Version 43.3 by Xiaoling on 2023/05/16 13:40

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230515135611-1.jpeg||height="589" width="589"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18
19
20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21
22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23
24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25
26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27
28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29
30
31 == 1.2 ​Features ==
32
33 * LoRaWAN 1.0.3 Class A
34 * Ultra-low power consumption
35 * Open-Source hardware/software
36 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
37 * Support Bluetooth v5.1 and LoRaWAN remote configure
38 * Support wireless OTA update firmware
39 * Uplink on periodically
40 * Downlink to change configure
41 * 8500mAh Battery for long term use
42
43 == 1.3 Specification ==
44
45 (% style="color:#037691" %)**Common DC Characteristics:**
46
47 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
48 * Operating Temperature: -40 ~~ 85°C
49
50 (% style="color:#037691" %)**I/O Interface:**
51
52 * Battery output (2.6v ~~ 3.6v depends on battery)
53 * +5v controllable output
54 * 3 x Interrupt or Digital IN/OUT pins
55 * 3 x one-wire interfaces
56 * 1 x UART Interface
57 * 1 x I2C Interface
58
59 (% style="color:#037691" %)**LoRa Spec:**
60
61 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
62 * Max +22 dBm constant RF output vs.
63 * RX sensitivity: down to -139 dBm.
64 * Excellent blocking immunity
65
66 (% style="color:#037691" %)**Battery:**
67
68 * Li/SOCI2 un-chargeable battery
69 * Capacity: 8500mAh
70 * Self-Discharge: <1% / Year @ 25°C
71 * Max continuously current: 130mA
72 * Max boost current: 2A, 1 second
73
74 (% style="color:#037691" %)**Power Consumption**
75
76 * Sleep Mode: 5uA @ 3.3v
77 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
78
79 == 1.4 Sleep mode and working mode ==
80
81 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
82
83 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
84
85
86 == 1.5 Button & LEDs ==
87
88
89 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
90
91
92 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
93 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
94 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
95 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
96 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
97 )))
98 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
99 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
100 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
101 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
102 )))
103 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
104
105 == 1.6 BLE connection ==
106
107
108 SN50v3-LB supports BLE remote configure.
109
110
111 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
112
113 * Press button to send an uplink
114 * Press button to active device.
115 * Device Power on or reset.
116
117 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
118
119
120 == 1.7 Pin Definitions ==
121
122
123 [[image:image-20230513102034-2.png]]
124
125
126 == 1.8 Mechanical ==
127
128
129 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
130
131 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
132
133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
134
135
136 == Hole Option ==
137
138 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
139
140 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
141
142 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
143
144
145 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
146
147 == 2.1 How it works ==
148
149
150 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
151
152
153 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
154
155
156 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
157
158 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
159
160
161 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
162
163 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
164
165 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
166
167
168 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
169
170
171 (% style="color:blue" %)**Register the device**
172
173 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
174
175
176 (% style="color:blue" %)**Add APP EUI and DEV EUI**
177
178 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
179
180
181 (% style="color:blue" %)**Add APP EUI in the application**
182
183
184 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
185
186
187 (% style="color:blue" %)**Add APP KEY**
188
189 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
190
191
192 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
193
194
195 Press the button for 5 seconds to activate the SN50v3-LB.
196
197 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
198
199 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
200
201
202 == 2.3 ​Uplink Payload ==
203
204 === 2.3.1 Device Status, FPORT~=5 ===
205
206
207 Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
208
209 The Payload format is as below.
210
211
212 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
213 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
214 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
215 |(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
216
217 Example parse in TTNv3
218
219
220 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
221
222 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
223
224 (% style="color:#037691" %)**Frequency Band**:
225
226 *0x01: EU868
227
228 *0x02: US915
229
230 *0x03: IN865
231
232 *0x04: AU915
233
234 *0x05: KZ865
235
236 *0x06: RU864
237
238 *0x07: AS923
239
240 *0x08: AS923-1
241
242 *0x09: AS923-2
243
244 *0x0a: AS923-3
245
246 *0x0b: CN470
247
248 *0x0c: EU433
249
250 *0x0d: KR920
251
252 *0x0e: MA869
253
254
255 (% style="color:#037691" %)**Sub-Band**:
256
257 AU915 and US915:value 0x00 ~~ 0x08
258
259 CN470: value 0x0B ~~ 0x0C
260
261 Other Bands: Always 0x00
262
263
264 (% style="color:#037691" %)**Battery Info**:
265
266 Check the battery voltage.
267
268 Ex1: 0x0B45 = 2885mV
269
270 Ex2: 0x0B49 = 2889mV
271
272
273 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
274
275
276 SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
277
278 For example:
279
280 **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
281
282
283 (% style="color:red" %) **Important Notice:**
284
285 1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
286 1. All modes share the same Payload Explanation from HERE.
287 1. By default, the device will send an uplink message every 20 minutes.
288
289 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
290
291 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
292
293 (% style="width:1110px" %)
294 |**Size(bytes)**|**2**|(% style="width:191px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**
295 |**Value**|Bat|(% style="width:191px" %)(((
296 Temperature(DS18B20)
297
298 (PC13)
299 )))|(% style="width:78px" %)(((
300 ADC
301
302 (PA4)
303 )))|(% style="width:216px" %)(((
304 Digital in(PB15) &
305
306 Digital Interrupt(PA8)
307
308
309 )))|(% style="width:308px" %)(((
310 Temperature
311
312 (SHT20 or SHT31 or BH1750 Illumination Sensor)
313 )))|(% style="width:154px" %)(((
314 Humidity
315
316 (SHT20 or SHT31)
317 )))
318
319 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
320
321
322 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
323
324 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
325
326 (% style="width:1011px" %)
327 |**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
328 |**Value**|BAT|(% style="width:196px" %)(((
329 Temperature(DS18B20)
330
331 (PC13)
332 )))|(% style="width:87px" %)(((
333 ADC
334
335 (PA4)
336 )))|(% style="width:189px" %)(((
337 Digital in(PB15) &
338
339 Digital Interrupt(PA8)
340 )))|(% style="width:208px" %)(((
341 Distance measure by:
342 1) LIDAR-Lite V3HP
343 Or
344 2) Ultrasonic Sensor
345 )))|(% style="width:117px" %)Reserved
346
347 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
348
349 **Connection of LIDAR-Lite V3HP:**
350
351 [[image:image-20230512173758-5.png||height="563" width="712"]]
352
353 **Connection to Ultrasonic Sensor:**
354
355 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
356
357 [[image:image-20230512173903-6.png||height="596" width="715"]]
358
359 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
360
361 (% style="width:1113px" %)
362 |**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
363 |**Value**|BAT|(% style="width:183px" %)(((
364 Temperature(DS18B20)
365
366 (PC13)
367 )))|(% style="width:173px" %)(((
368 Digital in(PB15) &
369
370 Digital Interrupt(PA8)
371 )))|(% style="width:84px" %)(((
372 ADC
373
374 (PA4)
375 )))|(% style="width:323px" %)(((
376 Distance measure by:1)TF-Mini plus LiDAR
377 Or 
378 2) TF-Luna LiDAR
379 )))|(% style="width:188px" %)Distance signal  strength
380
381 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
382
383 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
384
385 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
386
387 [[image:image-20230512180609-7.png||height="555" width="802"]]
388
389 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
390
391 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
392
393 [[image:image-20230513105207-4.png||height="469" width="802"]]
394
395
396 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
397
398 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
399
400 (% style="width:1031px" %)
401 |=(((
402 **Size(bytes)**
403 )))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
404 |**Value**|(% style="width:68px" %)(((
405 ADC1
406
407 (PA4)
408 )))|(% style="width:75px" %)(((
409 ADC2
410
411 (PA5)
412 )))|(((
413 ADC3
414
415 (PA8)
416 )))|(((
417 Digital Interrupt(PB15)
418 )))|(% style="width:304px" %)(((
419 Temperature
420
421 (SHT20 or SHT31 or BH1750 Illumination Sensor)
422 )))|(% style="width:163px" %)(((
423 Humidity
424
425 (SHT20 or SHT31)
426 )))|(% style="width:53px" %)Bat
427
428 [[image:image-20230513110214-6.png]]
429
430
431 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
432
433
434 This mode has total 11 bytes. As shown below:
435
436 (% style="width:1017px" %)
437 |**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
438 |**Value**|BAT|(% style="width:186px" %)(((
439 Temperature1(DS18B20)
440 (PC13)
441 )))|(% style="width:82px" %)(((
442 ADC
443
444 (PA4)
445 )))|(% style="width:210px" %)(((
446 Digital in(PB15) &
447
448 Digital Interrupt(PA8) 
449 )))|(% style="width:191px" %)Temperature2(DS18B20)
450 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)
451 (PB8)
452
453 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
454
455 [[image:image-20230513134006-1.png||height="559" width="736"]]
456
457
458 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
459
460 [[image:image-20230512164658-2.png||height="532" width="729"]]
461
462 Each HX711 need to be calibrated before used. User need to do below two steps:
463
464 1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
465 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
466 1. (((
467 Weight has 4 bytes, the unit is g.
468 )))
469
470 For example:
471
472 **AT+GETSENSORVALUE =0**
473
474 Response:  Weight is 401 g
475
476 Check the response of this command and adjust the value to match the real value for thing.
477
478 (% style="width:767px" %)
479 |=(((
480 **Size(bytes)**
481 )))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
482 |**Value**|BAT|(% style="width:193px" %)(((
483 Temperature(DS18B20)
484
485 (PC13)
486
487
488 )))|(% style="width:85px" %)(((
489 ADC
490
491 (PA4)
492 )))|(% style="width:186px" %)(((
493 Digital in(PB15) &
494
495 Digital Interrupt(PA8)
496 )))|(% style="width:100px" %)Weight
497
498 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
499
500
501 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
502
503 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
504
505 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
506
507 [[image:image-20230512181814-9.png||height="543" width="697"]]
508
509 **Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
510
511 (% style="width:961px" %)
512 |=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
513 |**Value**|BAT|(% style="width:256px" %)(((
514 Temperature(DS18B20)
515
516 (PC13)
517 )))|(% style="width:108px" %)(((
518 ADC
519
520 (PA4)
521 )))|(% style="width:126px" %)(((
522 Digital in
523
524 (PB15)
525 )))|(% style="width:145px" %)(((
526 Count
527
528 (PA8)
529 )))
530
531 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
532
533
534 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
535
536 (% style="width:1108px" %)
537 |=(((
538 **Size(bytes)**
539 )))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
540 |**Value**|BAT|(% style="width:188px" %)(((
541 Temperature(DS18B20)
542
543 (PC13)
544 )))|(% style="width:83px" %)(((
545 ADC
546
547 (PA5)
548 )))|(% style="width:184px" %)(((
549 Digital Interrupt1(PA8)
550 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
551
552 [[image:image-20230513111203-7.png||height="324" width="975"]]
553
554 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
555
556 (% style="width:922px" %)
557 |=(((
558 **Size(bytes)**
559 )))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
560 |**Value**|BAT|(% style="width:207px" %)(((
561 Temperature(DS18B20)
562
563 (PC13)
564 )))|(% style="width:94px" %)(((
565 ADC1
566
567 (PA4)
568 )))|(% style="width:198px" %)(((
569 Digital Interrupt(PB15)
570 )))|(% style="width:84px" %)(((
571 ADC2
572
573 (PA5)
574 )))|(% style="width:82px" %)(((
575 ADC3
576
577 (PA8)
578 )))
579
580 [[image:image-20230513111231-8.png||height="335" width="900"]]
581
582
583 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
584
585 (% style="width:1010px" %)
586 |=(((
587 **Size(bytes)**
588 )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
589 |**Value**|BAT|(((
590 Temperature1(DS18B20)
591
592 (PC13)
593 )))|(((
594 Temperature2(DS18B20)
595
596 (PB9)
597 )))|(((
598 Digital Interrupt
599
600 (PB15)
601 )))|(% style="width:193px" %)(((
602 Temperature3(DS18B20)
603
604 (PB8)
605 )))|(% style="width:78px" %)(((
606 Count1
607
608 (PA8)
609 )))|(% style="width:78px" %)(((
610 Count2
611
612 (PA4)
613 )))
614
615 [[image:image-20230513111255-9.png||height="341" width="899"]]
616
617 **The newly added AT command is issued correspondingly:**
618
619 **~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
620
621 **~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
622
623 **~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
624
625 **AT+SETCNT=aa,bb** 
626
627 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
628
629 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
630
631
632
633 === 2.3.3  ​Decode payload ===
634
635 While using TTN V3 network, you can add the payload format to decode the payload.
636
637 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
638
639 The payload decoder function for TTN V3 are here:
640
641 SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
642
643
644 ==== 2.3.3.1 Battery Info ====
645
646 Check the battery voltage for SN50v3.
647
648 Ex1: 0x0B45 = 2885mV
649
650 Ex2: 0x0B49 = 2889mV
651
652
653 ==== 2.3.3.2  Temperature (DS18B20) ====
654
655 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
656
657 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
658
659 **Connection:**
660
661 [[image:image-20230512180718-8.png||height="538" width="647"]]
662
663 **Example**:
664
665 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
666
667 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
668
669 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
670
671
672 ==== 2.3.3.3 Digital Input ====
673
674 The digital input for pin PB15,
675
676 * When PB15 is high, the bit 1 of payload byte 6 is 1.
677 * When PB15 is low, the bit 1 of payload byte 6 is 0.
678
679 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
680 (((
681 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
682
683 **Note:**The maximum voltage input supports 3.6V.
684
685
686 )))
687
688 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
689
690 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
691
692 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
693
694 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
695
696 **Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
697
698
699 ==== 2.3.3.5 Digital Interrupt ====
700
701 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
702
703 **~ Interrupt connection method:**
704
705 [[image:image-20230513105351-5.png||height="147" width="485"]]
706
707 **Example to use with door sensor :**
708
709 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
710
711 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
712
713 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
714
715 **~ Below is the installation example:**
716
717 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
718
719 * (((
720 One pin to SN50_v3's PA8 pin
721 )))
722 * (((
723 The other pin to SN50_v3's VDD pin
724 )))
725
726 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
727
728 Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
729
730 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
731
732 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
733
734 The above photos shows the two parts of the magnetic switch fitted to a door.
735
736 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
737
738 The command is:
739
740 **AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
741
742 Below shows some screen captures in TTN V3:
743
744 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
745
746 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
747
748 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
749
750
751 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
752
753 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
754
755 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
756
757 Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
758
759 Below is the connection to SHT20/ SHT31. The connection is as below:
760
761
762 [[image:image-20230513103633-3.png||height="448" width="716"]]
763
764 The device will be able to get the I2C sensor data now and upload to IoT Server.
765
766 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
767
768 Convert the read byte to decimal and divide it by ten.
769
770 **Example:**
771
772 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
773
774 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
775
776 If you want to use other I2C device, please refer the SHT20 part source code as reference.
777
778
779 ==== 2.3.3.7  ​Distance Reading ====
780
781 Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
782
783
784 ==== 2.3.3.8 Ultrasonic Sensor ====
785
786 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
787
788 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
789
790 The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
791
792 The picture below shows the connection:
793
794 [[image:image-20230512173903-6.png||height="596" width="715"]]
795
796 Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
797
798 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
799
800 **Example:**
801
802 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
803
804
805
806 ==== 2.3.3.9  Battery Output - BAT pin ====
807
808 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
809
810
811 ==== 2.3.3.10  +5V Output ====
812
813 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
814
815 The 5V output time can be controlled by AT Command.
816
817 **AT+5VT=1000**
818
819 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
820
821 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
822
823
824
825 ==== 2.3.3.11  BH1750 Illumination Sensor ====
826
827 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
828
829 [[image:image-20230512172447-4.png||height="416" width="712"]]
830
831 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
832
833
834 ==== 2.3.3.12  Working MOD ====
835
836 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
837
838 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
839
840 Case 7^^th^^ Byte >> 2 & 0x1f:
841
842 * 0: MOD1
843 * 1: MOD2
844 * 2: MOD3
845 * 3: MOD4
846 * 4: MOD5
847 * 5: MOD6
848 * 6: MOD7
849 * 7: MOD8
850 * 8: MOD9
851
852 == ==
853
854 == 2.4 Payload Decoder file ==
855
856
857 In TTN, use can add a custom payload so it shows friendly reading
858
859 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
860
861 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
862
863
864
865 == 2.5 Frequency Plans ==
866
867
868 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
869
870 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
871
872
873 = 3. Configure SN50v3-LB =
874
875 == 3.1 Configure Methods ==
876
877
878 SN50v3-LB supports below configure method:
879
880 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
881 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
882 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
883
884 == 3.2 General Commands ==
885
886
887 These commands are to configure:
888
889 * General system settings like: uplink interval.
890 * LoRaWAN protocol & radio related command.
891
892 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
893
894 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
895
896
897 == 3.3 Commands special design for SN50v3-LB ==
898
899
900 These commands only valid for S31x-LB, as below:
901
902
903 === 3.3.1 Set Transmit Interval Time ===
904
905 Feature: Change LoRaWAN End Node Transmit Interval.
906
907 (% style="color:blue" %)**AT Command: AT+TDC**
908
909 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
910 |=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
911 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
912 30000
913 OK
914 the interval is 30000ms = 30s
915 )))
916 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
917 OK
918 Set transmit interval to 60000ms = 60 seconds
919 )))
920
921 (% style="color:blue" %)**Downlink Command: 0x01**
922
923 Format: Command Code (0x01) followed by 3 bytes time value.
924
925 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
926
927 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
928 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
929
930 === ===
931
932 === 3.3.2 Get Device Status ===
933
934 Send a LoRaWAN downlink to ask the device to send its status.
935
936 (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
937
938 Sensor will upload Device Status via FPORT=5. See payload section for detail.
939
940
941 === 3.3.3 Set Interrupt Mode ===
942
943 Feature, Set Interrupt mode for GPIO_EXIT.
944
945 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
946
947 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
948 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
949 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
950 0
951 OK
952 the mode is 0 =Disable Interrupt
953 )))
954 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
955 Set Transmit Interval
956 0. (Disable Interrupt),
957 ~1. (Trigger by rising and falling edge)
958 2. (Trigger by falling edge)
959 3. (Trigger by rising edge)
960 )))|(% style="width:157px" %)OK
961 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
962 Set Transmit Interval
963
964 trigger by rising edge.
965 )))|(% style="width:157px" %)OK
966 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
967
968 (% style="color:blue" %)**Downlink Command: 0x06**
969
970 Format: Command Code (0x06) followed by 3 bytes.
971
972 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
973
974 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
975 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
976 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
977 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
978
979 === ===
980
981 === 3.3.4 Set Power Output Duration ===
982
983 Control the output duration 5V . Before each sampling, device will
984
985 ~1. first enable the power output to external sensor,
986
987 2. keep it on as per duration, read sensor value and construct uplink payload
988
989 3. final, close the power output.
990
991 (% style="color:blue" %)**AT Command: AT+5VT**
992
993 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
994 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
995 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
996 500(default)
997
998 OK
999 )))
1000 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1001 Close after a delay of 1000 milliseconds.
1002 )))|(% style="width:157px" %)OK
1003
1004 (% style="color:blue" %)**Downlink Command: 0x07**
1005
1006 Format: Command Code (0x07) followed by 2 bytes.
1007
1008 The first and second bytes are the time to turn on.
1009
1010 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1011 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1012
1013 === ===
1014
1015 === 3.3.5 Set Weighing parameters ===
1016
1017 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1018
1019 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1020
1021 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1022 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1023 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1024 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1025 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1026
1027 (% style="color:blue" %)**Downlink Command: 0x08**
1028
1029 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1030
1031 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1032
1033 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1034
1035 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1036 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1037 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1038
1039 === ===
1040
1041 === 3.3.6 Set Digital pulse count value ===
1042
1043 Feature: Set the pulse count value.
1044
1045 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1046
1047 (% style="color:blue" %)**AT Command: AT+SETCNT**
1048
1049 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1050 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1051 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1052 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1053
1054 (% style="color:blue" %)**Downlink Command: 0x09**
1055
1056 Format: Command Code (0x09) followed by 5 bytes.
1057
1058 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1059
1060 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1061 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1062
1063 === ===
1064
1065 === 3.3.7 Set Workmode ===
1066
1067 Feature: Switch working mode.
1068
1069 (% style="color:blue" %)**AT Command: AT+MOD**
1070
1071 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1072 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1073 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1074 OK
1075 )))
1076 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1077 OK
1078
1079 Attention:Take effect after ATZ
1080 )))
1081
1082 (% style="color:blue" %)**Downlink Command: 0x0A**
1083
1084 Format: Command Code (0x0A) followed by 1 bytes.
1085
1086 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1087 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1088
1089 = =
1090
1091 = 4. Battery & Power Consumption =
1092
1093
1094 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1095
1096 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1097
1098
1099 = 5. OTA Firmware update =
1100
1101
1102 (% class="wikigeneratedid" %)
1103 User can change firmware SN50v3-LB to:
1104
1105 * Change Frequency band/ region.
1106 * Update with new features.
1107 * Fix bugs.
1108
1109 Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1110
1111
1112 Methods to Update Firmware:
1113
1114 * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1115 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1116
1117 = 6. FAQ =
1118
1119 == 6.1 Where can i find source code of SN50v3-LB? ==
1120
1121 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1122 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1123
1124 = 7. Order Info =
1125
1126
1127 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1128
1129 (% style="color:red" %)**XX**(%%): The default frequency band
1130
1131 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1132 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1133 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1134 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1135 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1136 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1137 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1138 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1139
1140 (% style="color:red" %)**YY: ** (%%)Hole Option
1141
1142 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1143 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1144 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1145 * (% style="color:red" %)**NH**(%%): No Hole
1146
1147 = 8. ​Packing Info =
1148
1149 (% style="color:#037691" %)**Package Includes**:
1150
1151 * SN50v3-LB LoRaWAN Generic Node
1152
1153 (% style="color:#037691" %)**Dimension and weight**:
1154
1155 * Device Size: cm
1156 * Device Weight: g
1157 * Package Size / pcs : cm
1158 * Weight / pcs : g
1159
1160 = 9. Support =
1161
1162
1163 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1164 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]