Version 43.35 by Xiaoling on 2023/05/16 14:49

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
35 * Open-Source hardware/software
36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
45
46 (% style="color:#037691" %)**Common DC Characteristics:**
47
48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
49 * Operating Temperature: -40 ~~ 85°C
50
51 (% style="color:#037691" %)**I/O Interface:**
52
53 * Battery output (2.6v ~~ 3.6v depends on battery)
54 * +5v controllable output
55 * 3 x Interrupt or Digital IN/OUT pins
56 * 3 x one-wire interfaces
57 * 1 x UART Interface
58 * 1 x I2C Interface
59
60 (% style="color:#037691" %)**LoRa Spec:**
61
62 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
63 * Max +22 dBm constant RF output vs.
64 * RX sensitivity: down to -139 dBm.
65 * Excellent blocking immunity
66
67 (% style="color:#037691" %)**Battery:**
68
69 * Li/SOCI2 un-chargeable battery
70 * Capacity: 8500mAh
71 * Self-Discharge: <1% / Year @ 25°C
72 * Max continuously current: 130mA
73 * Max boost current: 2A, 1 second
74
75 (% style="color:#037691" %)**Power Consumption**
76
77 * Sleep Mode: 5uA @ 3.3v
78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79
80 == 1.4 Sleep mode and working mode ==
81
82
83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84
85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86
87
88 == 1.5 Button & LEDs ==
89
90
91 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92
93
94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 )))
100 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 )))
105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106
107 == 1.6 BLE connection ==
108
109
110 SN50v3-LB supports BLE remote configure.
111
112
113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114
115 * Press button to send an uplink
116 * Press button to active device.
117 * Device Power on or reset.
118
119 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120
121
122 == 1.7 Pin Definitions ==
123
124
125 [[image:image-20230513102034-2.png]]
126
127
128 == 1.8 Mechanical ==
129
130
131 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134
135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136
137
138 == Hole Option ==
139
140
141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142
143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144
145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146
147
148 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
149
150 == 2.1 How it works ==
151
152
153 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154
155
156 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
157
158
159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160
161 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162
163
164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
165
166 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
167
168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
169
170
171 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
172
173
174 (% style="color:blue" %)**Register the device**
175
176 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
177
178
179 (% style="color:blue" %)**Add APP EUI and DEV EUI**
180
181 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
182
183
184 (% style="color:blue" %)**Add APP EUI in the application**
185
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
188
189
190 (% style="color:blue" %)**Add APP KEY**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193
194
195 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
196
197
198 Press the button for 5 seconds to activate the SN50v3-LB.
199
200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201
202 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
203
204
205 == 2.3 ​Uplink Payload ==
206
207 === 2.3.1 Device Status, FPORT~=5 ===
208
209
210 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
211
212 The Payload format is as below.
213
214
215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219
220 Example parse in TTNv3
221
222
223 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
224
225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226
227 (% style="color:#037691" %)**Frequency Band**:
228
229 *0x01: EU868
230
231 *0x02: US915
232
233 *0x03: IN865
234
235 *0x04: AU915
236
237 *0x05: KZ865
238
239 *0x06: RU864
240
241 *0x07: AS923
242
243 *0x08: AS923-1
244
245 *0x09: AS923-2
246
247 *0x0a: AS923-3
248
249 *0x0b: CN470
250
251 *0x0c: EU433
252
253 *0x0d: KR920
254
255 *0x0e: MA869
256
257
258 (% style="color:#037691" %)**Sub-Band**:
259
260 AU915 and US915:value 0x00 ~~ 0x08
261
262 CN470: value 0x0B ~~ 0x0C
263
264 Other Bands: Always 0x00
265
266
267 (% style="color:#037691" %)**Battery Info**:
268
269 Check the battery voltage.
270
271 Ex1: 0x0B45 = 2885mV
272
273 Ex2: 0x0B49 = 2889mV
274
275
276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277
278
279 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280
281 For example:
282
283 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284
285
286 (% style="color:red" %) **Important Notice:**
287
288 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 1. All modes share the same Payload Explanation from HERE.
290 1. By default, the device will send an uplink message every 20 minutes.
291
292 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293
294
295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296
297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 |(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 |**Value**|Bat|(% style="width:191px" %)(((
300 Temperature(DS18B20)(PC13)
301 )))|(% style="width:78px" %)(((
302 ADC(PA4)
303 )))|(% style="width:216px" %)(((
304 Digital in(PB15)&Digital Interrupt(PA8)
305 )))|(% style="width:308px" %)(((
306 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
307 )))|(% style="width:154px" %)(((
308 Humidity(SHT20 or SHT31)
309 )))
310
311 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
312
313
314 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315
316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317
318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 |(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 |**Value**|BAT|(% style="width:196px" %)(((
321 Temperature(DS18B20)(PC13)
322 )))|(% style="width:87px" %)(((
323 ADC(PA4)
324 )))|(% style="width:189px" %)(((
325 Digital in(PB15) & Digital Interrupt(PA8)
326 )))|(% style="width:208px" %)(((
327 Distance measure by:1) LIDAR-Lite V3HP
328 Or 2) Ultrasonic Sensor
329 )))|(% style="width:117px" %)Reserved
330
331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332
333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
334
335 [[image:image-20230512173758-5.png||height="563" width="712"]]
336
337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
338
339 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
340
341 [[image:image-20230512173903-6.png||height="596" width="715"]]
342
343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344
345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
346 |(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
347 |**Value**|BAT|(% style="width:183px" %)(((
348 Temperature(DS18B20)(PC13)
349 )))|(% style="width:173px" %)(((
350 Digital in(PB15) & Digital Interrupt(PA8)
351 )))|(% style="width:84px" %)(((
352 ADC(PA4)
353 )))|(% style="width:323px" %)(((
354 Distance measure by:1)TF-Mini plus LiDAR
355 Or 
356 2) TF-Luna LiDAR
357 )))|(% style="width:188px" %)Distance signal  strength
358
359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
360
361 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
362
363 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
364
365 [[image:image-20230512180609-7.png||height="555" width="802"]]
366
367 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
368
369 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
370
371 [[image:image-20230513105207-4.png||height="469" width="802"]]
372
373
374 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
375
376 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
377
378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
379 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
380 **Size(bytes)**
381 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
382 |**Value**|(% style="width:68px" %)(((
383 ADC1(PA4)
384 )))|(% style="width:75px" %)(((
385 ADC2(PA5)
386 )))|(((
387 ADC3(PA8)
388 )))|(((
389 Digital Interrupt(PB15)
390 )))|(% style="width:304px" %)(((
391 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
392 )))|(% style="width:163px" %)(((
393 Humidity(SHT20 or SHT31)
394 )))|(% style="width:53px" %)Bat
395
396 [[image:image-20230513110214-6.png]]
397
398
399 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
400
401
402 This mode has total 11 bytes. As shown below:
403
404 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
405 |(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
406 |**Value**|BAT|(% style="width:186px" %)(((
407 Temperature1(DS18B20)(PC13)
408 )))|(% style="width:82px" %)(((
409 ADC(PA4)
410 )))|(% style="width:210px" %)(((
411 Digital in(PB15) & Digital Interrupt(PA8) 
412 )))|(% style="width:191px" %)Temperature2(DS18B20)
413 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
414
415 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
416
417 [[image:image-20230513134006-1.png||height="559" width="736"]]
418
419
420 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
421
422 [[image:image-20230512164658-2.png||height="532" width="729"]]
423
424 Each HX711 need to be calibrated before used. User need to do below two steps:
425
426 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
427 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
428 1. (((
429 Weight has 4 bytes, the unit is g.
430 )))
431
432 For example:
433
434 **AT+GETSENSORVALUE =0**
435
436 Response:  Weight is 401 g
437
438 Check the response of this command and adjust the value to match the real value for thing.
439
440 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
441 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
442 **Size(bytes)**
443 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
444 |**Value**|BAT|(% style="width:193px" %)(((
445 Temperature(DS18B20)
446 (PC13)
447 )))|(% style="width:85px" %)(((
448 ADC(PA4)
449 )))|(% style="width:186px" %)(((
450 Digital in(PB15) &
451 Digital Interrupt(PA8)
452 )))|(% style="width:100px" %)Weight
453
454 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
455
456
457 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
458
459 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
460
461 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
462
463 [[image:image-20230512181814-9.png||height="543" width="697"]]
464
465 (% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
466
467 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %)
468 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
469 |**Value**|BAT|(% style="width:256px" %)(((
470 Temperature(DS18B20)(PC13)
471 )))|(% style="width:108px" %)(((
472 ADC(PA4)
473 )))|(% style="width:126px" %)(((
474 Digital in(PB15)
475 )))|(% style="width:145px" %)(((
476 Count(PA8)
477 )))
478
479 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
480
481
482 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
483
484 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %)
485 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
486 **Size(bytes)**
487 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
488 |**Value**|BAT|(% style="width:188px" %)(((
489 Temperature(DS18B20)
490 (PC13)
491 )))|(% style="width:83px" %)(((
492 ADC(PA5)
493 )))|(% style="width:184px" %)(((
494 Digital Interrupt1(PA8)
495 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
496
497 [[image:image-20230513111203-7.png||height="324" width="975"]]
498
499 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
500
501 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px %)
502 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
503 **Size(bytes)**
504 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)2
505 |**Value**|BAT|(% style="width:207px" %)(((
506 Temperature(DS18B20)
507 (PC13)
508 )))|(% style="width:94px" %)(((
509 ADC1
510 (PA4)
511 )))|(% style="width:198px" %)(((
512 Digital Interrupt(PB15)
513 )))|(% style="width:84px" %)(((
514 ADC2
515 (PA5)
516 )))|(% style="width:82px" %)(((
517 ADC3
518 (PA8)
519 )))
520
521 [[image:image-20230513111231-8.png||height="335" width="900"]]
522
523
524 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
525
526 (% style="width:1010px" %)
527 |=(((
528 **Size(bytes)**
529 )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
530 |**Value**|BAT|(((
531 Temperature1(DS18B20)
532 (PC13)
533 )))|(((
534 Temperature2(DS18B20)
535 (PB9)
536 )))|(((
537 Digital Interrupt
538 (PB15)
539 )))|(% style="width:193px" %)(((
540 Temperature3(DS18B20)
541 (PB8)
542 )))|(% style="width:78px" %)(((
543 Count1
544 (PA8)
545 )))|(% style="width:78px" %)(((
546 Count2
547 (PA4)
548 )))
549
550 [[image:image-20230513111255-9.png||height="341" width="899"]]
551
552 **The newly added AT command is issued correspondingly:**
553
554 **~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
555
556 **~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
557
558 **~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
559
560 **AT+SETCNT=aa,bb** 
561
562 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
563
564 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
565
566
567
568 === 2.3.3  ​Decode payload ===
569
570 While using TTN V3 network, you can add the payload format to decode the payload.
571
572 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
573
574 The payload decoder function for TTN V3 are here:
575
576 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
577
578
579 ==== 2.3.3.1 Battery Info ====
580
581 Check the battery voltage for SN50v3.
582
583 Ex1: 0x0B45 = 2885mV
584
585 Ex2: 0x0B49 = 2889mV
586
587
588 ==== 2.3.3.2  Temperature (DS18B20) ====
589
590 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
591
592 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
593
594 **Connection:**
595
596 [[image:image-20230512180718-8.png||height="538" width="647"]]
597
598 **Example**:
599
600 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
601
602 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
603
604 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
605
606
607 ==== 2.3.3.3 Digital Input ====
608
609 The digital input for pin PB15,
610
611 * When PB15 is high, the bit 1 of payload byte 6 is 1.
612 * When PB15 is low, the bit 1 of payload byte 6 is 0.
613
614 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
615 (((
616 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
617
618 (% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
619 )))
620
621 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
622
623 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
624
625 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
626
627 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
628
629 (% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
630
631
632 ==== 2.3.3.5 Digital Interrupt ====
633
634 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
635
636 (% style="color:blue" %)**~ Interrupt connection method:**
637
638 [[image:image-20230513105351-5.png||height="147" width="485"]]
639
640 (% style="color:blue" %)**Example to use with door sensor :**
641
642 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
643
644 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
645
646 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
647
648 (% style="color:blue" %)**~ Below is the installation example:**
649
650 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
651
652 * (((
653 One pin to SN50_v3's PA8 pin
654 )))
655 * (((
656 The other pin to SN50_v3's VDD pin
657 )))
658
659 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
660
661 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
662
663 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
664
665 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
666
667 The above photos shows the two parts of the magnetic switch fitted to a door.
668
669 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
670
671 The command is:
672
673 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
674
675 Below shows some screen captures in TTN V3:
676
677 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
678
679 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
680
681 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
682
683
684 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
685
686 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
687
688 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
689
690 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
691
692 Below is the connection to SHT20/ SHT31. The connection is as below:
693
694
695 [[image:image-20230513103633-3.png||height="448" width="716"]]
696
697 The device will be able to get the I2C sensor data now and upload to IoT Server.
698
699 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
700
701 Convert the read byte to decimal and divide it by ten.
702
703 **Example:**
704
705 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
706
707 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
708
709 If you want to use other I2C device, please refer the SHT20 part source code as reference.
710
711
712 ==== 2.3.3.7  ​Distance Reading ====
713
714 Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
715
716
717 ==== 2.3.3.8 Ultrasonic Sensor ====
718
719 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
720
721 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
722
723 The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
724
725 The picture below shows the connection:
726
727 [[image:image-20230512173903-6.png||height="596" width="715"]]
728
729 Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
730
731 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
732
733 **Example:**
734
735 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
736
737
738
739 ==== 2.3.3.9  Battery Output - BAT pin ====
740
741 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
742
743
744 ==== 2.3.3.10  +5V Output ====
745
746 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
747
748 The 5V output time can be controlled by AT Command.
749
750 (% style="color:blue" %)**AT+5VT=1000**
751
752 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
753
754 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
755
756
757
758 ==== 2.3.3.11  BH1750 Illumination Sensor ====
759
760 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
761
762 [[image:image-20230512172447-4.png||height="416" width="712"]]
763
764 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
765
766
767 ==== 2.3.3.12  Working MOD ====
768
769 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
770
771 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
772
773 Case 7^^th^^ Byte >> 2 & 0x1f:
774
775 * 0: MOD1
776 * 1: MOD2
777 * 2: MOD3
778 * 3: MOD4
779 * 4: MOD5
780 * 5: MOD6
781 * 6: MOD7
782 * 7: MOD8
783 * 8: MOD9
784
785
786
787 == 2.4 Payload Decoder file ==
788
789
790 In TTN, use can add a custom payload so it shows friendly reading
791
792 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
793
794 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
795
796
797
798 == 2.5 Frequency Plans ==
799
800
801 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
802
803 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
804
805
806 = 3. Configure SN50v3-LB =
807
808 == 3.1 Configure Methods ==
809
810
811 SN50v3-LB supports below configure method:
812
813 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
814 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
815 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
816
817 == 3.2 General Commands ==
818
819
820 These commands are to configure:
821
822 * General system settings like: uplink interval.
823 * LoRaWAN protocol & radio related command.
824
825 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
826
827 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
828
829
830 == 3.3 Commands special design for SN50v3-LB ==
831
832
833 These commands only valid for S31x-LB, as below:
834
835
836 === 3.3.1 Set Transmit Interval Time ===
837
838 Feature: Change LoRaWAN End Node Transmit Interval.
839
840 (% style="color:blue" %)**AT Command: AT+TDC**
841
842 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
843 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
844 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
845 30000
846 OK
847 the interval is 30000ms = 30s
848 )))
849 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
850 OK
851 Set transmit interval to 60000ms = 60 seconds
852 )))
853
854 (% style="color:blue" %)**Downlink Command: 0x01**
855
856 Format: Command Code (0x01) followed by 3 bytes time value.
857
858 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
859
860 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
861 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
862
863
864
865 === 3.3.2 Get Device Status ===
866
867 Send a LoRaWAN downlink to ask the device to send its status.
868
869 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
870
871 Sensor will upload Device Status via FPORT=5. See payload section for detail.
872
873
874 === 3.3.3 Set Interrupt Mode ===
875
876 Feature, Set Interrupt mode for GPIO_EXIT.
877
878 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
879
880 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
881 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
882 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
883 0
884 OK
885 the mode is 0 =Disable Interrupt
886 )))
887 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
888 Set Transmit Interval
889 0. (Disable Interrupt),
890 ~1. (Trigger by rising and falling edge)
891 2. (Trigger by falling edge)
892 3. (Trigger by rising edge)
893 )))|(% style="width:157px" %)OK
894 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
895 Set Transmit Interval
896
897 trigger by rising edge.
898 )))|(% style="width:157px" %)OK
899 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
900
901 (% style="color:blue" %)**Downlink Command: 0x06**
902
903 Format: Command Code (0x06) followed by 3 bytes.
904
905 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
906
907 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
908 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
909 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
910 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
911
912
913
914 === 3.3.4 Set Power Output Duration ===
915
916 Control the output duration 5V . Before each sampling, device will
917
918 ~1. first enable the power output to external sensor,
919
920 2. keep it on as per duration, read sensor value and construct uplink payload
921
922 3. final, close the power output.
923
924 (% style="color:blue" %)**AT Command: AT+5VT**
925
926 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
927 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
928 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
929 500(default)
930 OK
931 )))
932 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
933 Close after a delay of 1000 milliseconds.
934 )))|(% style="width:157px" %)OK
935
936 (% style="color:blue" %)**Downlink Command: 0x07**
937
938 Format: Command Code (0x07) followed by 2 bytes.
939
940 The first and second bytes are the time to turn on.
941
942 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
943 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
944
945
946
947 === 3.3.5 Set Weighing parameters ===
948
949 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
950
951 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
952
953 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
954 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
955 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
956 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
957 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
958
959 (% style="color:blue" %)**Downlink Command: 0x08**
960
961 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
962
963 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
964
965 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
966
967 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
968 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
969 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
970
971
972
973 === 3.3.6 Set Digital pulse count value ===
974
975 Feature: Set the pulse count value.
976
977 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
978
979 (% style="color:blue" %)**AT Command: AT+SETCNT**
980
981 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
982 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
983 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
984 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
985
986 (% style="color:blue" %)**Downlink Command: 0x09**
987
988 Format: Command Code (0x09) followed by 5 bytes.
989
990 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
991
992 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
993 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
994
995
996
997 === 3.3.7 Set Workmode ===
998
999 Feature: Switch working mode.
1000
1001 (% style="color:blue" %)**AT Command: AT+MOD**
1002
1003 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1004 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1005 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1006 OK
1007 )))
1008 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1009 OK
1010 Attention:Take effect after ATZ
1011 )))
1012
1013 (% style="color:blue" %)**Downlink Command: 0x0A**
1014
1015 Format: Command Code (0x0A) followed by 1 bytes.
1016
1017 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1018 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1019
1020
1021
1022 = 4. Battery & Power Consumption =
1023
1024
1025 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1026
1027 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1028
1029
1030 = 5. OTA Firmware update =
1031
1032
1033 (% class="wikigeneratedid" %)
1034 User can change firmware SN50v3-LB to:
1035
1036 * Change Frequency band/ region.
1037 * Update with new features.
1038 * Fix bugs.
1039
1040 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1041
1042
1043 Methods to Update Firmware:
1044
1045 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1046 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1047
1048 = 6. FAQ =
1049
1050 == 6.1 Where can i find source code of SN50v3-LB? ==
1051
1052 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1053 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1054
1055 = 7. Order Info =
1056
1057
1058 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1059
1060 (% style="color:red" %)**XX**(%%): The default frequency band
1061
1062 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1063 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1064 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1065 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1066 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1067 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1068 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1069 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1070
1071 (% style="color:red" %)**YY: ** (%%)Hole Option
1072
1073 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1074 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1075 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1076 * (% style="color:red" %)**NH**(%%): No Hole
1077
1078 = 8. ​Packing Info =
1079
1080 (% style="color:#037691" %)**Package Includes**:
1081
1082 * SN50v3-LB LoRaWAN Generic Node
1083
1084 (% style="color:#037691" %)**Dimension and weight**:
1085
1086 * Device Size: cm
1087 * Device Weight: g
1088 * Package Size / pcs : cm
1089 * Weight / pcs : g
1090
1091 = 9. Support =
1092
1093
1094 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1095
1096 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]