOD5
777 * 5: MOD6
778 * 6: MOD7
779 * 7: MOD8
780 * 8: MOD9
781
782
783 == 2.4 Payload Decoder file ==
784
785
786 In TTN, use can add a custom payload so it shows friendly reading
787
788 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
789
790 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
791
792
793
794 == 2.5 Frequency Plans ==
795
796
797 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
798
799 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
800
801
802 = 3. Configure SN50v3-LB =
803
804 == 3.1 Configure Methods ==
805
806
807 SN50v3-LB supports below configure method:
808
809 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
810 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
811 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
812
813 == 3.2 General Commands ==
814
815
816 These commands are to configure:
817
818 * General system settings like: uplink interval.
819 * LoRaWAN protocol & radio related command.
820
821 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
822
823 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
824
825
826 == 3.3 Commands special design for SN50v3-LB ==
827
828
829 These commands only valid for S31x-LB, as below:
830
831
832 === 3.3.1 Set Transmit Interval Time ===
833
834 Feature: Change LoRaWAN End Node Transmit Interval.
835
836 (% style="color:blue" %)**AT Command: AT+TDC**
837
838 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
839 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
840 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
841 30000
842 OK
843 the interval is 30000ms = 30s
844 )))
845 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
846 OK
847 Set transmit interval to 60000ms = 60 seconds
848 )))
849
850 (% style="color:blue" %)**Downlink Command: 0x01**
851
852 Format: Command Code (0x01) followed by 3 bytes time value.
853
854 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
855
856 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
857 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
858
859
860 === 3.3.2 Get Device Status ===
861
862 Send a LoRaWAN downlink to ask the device to send its status.
863
864 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
865
866 Sensor will upload Device Status via FPORT=5. See payload section for detail.
867
868
869 === 3.3.3 Set Interrupt Mode ===
870
871 Feature, Set Interrupt mode for GPIO_EXIT.
872
873 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
874
875 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
876 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
877 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
878 0
879 OK
880 the mode is 0 =Disable Interrupt
881 )))
882 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
883 Set Transmit Interval
884 0. (Disable Interrupt),
885 ~1. (Trigger by rising and falling edge)
886 2. (Trigger by falling edge)
887 3. (Trigger by rising edge)
888 )))|(% style="width:157px" %)OK
889 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
890 Set Transmit Interval
891
892 trigger by rising edge.
893 )))|(% style="width:157px" %)OK
894 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
895
896 (% style="color:blue" %)**Downlink Command: 0x06**
897
898 Format: Command Code (0x06) followed by 3 bytes.
899
900 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
901
902 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
903 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
904 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
905 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
906
907
908 === 3.3.4 Set Power Output Duration ===
909
910 Control the output duration 5V . Before each sampling, device will
911
912 ~1. first enable the power output to external sensor,
913
914 2. keep it on as per duration, read sensor value and construct uplink payload
915
916 3. final, close the power output.
917
918 (% style="color:blue" %)**AT Command: AT+5VT**
919
920 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
921 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
922 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
923 500(default)
924 OK
925 )))
926 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
927 Close after a delay of 1000 milliseconds.
928 )))|(% style="width:157px" %)OK
929
930 (% style="color:blue" %)**Downlink Command: 0x07**
931
932 Format: Command Code (0x07) followed by 2 bytes.
933
934 The first and second bytes are the time to turn on.
935
936 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
937 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
938
939
940 === 3.3.5 Set Weighing parameters ===
941
942 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
943
944 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
945
946 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
947 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
948 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
949 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
950 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
951
952 (% style="color:blue" %)**Downlink Command: 0x08**
953
954 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
955
956 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
957
958 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
959
960 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
961 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
962 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
963
964
965 === 3.3.6 Set Digital pulse count value ===
966
967 Feature: Set the pulse count value.
968
969 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
970
971 (% style="color:blue" %)**AT Command: AT+SETCNT**
972
973 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
974 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
975 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
976 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
977
978 (% style="color:blue" %)**Downlink Command: 0x09**
979
980 Format: Command Code (0x09) followed by 5 bytes.
981
982 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
983
984 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
985 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
986
987
988 === 3.3.7 Set Workmode ===
989
990 Feature: Switch working mode.
991
992 (% style="color:blue" %)**AT Command: AT+MOD**
993
994 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
995 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
996 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
997 OK
998 )))
999 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1000 OK
1001 Attention:Take effect after ATZ
1002 )))
1003
1004 (% style="color:blue" %)**Downlink Command: 0x0A**
1005
1006 Format: Command Code (0x0A) followed by 1 bytes.
1007
1008 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1009 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1010
1011
1012 = 4. Battery & Power Consumption =
1013
1014
1015 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1016
1017 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1018
1019
1020 = 5. OTA Firmware update =
1021
1022
1023 (% class="wikigeneratedid" %)
1024 User can change firmware SN50v3-LB to:
1025
1026 * Change Frequency band/ region.
1027 * Update with new features.
1028 * Fix bugs.
1029
1030 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1031
1032
1033 Methods to Update Firmware:
1034
1035 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1036 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1037
1038 = 6. FAQ =
1039
1040 == 6.1 Where can i find source code of SN50v3-LB? ==
1041
1042 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1043 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1044
1045 = 7. Order Info =
1046
1047
1048 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1049
1050 (% style="color:red" %)**XX**(%%): The default frequency band
1051
1052 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1053 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1054 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1055 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1056 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1057 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1058 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1059 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1060
1061 (% style="color:red" %)**YY: ** (%%)Hole Option
1062
1063 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1064 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1065 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1066 * (% style="color:red" %)**NH**(%%): No Hole
1067
1068 = 8. ​Packing Info =
1069
1070 (% style="color:#037691" %)**Package Includes**:
1071
1072 * SN50v3-LB LoRaWAN Generic Node
1073
1074 (% style="color:#037691" %)**Dimension and weight**:
1075
1076 * Device Size: cm
1077 * Device Weight: g
1078 * Package Size / pcs : cm
1079 * Weight / pcs : g
1080
1081 = 9. Support =
1082
1083
1084 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1085
1086 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]