Version 75.10 by Xiaoling on 2023/11/02 15:48

Hide last authors
Xiaoling 75.2 1
Edwin Chen 2.1 2
3
Xiaoling 75.10 4 **Table of Contents:**
Edwin Chen 2.1 5
6 {{toc/}}
7
8
9
10
11
12
13 = 1. Introduction =
14
Edwin Chen 5.1 15 == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
Edwin Chen 2.1 16
Xiaoling 43.2 17
Edwin Chen 4.1 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
Edwin Chen 2.1 19
Xiaoling 74.7 20 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
Edwin Chen 2.1 21
Edwin Chen 4.1 22 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
Edwin Chen 2.1 23
Edwin Chen 4.1 24 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
Edwin Chen 2.1 25
Edwin Chen 4.1 26 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
Edwin Chen 2.1 27
Xiaoling 75.3 28
Edwin Chen 2.1 29 == 1.2 ​Features ==
30
Xiaoling 43.44 31
Edwin Chen 2.1 32 * LoRaWAN 1.0.3 Class A
33 * Ultra-low power consumption
Edwin Chen 5.1 34 * Open-Source hardware/software
Edwin Chen 2.1 35 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
36 * Support Bluetooth v5.1 and LoRaWAN remote configure
37 * Support wireless OTA update firmware
38 * Uplink on periodically
39 * Downlink to change configure
40 * 8500mAh Battery for long term use
41
Xiaoling 75.9 42
43
Edwin Chen 2.1 44 == 1.3 Specification ==
45
Xiaoling 43.4 46
Edwin Chen 2.1 47 (% style="color:#037691" %)**Common DC Characteristics:**
48
49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
50 * Operating Temperature: -40 ~~ 85°C
51
Edwin Chen 5.1 52 (% style="color:#037691" %)**I/O Interface:**
Edwin Chen 2.1 53
Edwin Chen 5.1 54 * Battery output (2.6v ~~ 3.6v depends on battery)
55 * +5v controllable output
56 * 3 x Interrupt or Digital IN/OUT pins
57 * 3 x one-wire interfaces
58 * 1 x UART Interface
59 * 1 x I2C Interface
Edwin Chen 2.1 60
61 (% style="color:#037691" %)**LoRa Spec:**
62
63 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
64 * Max +22 dBm constant RF output vs.
65 * RX sensitivity: down to -139 dBm.
66 * Excellent blocking immunity
67
68 (% style="color:#037691" %)**Battery:**
69
70 * Li/SOCI2 un-chargeable battery
71 * Capacity: 8500mAh
72 * Self-Discharge: <1% / Year @ 25°C
73 * Max continuously current: 130mA
74 * Max boost current: 2A, 1 second
75
76 (% style="color:#037691" %)**Power Consumption**
77
78 * Sleep Mode: 5uA @ 3.3v
79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80
Xiaoling 75.9 81
82
Edwin Chen 2.1 83 == 1.4 Sleep mode and working mode ==
84
Xiaoling 43.4 85
Edwin Chen 2.1 86 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
87
88 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
89
90
91 == 1.5 Button & LEDs ==
92
93
94 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
95
96
97 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
98 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
99 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
100 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
101 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
102 )))
103 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
104 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
105 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
106 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
107 )))
108 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109
Xiaoling 75.9 110
111
Edwin Chen 2.1 112 == 1.6 BLE connection ==
113
114
Edwin Chen 5.1 115 SN50v3-LB supports BLE remote configure.
Edwin Chen 2.1 116
117
118 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
119
120 * Press button to send an uplink
121 * Press button to active device.
122 * Device Power on or reset.
123
124 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
125
126
Edwin Chen 6.1 127 == 1.7 Pin Definitions ==
Edwin Chen 2.1 128
129
Xiaoling 75.3 130 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB%20--%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20230610163213-1.png?width=699&height=404&rev=1.1||alt="image-20230610163213-1.png"]]
Edwin Chen 2.1 131
132
133 == 1.8 Mechanical ==
134
135
136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
137
138 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139
140 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
141
142
Saxer Lin 44.5 143 == 1.9 Hole Option ==
Edwin Chen 5.1 144
Xiaoling 43.4 145
Edwin Chen 5.1 146 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
147
148
Xiaoling 75.2 149 [[image:image-20231101154140-1.png||height="514" width="867"]]
Edwin Chen 5.1 150
151
Edwin Chen 10.1 152 = 2. Configure SN50v3-LB to connect to LoRaWAN network =
Edwin Chen 2.1 153
154 == 2.1 How it works ==
155
156
Xiaoling 44.3 157 The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
Edwin Chen 2.1 158
159
160 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
161
162
163 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
164
Xiaoling 44.3 165 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
Edwin Chen 2.1 166
167
Edwin Chen 11.2 168 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
Edwin Chen 2.1 169
Edwin Chen 11.2 170 Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
Edwin Chen 2.1 171
Edwin Chen 11.2 172 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
Edwin Chen 2.1 173
174
175 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
176
177
178 (% style="color:blue" %)**Register the device**
179
180 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
181
182
183 (% style="color:blue" %)**Add APP EUI and DEV EUI**
184
185 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
186
187
188 (% style="color:blue" %)**Add APP EUI in the application**
189
190
191 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
192
193
194 (% style="color:blue" %)**Add APP KEY**
195
196 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
197
198
Edwin Chen 11.2 199 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
Edwin Chen 2.1 200
201
Edwin Chen 11.2 202 Press the button for 5 seconds to activate the SN50v3-LB.
Edwin Chen 2.1 203
204 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
205
206 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
207
208
209 == 2.3 ​Uplink Payload ==
210
211 === 2.3.1 Device Status, FPORT~=5 ===
212
213
Xiaoling 44.3 214 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
Edwin Chen 2.1 215
216 The Payload format is as below.
217
218
219 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
221 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
Xiaoling 45.4 222 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
Edwin Chen 2.1 223
224 Example parse in TTNv3
225
226
Xiaoling 44.3 227 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
Edwin Chen 2.1 228
229 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
230
231 (% style="color:#037691" %)**Frequency Band**:
232
Xiaoling 53.2 233 0x01: EU868
Edwin Chen 2.1 234
Xiaoling 53.2 235 0x02: US915
Edwin Chen 2.1 236
Xiaoling 53.2 237 0x03: IN865
Edwin Chen 2.1 238
Xiaoling 53.2 239 0x04: AU915
Edwin Chen 2.1 240
Xiaoling 53.2 241 0x05: KZ865
Edwin Chen 2.1 242
Xiaoling 53.2 243 0x06: RU864
Edwin Chen 2.1 244
Xiaoling 53.2 245 0x07: AS923
Edwin Chen 2.1 246
Xiaoling 53.2 247 0x08: AS923-1
Edwin Chen 2.1 248
Xiaoling 53.2 249 0x09: AS923-2
Edwin Chen 2.1 250
Xiaoling 53.2 251 0x0a: AS923-3
Edwin Chen 2.1 252
Xiaoling 53.2 253 0x0b: CN470
Edwin Chen 2.1 254
Xiaoling 53.2 255 0x0c: EU433
Edwin Chen 2.1 256
Xiaoling 53.2 257 0x0d: KR920
Edwin Chen 2.1 258
Xiaoling 53.2 259 0x0e: MA869
Edwin Chen 2.1 260
261
262 (% style="color:#037691" %)**Sub-Band**:
263
264 AU915 and US915:value 0x00 ~~ 0x08
265
266 CN470: value 0x0B ~~ 0x0C
267
268 Other Bands: Always 0x00
269
270
271 (% style="color:#037691" %)**Battery Info**:
272
273 Check the battery voltage.
274
275 Ex1: 0x0B45 = 2885mV
276
277 Ex2: 0x0B49 = 2889mV
278
279
Edwin Chen 12.1 280 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
Edwin Chen 2.1 281
282
Xiaoling 44.2 283 SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
Edwin Chen 12.1 284
285 For example:
286
Xiaoling 44.2 287 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
Edwin Chen 12.1 288
289
Edwin Chen 13.1 290 (% style="color:red" %) **Important Notice:**
Edwin Chen 12.1 291
Xiaoling 44.3 292 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
Edwin Chen 12.1 293
Xiaoling 44.2 294 2. All modes share the same Payload Explanation from HERE.
Xiaoling 43.53 295
Xiaoling 44.2 296 3. By default, the device will send an uplink message every 20 minutes.
297
298
Edwin Chen 13.1 299 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
Edwin Chen 12.1 300
Xiaoling 43.5 301
Edwin Chen 12.1 302 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
303
Xiaoling 43.5 304 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 305 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.4 306 |Value|Bat|(% style="width:191px" %)(((
Xiaoling 43.12 307 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 308 )))|(% style="width:78px" %)(((
Xiaoling 43.12 309 ADC(PA4)
Saxer Lin 26.2 310 )))|(% style="width:216px" %)(((
Xiaoling 43.13 311 Digital in(PB15)&Digital Interrupt(PA8)
Saxer Lin 40.1 312 )))|(% style="width:308px" %)(((
Xiaoling 43.12 313 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 40.1 314 )))|(% style="width:154px" %)(((
Xiaoling 43.12 315 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 316 )))
317
Edwin Chen 12.1 318 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
319
320
Edwin Chen 13.1 321 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
322
Xiaoling 43.45 323
Edwin Chen 12.1 324 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
325
Xiaoling 43.14 326 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.54 327 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
Xiaoling 45.4 328 |Value|BAT|(% style="width:196px" %)(((
Xiaoling 43.16 329 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 330 )))|(% style="width:87px" %)(((
Xiaoling 43.16 331 ADC(PA4)
Saxer Lin 40.1 332 )))|(% style="width:189px" %)(((
Xiaoling 43.16 333 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 334 )))|(% style="width:208px" %)(((
Xiaoling 53.2 335 Distance measure by: 1) LIDAR-Lite V3HP
336 Or 2) Ultrasonic Sensor
Saxer Lin 40.1 337 )))|(% style="width:117px" %)Reserved
Edwin Chen 12.1 338
339 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
340
Xiaoling 43.45 341
Xiaoling 43.17 342 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
Edwin Chen 12.1 343
Saxer Lin 26.2 344 [[image:image-20230512173758-5.png||height="563" width="712"]]
Edwin Chen 12.1 345
Xiaoling 43.45 346
Xiaoling 43.17 347 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
Edwin Chen 12.1 348
Ellie Zhang 44.1 349 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
Saxer Lin 36.1 350
Saxer Lin 26.2 351 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 12.1 352
Xiaoling 43.45 353
Edwin Chen 12.1 354 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
355
Xiaoling 43.19 356 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 357 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
Xiaoling 45.5 358 |Value|BAT|(% style="width:183px" %)(((
Xiaoling 43.19 359 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 360 )))|(% style="width:173px" %)(((
Xiaoling 43.19 361 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 362 )))|(% style="width:84px" %)(((
Xiaoling 43.19 363 ADC(PA4)
Saxer Lin 40.1 364 )))|(% style="width:323px" %)(((
Edwin Chen 12.1 365 Distance measure by:1)TF-Mini plus LiDAR
Xiaoling 53.3 366 Or 2) TF-Luna LiDAR
Saxer Lin 40.1 367 )))|(% style="width:188px" %)Distance signal  strength
Edwin Chen 12.1 368
369 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
370
Xiaoling 43.45 371
Edwin Chen 12.1 372 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
373
Ellie Zhang 44.1 374 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 375
Saxer Lin 26.2 376 [[image:image-20230512180609-7.png||height="555" width="802"]]
Edwin Chen 12.1 377
Xiaoling 43.45 378
Edwin Chen 12.1 379 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
380
Ellie Zhang 44.1 381 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
Edwin Chen 12.1 382
Saxer Lin 52.1 383 [[image:image-20230610170047-1.png||height="452" width="799"]]
Edwin Chen 12.1 384
385
Edwin Chen 13.1 386 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
387
Xiaoling 43.45 388
Edwin Chen 12.1 389 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
390
Xiaoling 43.21 391 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.25 392 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
393 **Size(bytes)**
Xiaoling 43.54 394 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
Xiaoling 45.4 395 |Value|(% style="width:68px" %)(((
Xiaoling 43.23 396 ADC1(PA4)
Saxer Lin 26.2 397 )))|(% style="width:75px" %)(((
Xiaoling 43.23 398 ADC2(PA5)
Saxer Lin 36.1 399 )))|(((
Xiaoling 43.23 400 ADC3(PA8)
Saxer Lin 36.1 401 )))|(((
402 Digital Interrupt(PB15)
403 )))|(% style="width:304px" %)(((
Xiaoling 43.23 404 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
Saxer Lin 36.1 405 )))|(% style="width:163px" %)(((
Xiaoling 43.23 406 Humidity(SHT20 or SHT31)
Saxer Lin 36.1 407 )))|(% style="width:53px" %)Bat
408
409 [[image:image-20230513110214-6.png]]
410
411
Edwin Chen 13.1 412 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
413
Edwin Chen 12.1 414
Saxer Lin 26.2 415 This mode has total 11 bytes. As shown below:
Edwin Chen 12.1 416
Xiaoling 43.26 417 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.44 418 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
Xiaoling 45.4 419 |Value|BAT|(% style="width:186px" %)(((
Xiaoling 43.27 420 Temperature1(DS18B20)(PC13)
Saxer Lin 26.2 421 )))|(% style="width:82px" %)(((
Xiaoling 43.27 422 ADC(PA4)
Saxer Lin 26.2 423 )))|(% style="width:210px" %)(((
Xiaoling 43.27 424 Digital in(PB15) & Digital Interrupt(PA8) 
Saxer Lin 26.2 425 )))|(% style="width:191px" %)Temperature2(DS18B20)
Xiaoling 43.27 426 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
Edwin Chen 12.1 427
428 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
429
Xiaoling 44.4 430
Saxer Lin 39.2 431 [[image:image-20230513134006-1.png||height="559" width="736"]]
Edwin Chen 12.1 432
Saxer Lin 39.1 433
Edwin Chen 13.1 434 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
435
Xiaoling 43.45 436
Saxer Lin 26.2 437 [[image:image-20230512164658-2.png||height="532" width="729"]]
Edwin Chen 12.1 438
439 Each HX711 need to be calibrated before used. User need to do below two steps:
440
Xiaoling 44.2 441 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
Edwin Chen 12.1 443 1. (((
Saxer Lin 26.2 444 Weight has 4 bytes, the unit is g.
Xiaoling 43.53 445
446
447
Edwin Chen 12.1 448 )))
449
450 For example:
451
Xiaoling 44.2 452 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
Edwin Chen 12.1 453
454 Response:  Weight is 401 g
455
456 Check the response of this command and adjust the value to match the real value for thing.
457
Xiaoling 43.29 458 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
459 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 460 **Size(bytes)**
Xiaoling 43.30 461 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 462 |Value|BAT|(% style="width:193px" %)(((
Xiaoling 43.55 463 Temperature(DS18B20)(PC13)
Saxer Lin 40.1 464 )))|(% style="width:85px" %)(((
Xiaoling 43.31 465 ADC(PA4)
Saxer Lin 40.1 466 )))|(% style="width:186px" %)(((
Xiaoling 43.55 467 Digital in(PB15) & Digital Interrupt(PA8)
Saxer Lin 40.1 468 )))|(% style="width:100px" %)Weight
Saxer Lin 26.2 469
Edwin Chen 12.1 470 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
471
472
Edwin Chen 13.1 473 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
474
Xiaoling 43.45 475
Edwin Chen 12.1 476 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
477
478 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
479
Saxer Lin 26.2 480 [[image:image-20230512181814-9.png||height="543" width="697"]]
Edwin Chen 12.1 481
Xiaoling 43.53 482
Xiaoling 43.45 483 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
Edwin Chen 12.1 484
Xiaoling 43.38 485 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.57 486 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
Xiaoling 45.4 487 |Value|BAT|(% style="width:256px" %)(((
Xiaoling 43.31 488 Temperature(DS18B20)(PC13)
Saxer Lin 36.1 489 )))|(% style="width:108px" %)(((
Xiaoling 43.31 490 ADC(PA4)
Saxer Lin 36.1 491 )))|(% style="width:126px" %)(((
Xiaoling 43.31 492 Digital in(PB15)
Saxer Lin 36.1 493 )))|(% style="width:145px" %)(((
Xiaoling 43.31 494 Count(PA8)
Saxer Lin 36.1 495 )))
496
Edwin Chen 12.1 497 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
498
499
Edwin Chen 13.1 500 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
501
Xiaoling 43.45 502
Xiaoling 43.38 503 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.33 504 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 505 **Size(bytes)**
Xiaoling 43.34 506 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 507 |Value|BAT|(% style="width:188px" %)(((
Saxer Lin 36.1 508 Temperature(DS18B20)
509 (PC13)
Saxer Lin 40.1 510 )))|(% style="width:83px" %)(((
Xiaoling 43.35 511 ADC(PA5)
Saxer Lin 40.1 512 )))|(% style="width:184px" %)(((
Saxer Lin 36.1 513 Digital Interrupt1(PA8)
Saxer Lin 40.1 514 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
Saxer Lin 36.1 515
516 [[image:image-20230513111203-7.png||height="324" width="975"]]
517
Xiaoling 43.45 518
Edwin Chen 13.1 519 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
520
Xiaoling 43.45 521
Xiaoling 43.38 522 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
Xiaoling 43.35 523 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 524 **Size(bytes)**
Xiaoling 43.55 525 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
Xiaoling 45.4 526 |Value|BAT|(% style="width:207px" %)(((
Saxer Lin 36.1 527 Temperature(DS18B20)
528 (PC13)
529 )))|(% style="width:94px" %)(((
Xiaoling 43.36 530 ADC1(PA4)
Saxer Lin 36.1 531 )))|(% style="width:198px" %)(((
532 Digital Interrupt(PB15)
533 )))|(% style="width:84px" %)(((
Xiaoling 43.36 534 ADC2(PA5)
Saxer Lin 40.1 535 )))|(% style="width:82px" %)(((
Xiaoling 43.36 536 ADC3(PA8)
Edwin Chen 12.1 537 )))
538
Saxer Lin 36.1 539 [[image:image-20230513111231-8.png||height="335" width="900"]]
Edwin Chen 12.1 540
541
Edwin Chen 13.1 542 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
543
Xiaoling 43.45 544
Xiaoling 43.38 545 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
546 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
Edwin Chen 12.1 547 **Size(bytes)**
Xiaoling 43.56 548 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
Xiaoling 45.4 549 |Value|BAT|(((
Xiaoling 43.58 550 Temperature
551 (DS18B20)(PC13)
Edwin Chen 12.1 552 )))|(((
Xiaoling 43.58 553 Temperature2
554 (DS18B20)(PB9)
Edwin Chen 12.1 555 )))|(((
Saxer Lin 36.1 556 Digital Interrupt
557 (PB15)
558 )))|(% style="width:193px" %)(((
Xiaoling 43.58 559 Temperature3
560 (DS18B20)(PB8)
Saxer Lin 36.1 561 )))|(% style="width:78px" %)(((
Xiaoling 43.39 562 Count1(PA8)
Saxer Lin 36.1 563 )))|(% style="width:78px" %)(((
Xiaoling 43.39 564 Count2(PA4)
Edwin Chen 12.1 565 )))
566
Saxer Lin 36.1 567 [[image:image-20230513111255-9.png||height="341" width="899"]]
Edwin Chen 12.1 568
Xiaoling 43.40 569 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
Edwin Chen 12.1 570
Xiaoling 43.44 571 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
Edwin Chen 12.1 572
Xiaoling 43.44 573 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
Edwin Chen 12.1 574
Xiaoling 43.44 575 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
Edwin Chen 12.1 576
577
Xiaoling 43.41 578 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
579
Saxer Lin 36.1 580 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
Edwin Chen 12.1 581
Saxer Lin 36.1 582 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
Edwin Chen 12.1 583
584
Saxer Lin 65.1 585 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
586
Xiaoling 74.3 587
Saxer Lin 65.1 588 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
589
Xiaoling 74.3 590 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
Saxer Lin 65.1 591
Saxer Lin 69.1 592
Saxer Lin 65.1 593 ===== 2.3.2.10.a  Uplink, PWM input capture =====
594
Xiaoling 74.3 595
Saxer Lin 65.1 596 [[image:image-20230817172209-2.png||height="439" width="683"]]
597
598 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
599 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
600 |Value|Bat|(% style="width:191px" %)(((
601 Temperature(DS18B20)(PC13)
602 )))|(% style="width:78px" %)(((
603 ADC(PA4)
604 )))|(% style="width:135px" %)(((
605 PWM_Setting
606
607 &Digital Interrupt(PA8)
608 )))|(% style="width:70px" %)(((
609 Pulse period
610 )))|(% style="width:89px" %)(((
611 Duration of high level
612 )))
613
614 [[image:image-20230817170702-1.png||height="161" width="1044"]]
615
616
Saxer Lin 72.1 617 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
Saxer Lin 65.1 618
Xiaoling 74.4 619 **Frequency:**
Saxer Lin 65.1 620
Saxer Lin 72.1 621 (% class="MsoNormal" %)
Xiaoling 74.4 622 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
Saxer Lin 65.1 623
Saxer Lin 72.1 624 (% class="MsoNormal" %)
Xiaoling 74.4 625 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
Saxer Lin 72.1 626
Xiaoling 74.4 627
Saxer Lin 72.1 628 (% class="MsoNormal" %)
Xiaoling 74.4 629 **Duty cycle:**
Saxer Lin 72.1 630
631 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
632
633 [[image:image-20230818092200-1.png||height="344" width="627"]]
634
635
Saxer Lin 65.1 636 ===== 2.3.2.10.b  Downlink, PWM output =====
637
Xiaoling 74.3 638
Saxer Lin 65.1 639 [[image:image-20230817173800-3.png||height="412" width="685"]]
640
641 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
642
643 xx xx xx is the output frequency, the unit is HZ.
644
645 yy is the duty cycle of the output, the unit is %.
646
647 zz zz is the time delay of the output, the unit is ms.
648
649
650 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
651
652 The oscilloscope displays as follows:
653
654 [[image:image-20230817173858-5.png||height="694" width="921"]]
655
656
Xiaoling 75.4 657 === 2.3.3 ​Decode payload ===
Edwin Chen 14.1 658
Xiaoling 43.45 659
Edwin Chen 12.1 660 While using TTN V3 network, you can add the payload format to decode the payload.
661
662 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
663
664 The payload decoder function for TTN V3 are here:
665
Xiaoling 44.2 666 SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
Edwin Chen 12.1 667
668
Edwin Chen 14.1 669 ==== 2.3.3.1 Battery Info ====
Edwin Chen 2.1 670
Xiaoling 43.45 671
Xiaoling 44.2 672 Check the battery voltage for SN50v3-LB.
Edwin Chen 2.1 673
674 Ex1: 0x0B45 = 2885mV
675
676 Ex2: 0x0B49 = 2889mV
677
678
Edwin Chen 14.1 679 ==== 2.3.3.2  Temperature (DS18B20) ====
Edwin Chen 2.1 680
Xiaoling 43.45 681
Saxer Lin 42.1 682 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
Edwin Chen 2.1 683
Xiaoling 43.45 684 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
Edwin Chen 14.1 685
Xiaoling 43.41 686 (% style="color:blue" %)**Connection:**
Edwin Chen 14.1 687
Saxer Lin 26.2 688 [[image:image-20230512180718-8.png||height="538" width="647"]]
Edwin Chen 14.1 689
Xiaoling 43.46 690
Xiaoling 43.41 691 (% style="color:blue" %)**Example**:
Edwin Chen 2.1 692
693 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
694
695 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
696
697 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
698
699
Edwin Chen 14.1 700 ==== 2.3.3.3 Digital Input ====
Edwin Chen 2.1 701
Xiaoling 43.46 702
Saxer Lin 26.2 703 The digital input for pin PB15,
Edwin Chen 2.1 704
Saxer Lin 26.2 705 * When PB15 is high, the bit 1 of payload byte 6 is 1.
706 * When PB15 is low, the bit 1 of payload byte 6 is 0.
Edwin Chen 2.1 707
Saxer Lin 26.2 708 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
709 (((
Saxer Lin 36.1 710 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
711
Xiaoling 43.46 712 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
713
714
Saxer Lin 26.2 715 )))
716
Edwin Chen 14.1 717 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
Edwin Chen 2.1 718
Xiaoling 43.46 719
Saxer Lin 53.1 720 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
Edwin Chen 2.1 721
Saxer Lin 53.1 722 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
Edwin Chen 14.1 723
Saxer Lin 26.2 724 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
Edwin Chen 14.1 725
Xiaoling 44.2 726
Xiaoling 43.46 727 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
Edwin Chen 14.1 728
Saxer Lin 43.1 729
Saxer Lin 59.1 730 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
731
732 [[image:image-20230811113449-1.png||height="370" width="608"]]
733
Edwin Chen 14.1 734 ==== 2.3.3.5 Digital Interrupt ====
735
Xiaoling 43.46 736
Xiaoling 44.2 737 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
Edwin Chen 14.1 738
Xiaoling 43.44 739 (% style="color:blue" %)** Interrupt connection method:**
Edwin Chen 14.1 740
Saxer Lin 36.1 741 [[image:image-20230513105351-5.png||height="147" width="485"]]
Edwin Chen 14.1 742
Xiaoling 43.46 743
Xiaoling 43.8 744 (% style="color:blue" %)**Example to use with door sensor :**
Edwin Chen 14.1 745
746 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
747
748 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
749
Xiaoling 44.2 750 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
Edwin Chen 14.1 751
752
Xiaoling 43.46 753 (% style="color:blue" %)**Below is the installation example:**
754
Xiaoling 44.2 755 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
Edwin Chen 14.1 756
757 * (((
Xiaoling 44.2 758 One pin to SN50v3-LB's PA8 pin
Edwin Chen 14.1 759 )))
760 * (((
Xiaoling 44.2 761 The other pin to SN50v3-LB's VDD pin
Edwin Chen 14.1 762 )))
763
Saxer Lin 36.1 764 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
Edwin Chen 14.1 765
Xiaoling 43.46 766 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
Edwin Chen 14.1 767
Saxer Lin 36.1 768 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
Edwin Chen 14.1 769
770 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
771
772 The above photos shows the two parts of the magnetic switch fitted to a door.
773
774 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
775
776 The command is:
777
Xiaoling 44.2 778 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
Edwin Chen 14.1 779
780 Below shows some screen captures in TTN V3:
781
782 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
783
Xiaoling 43.47 784
Xiaoling 44.4 785 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
Edwin Chen 14.1 786
787 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
788
789
Saxer Lin 26.2 790 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
Edwin Chen 14.1 791
Xiaoling 43.47 792
Saxer Lin 26.2 793 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
Edwin Chen 14.1 794
Saxer Lin 40.1 795 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
Edwin Chen 14.1 796
Xiaoling 44.2 797 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
Edwin Chen 14.1 798
Xiaoling 44.2 799
Edwin Chen 14.1 800 Below is the connection to SHT20/ SHT31. The connection is as below:
801
Saxer Lin 52.1 802 [[image:image-20230610170152-2.png||height="501" width="846"]]
Saxer Lin 36.1 803
Xiaoling 44.4 804
Edwin Chen 14.1 805 The device will be able to get the I2C sensor data now and upload to IoT Server.
806
807 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
808
809 Convert the read byte to decimal and divide it by ten.
810
Edwin Chen 2.1 811 **Example:**
812
Edwin Chen 14.1 813 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
Edwin Chen 2.1 814
Edwin Chen 14.1 815 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
Edwin Chen 2.1 816
Edwin Chen 14.1 817 If you want to use other I2C device, please refer the SHT20 part source code as reference.
Edwin Chen 2.1 818
819
Edwin Chen 14.1 820 ==== 2.3.3.7  ​Distance Reading ====
Edwin Chen 2.1 821
Xiaoling 43.48 822
Xiaoling 43.42 823 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
Edwin Chen 14.1 824
825
826 ==== 2.3.3.8 Ultrasonic Sensor ====
827
Xiaoling 43.48 828
Saxer Lin 26.2 829 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
Edwin Chen 14.1 830
Xiaoling 44.2 831 The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
Edwin Chen 14.1 832
Xiaoling 43.44 833 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
Saxer Lin 36.1 834
Edwin Chen 14.1 835 The picture below shows the connection:
836
Saxer Lin 36.1 837 [[image:image-20230512173903-6.png||height="596" width="715"]]
Edwin Chen 14.1 838
Xiaoling 43.50 839
Xiaoling 44.2 840 Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
Edwin Chen 14.1 841
842 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
843
844 **Example:**
845
846 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
847
848
849 ==== 2.3.3.9  Battery Output - BAT pin ====
850
Xiaoling 43.50 851
Xiaoling 44.4 852 The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
Edwin Chen 14.1 853
854
855 ==== 2.3.3.10  +5V Output ====
856
Xiaoling 43.50 857
Xiaoling 44.2 858 SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
Edwin Chen 14.1 859
860 The 5V output time can be controlled by AT Command.
861
Xiaoling 43.9 862 (% style="color:blue" %)**AT+5VT=1000**
Edwin Chen 14.1 863
864 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
865
Xiaoling 44.4 866 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
Edwin Chen 14.1 867
868
869 ==== 2.3.3.11  BH1750 Illumination Sensor ====
870
Xiaoling 43.50 871
Edwin Chen 14.1 872 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
873
Saxer Lin 40.1 874 [[image:image-20230512172447-4.png||height="416" width="712"]]
Edwin Chen 14.1 875
Xiaoling 43.51 876
Saxer Lin 40.1 877 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
Edwin Chen 14.1 878
879
Saxer Lin 65.1 880 ==== 2.3.3.12  PWM MOD ====
Edwin Chen 14.1 881
Xiaoling 43.51 882
Saxer Lin 69.1 883 * (((
884 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
885 )))
886 * (((
887 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
888 )))
889
890 [[image:image-20230817183249-3.png||height="320" width="417"]]
891
892 * (((
893 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
894 )))
895 * (((
Xiaoling 74.2 896 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
Saxer Lin 70.1 897
Xiaoling 74.5 898
Saxer Lin 70.1 899
Saxer Lin 69.1 900 )))
901
Saxer Lin 65.1 902 ==== 2.3.3.13  Working MOD ====
903
904
Edwin Chen 14.1 905 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
906
907 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
908
909 Case 7^^th^^ Byte >> 2 & 0x1f:
910
911 * 0: MOD1
912 * 1: MOD2
913 * 2: MOD3
914 * 3: MOD4
915 * 4: MOD5
916 * 5: MOD6
Saxer Lin 36.1 917 * 6: MOD7
918 * 7: MOD8
919 * 8: MOD9
Saxer Lin 65.1 920 * 9: MOD10
Edwin Chen 14.1 921
Xiaoling 75.9 922
923
Edwin Chen 2.1 924 == 2.4 Payload Decoder file ==
925
926
927 In TTN, use can add a custom payload so it shows friendly reading
928
929 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
930
Saxer Lin 40.1 931 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
Edwin Chen 2.1 932
933
Edwin Chen 15.1 934 == 2.5 Frequency Plans ==
Edwin Chen 2.1 935
936
Edwin Chen 15.1 937 The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
Edwin Chen 2.1 938
939 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
940
941
Edwin Chen 16.1 942 = 3. Configure SN50v3-LB =
Edwin Chen 2.1 943
944 == 3.1 Configure Methods ==
945
946
Edwin Chen 16.1 947 SN50v3-LB supports below configure method:
Edwin Chen 2.1 948
949 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
950 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
951 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
952
Xiaoling 75.9 953
954
Edwin Chen 2.1 955 == 3.2 General Commands ==
956
957
958 These commands are to configure:
959
960 * General system settings like: uplink interval.
961 * LoRaWAN protocol & radio related command.
962
963 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
964
965 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
966
967
Edwin Chen 16.1 968 == 3.3 Commands special design for SN50v3-LB ==
Edwin Chen 2.1 969
970
Xiaoling 44.2 971 These commands only valid for SN50v3-LB, as below:
Edwin Chen 2.1 972
973
974 === 3.3.1 Set Transmit Interval Time ===
975
Xiaoling 43.51 976
Edwin Chen 2.1 977 Feature: Change LoRaWAN End Node Transmit Interval.
978
979 (% style="color:blue" %)**AT Command: AT+TDC**
980
981 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.2 982 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
Edwin Chen 2.1 983 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
984 30000
985 OK
986 the interval is 30000ms = 30s
987 )))
988 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
989 OK
990 Set transmit interval to 60000ms = 60 seconds
991 )))
992
993 (% style="color:blue" %)**Downlink Command: 0x01**
994
995 Format: Command Code (0x01) followed by 3 bytes time value.
996
997 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
998
999 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1000 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1001
Xiaoling 75.9 1002
1003
Edwin Chen 2.1 1004 === 3.3.2 Get Device Status ===
1005
Xiaoling 43.52 1006
Saxer Lin 40.1 1007 Send a LoRaWAN downlink to ask the device to send its status.
Edwin Chen 2.1 1008
Xiaoling 44.4 1009 (% style="color:blue" %)**Downlink Payload: 0x26 01**
Edwin Chen 2.1 1010
Xiaoling 44.4 1011 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
Edwin Chen 2.1 1012
1013
Saxer Lin 36.1 1014 === 3.3.3 Set Interrupt Mode ===
Edwin Chen 2.1 1015
Xiaoling 43.52 1016
Edwin Chen 2.1 1017 Feature, Set Interrupt mode for GPIO_EXIT.
1018
Saxer Lin 36.1 1019 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
Edwin Chen 2.1 1020
1021 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1022 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1023 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
Edwin Chen 2.1 1024 0
1025 OK
1026 the mode is 0 =Disable Interrupt
1027 )))
Saxer Lin 36.1 1028 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
Edwin Chen 2.1 1029 Set Transmit Interval
1030 0. (Disable Interrupt),
1031 ~1. (Trigger by rising and falling edge)
1032 2. (Trigger by falling edge)
1033 3. (Trigger by rising edge)
1034 )))|(% style="width:157px" %)OK
Saxer Lin 36.1 1035 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1036 Set Transmit Interval
1037 trigger by rising edge.
1038 )))|(% style="width:157px" %)OK
1039 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1040
Edwin Chen 2.1 1041 (% style="color:blue" %)**Downlink Command: 0x06**
1042
1043 Format: Command Code (0x06) followed by 3 bytes.
1044
1045 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1046
Saxer Lin 36.1 1047 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1048 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1049 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1050 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
Edwin Chen 2.1 1051
Xiaoling 75.9 1052
1053
Saxer Lin 36.1 1054 === 3.3.4 Set Power Output Duration ===
1055
Xiaoling 43.52 1056
Saxer Lin 36.1 1057 Control the output duration 5V . Before each sampling, device will
1058
1059 ~1. first enable the power output to external sensor,
1060
1061 2. keep it on as per duration, read sensor value and construct uplink payload
1062
1063 3. final, close the power output.
1064
1065 (% style="color:blue" %)**AT Command: AT+5VT**
1066
1067 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1068 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1069 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1070 500(default)
1071 OK
1072 )))
1073 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1074 Close after a delay of 1000 milliseconds.
1075 )))|(% style="width:157px" %)OK
1076
1077 (% style="color:blue" %)**Downlink Command: 0x07**
1078
1079 Format: Command Code (0x07) followed by 2 bytes.
1080
1081 The first and second bytes are the time to turn on.
1082
Saxer Lin 40.1 1083 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1084 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
Saxer Lin 36.1 1085
Xiaoling 75.9 1086
1087
Saxer Lin 36.1 1088 === 3.3.5 Set Weighing parameters ===
1089
Xiaoling 43.52 1090
Saxer Lin 37.1 1091 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
Saxer Lin 36.1 1092
1093 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1094
1095 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1096 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 37.1 1097 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1098 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1099 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
Saxer Lin 36.1 1100
1101 (% style="color:blue" %)**Downlink Command: 0x08**
1102
Saxer Lin 37.1 1103 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
Saxer Lin 36.1 1104
Saxer Lin 37.1 1105 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
Saxer Lin 36.1 1106
Saxer Lin 37.1 1107 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
Saxer Lin 36.1 1108
Saxer Lin 37.1 1109 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1110 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1111 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1112
Xiaoling 75.9 1113
1114
Saxer Lin 36.1 1115 === 3.3.6 Set Digital pulse count value ===
1116
Xiaoling 43.52 1117
Saxer Lin 36.1 1118 Feature: Set the pulse count value.
1119
Saxer Lin 37.1 1120 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1121
Saxer Lin 36.1 1122 (% style="color:blue" %)**AT Command: AT+SETCNT**
1123
1124 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1125 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1126 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1127 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1128
1129 (% style="color:blue" %)**Downlink Command: 0x09**
1130
1131 Format: Command Code (0x09) followed by 5 bytes.
1132
1133 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1134
1135 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
Saxer Lin 37.1 1136 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
Saxer Lin 36.1 1137
Xiaoling 75.9 1138
1139
Saxer Lin 36.1 1140 === 3.3.7 Set Workmode ===
1141
Xiaoling 43.52 1142
Saxer Lin 37.1 1143 Feature: Switch working mode.
Saxer Lin 36.1 1144
1145 (% style="color:blue" %)**AT Command: AT+MOD**
1146
1147 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
Xiaoling 52.3 1148 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
Saxer Lin 36.1 1149 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1150 OK
1151 )))
1152 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1153 OK
1154 Attention:Take effect after ATZ
1155 )))
1156
1157 (% style="color:blue" %)**Downlink Command: 0x0A**
1158
1159 Format: Command Code (0x0A) followed by 1 bytes.
1160
1161 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1162 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1163
Xiaoling 75.9 1164
1165
Saxer Lin 72.1 1166 === 3.3.8 PWM setting ===
1167
Xiaoling 74.5 1168
Saxer Lin 72.1 1169 Feature: Set the time acquisition unit for PWM input capture.
1170
1171 (% style="color:blue" %)**AT Command: AT+PWMSET**
1172
1173 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1174 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1175 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1176 0(default)
1177
1178 OK
1179 )))
1180 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1181 OK
1182
1183 )))
1184 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1185
1186 (% style="color:blue" %)**Downlink Command: 0x0C**
1187
1188 Format: Command Code (0x0C) followed by 1 bytes.
1189
1190 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1191 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1192
Xiaoling 75.9 1193
1194
Edwin Chen 2.1 1195 = 4. Battery & Power Consumption =
1196
1197
Edwin Chen 11.1 1198 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
Edwin Chen 2.1 1199
1200 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1201
1202
1203 = 5. OTA Firmware update =
1204
1205
1206 (% class="wikigeneratedid" %)
Xiaoling 44.4 1207 **User can change firmware SN50v3-LB to:**
Edwin Chen 2.1 1208
1209 * Change Frequency band/ region.
1210 * Update with new features.
1211 * Fix bugs.
1212
Xiaoling 52.2 1213 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
Edwin Chen 2.1 1214
Xiaoling 44.4 1215 **Methods to Update Firmware:**
Edwin Chen 2.1 1216
Xiaoling 53.3 1217 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1218 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
Edwin Chen 2.1 1219
Xiaoling 75.9 1220
1221
Edwin Chen 2.1 1222 = 6. FAQ =
1223
Edwin Chen 17.1 1224 == 6.1 Where can i find source code of SN50v3-LB? ==
Edwin Chen 2.1 1225
Xiaoling 43.52 1226
Edwin Chen 17.1 1227 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1228 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
Edwin Chen 2.1 1229
Xiaoling 75.9 1230
1231
Xiaoling 55.2 1232 == 6.2 How to generate PWM Output in SN50v3-LB? ==
1233
1234
Edwin Chen 55.1 1235 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1236
1237
Edwin Chen 57.1 1238 == 6.3 How to put several sensors to a SN50v3-LB? ==
1239
Xiaoling 57.2 1240
Edwin Chen 57.1 1241 When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1242
1243 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1244
1245 [[image:image-20230810121434-1.png||height="242" width="656"]]
1246
1247
Edwin Chen 2.1 1248 = 7. Order Info =
1249
1250
Edwin Chen 10.1 1251 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
Edwin Chen 2.1 1252
1253 (% style="color:red" %)**XX**(%%): The default frequency band
Edwin Chen 11.1 1254
Edwin Chen 2.1 1255 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1256 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1257 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1258 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1259 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1260 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1261 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1262 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1263
Edwin Chen 10.1 1264 (% style="color:red" %)**YY: ** (%%)Hole Option
Edwin Chen 2.1 1265
Edwin Chen 10.1 1266 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1267 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1268 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1269 * (% style="color:red" %)**NH**(%%): No Hole
1270
Xiaoling 75.9 1271
1272
Edwin Chen 2.1 1273 = 8. ​Packing Info =
1274
Xiaoling 43.52 1275
Edwin Chen 2.1 1276 (% style="color:#037691" %)**Package Includes**:
1277
Edwin Chen 10.1 1278 * SN50v3-LB LoRaWAN Generic Node
Edwin Chen 2.1 1279
1280 (% style="color:#037691" %)**Dimension and weight**:
1281
1282 * Device Size: cm
1283 * Device Weight: g
1284 * Package Size / pcs : cm
1285 * Weight / pcs : g
1286
Xiaoling 75.9 1287
1288
Edwin Chen 2.1 1289 = 9. Support =
1290
1291
1292 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
Xiaoling 43.10 1293
Xiaoling 41.4 1294 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
Xiaoling 75.6 1295
1296
Xiaoling 75.7 1297
Xiaoling 75.6 1298 = 10. FCC Warning =
1299
1300
1301 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1302
1303 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1304
Xiaoling 75.8 1305 (% style="color:red" %)**Note:**(%%) This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
Xiaoling 75.6 1306
1307 —Reorient or relocate the receiving antenna.
1308
1309 —Increase the separation between the equipment and receiver.
1310
1311 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1312
1313 —Consult the dealer or an experienced radio/TV technician for help.
1314
1315
1316 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1317
1318 This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.