Last modified by Saxer Lin on 2025/03/18 17:25

From version 76.1
edited by Saxer Lin
on 2025/03/18 17:25
Change comment: There is no comment for this version
To version 71.1
edited by Saxer Lin
on 2023/08/18 09:21
Change comment: Uploaded new attachment "image-20230818092200-1.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Parent
... ... @@ -1,1 +1,0 @@
1 -Main.User Manual for LoRaWAN End Nodes.WebHome
Content
... ... @@ -1,8 +1,10 @@
1 -
1 +(% style="text-align:center" %)
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
2 2  
3 3  
4 -**Table of Contents:**
5 5  
6 +**Table of Contents:**
7 +
6 6  {{toc/}}
7 7  
8 8  
... ... @@ -17,7 +17,7 @@
17 17  
18 18  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
19 19  
20 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
21 21  
22 22  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
23 23  
... ... @@ -39,7 +39,6 @@
39 39  * Downlink to change configure
40 40  * 8500mAh Battery for long term use
41 41  
42 -
43 43  == 1.3 Specification ==
44 44  
45 45  
... ... @@ -77,7 +77,6 @@
77 77  * Sleep Mode: 5uA @ 3.3v
78 78  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 79  
80 -
81 81  == 1.4 Sleep mode and working mode ==
82 82  
83 83  
... ... @@ -105,7 +105,6 @@
105 105  )))
106 106  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
107 107  
108 -
109 109  == 1.6 BLE connection ==
110 110  
111 111  
... ... @@ -124,7 +124,7 @@
124 124  == 1.7 Pin Definitions ==
125 125  
126 126  
127 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB%20--%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20230610163213-1.png?width=699&height=404&rev=1.1||alt="image-20230610163213-1.png"]]
126 +[[image:image-20230610163213-1.png||height="404" width="699"]]
128 128  
129 129  
130 130  == 1.8 Mechanical ==
... ... @@ -142,8 +142,9 @@
142 142  
143 143  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
144 144  
144 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
145 145  
146 -[[image:image-20231101154140-1.png||height="514" width="867"]]
146 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147 147  
148 148  
149 149  = 2. Configure SN50v3-LB to connect to LoRaWAN network =
... ... @@ -477,7 +477,7 @@
477 477  [[image:image-20230512181814-9.png||height="543" width="697"]]
478 478  
479 479  
480 -(% style="color:red" %)**Note:** (%%)Power loss or restart will reset the count
480 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
481 481  
482 482  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
483 483  |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
... ... @@ -513,7 +513,7 @@
513 513  [[image:image-20230513111203-7.png||height="324" width="975"]]
514 514  
515 515  
516 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
516 +==== 2.3.2.8  MOD~=8 3ADC+1DS18B20 ====
517 517  
518 518  
519 519  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
... ... @@ -579,17 +579,15 @@
579 579  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
580 580  
581 581  
582 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode, Since firmware v1.2) ====
582 +==== 2.3.2.10  MOD~=10 (PWM input capture and output modeSince firmware v1.2) ====
583 583  
584 -
585 585  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 586  
587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
586 +[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]]
588 588  
589 589  
590 590  ===== 2.3.2.10.a  Uplink, PWM input capture =====
591 591  
592 -
593 593  [[image:image-20230817172209-2.png||height="439" width="683"]]
594 594  
595 595  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
... ... @@ -611,28 +611,15 @@
611 611  [[image:image-20230817170702-1.png||height="161" width="1044"]]
612 612  
613 613  
614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
612 +(% style="color:blue" %)**AT+PWMSET=AA(Default is 0)  ==> Corresponding downlink: 0B AA**
615 615  
616 -**Frequency:**
614 +When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.  
617 617  
618 -(% class="MsoNormal" %)
619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
616 +When AA is 1, the unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ.  
620 620  
621 -(% class="MsoNormal" %)
622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
623 623  
624 -
625 -(% class="MsoNormal" %)
626 -**Duty cycle:**
627 -
628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
629 -
630 -[[image:image-20230818092200-1.png||height="344" width="627"]]
631 -
632 -
633 633  ===== 2.3.2.10.b  Downlink, PWM output =====
634 634  
635 -
636 636  [[image:image-20230817173800-3.png||height="412" width="685"]]
637 637  
638 638  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -651,7 +651,7 @@
651 651  [[image:image-20230817173858-5.png||height="694" width="921"]]
652 652  
653 653  
654 -=== 2.3.3 ​Decode payload ===
639 +=== 2.3.3  ​Decode payload ===
655 655  
656 656  
657 657  While using TTN V3 network, you can add the payload format to decode the payload.
... ... @@ -890,9 +890,8 @@
890 890  The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
891 891  )))
892 892  * (((
893 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
878 +Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
894 894  
895 -
896 896  
897 897  )))
898 898  
... ... @@ -916,7 +916,6 @@
916 916  * 8: MOD9
917 917  * 9: MOD10
918 918  
919 -
920 920  == 2.4 Payload Decoder file ==
921 921  
922 922  
... ... @@ -946,7 +946,6 @@
946 946  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
947 947  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
948 948  
949 -
950 950  == 3.2 General Commands ==
951 951  
952 952  
... ... @@ -994,7 +994,6 @@
994 994  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
995 995  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
996 996  
997 -
998 998  === 3.3.2 Get Device Status ===
999 999  
1000 1000  
... ... @@ -1043,7 +1043,6 @@
1043 1043  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1044 1044  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1045 1045  
1046 -
1047 1047  === 3.3.4 Set Power Output Duration ===
1048 1048  
1049 1049  
... ... @@ -1076,7 +1076,6 @@
1076 1076  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1077 1077  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1078 1078  
1079 -
1080 1080  === 3.3.5 Set Weighing parameters ===
1081 1081  
1082 1082  
... ... @@ -1102,7 +1102,6 @@
1102 1102  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1103 1103  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1104 1104  
1105 -
1106 1106  === 3.3.6 Set Digital pulse count value ===
1107 1107  
1108 1108  
... ... @@ -1126,7 +1126,6 @@
1126 1126  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1127 1127  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1128 1128  
1129 -
1130 1130  === 3.3.7 Set Workmode ===
1131 1131  
1132 1132  
... ... @@ -1151,35 +1151,6 @@
1151 1151  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1152 1152  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1153 1153  
1154 -
1155 -=== 3.3.8 PWM setting ===
1156 -
1157 -
1158 -Feature: Set the time acquisition unit for PWM input capture.
1159 -
1160 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1161 -
1162 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1163 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1164 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1165 -0(default)
1166 -
1167 -OK
1168 -)))
1169 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1170 -OK
1171 -
1172 -)))
1173 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1174 -
1175 -(% style="color:blue" %)**Downlink Command: 0x0C**
1176 -
1177 -Format: Command Code (0x0C) followed by 1 bytes.
1178 -
1179 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1180 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1181 -
1182 -
1183 1183  = 4. Battery & Power Consumption =
1184 1184  
1185 1185  
... ... @@ -1205,7 +1205,6 @@
1205 1205  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1206 1206  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1207 1207  
1208 -
1209 1209  = 6. FAQ =
1210 1210  
1211 1211  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1214,7 +1214,6 @@
1214 1214  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1215 1215  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1216 1216  
1217 -
1218 1218  == 6.2 How to generate PWM Output in SN50v3-LB? ==
1219 1219  
1220 1220  
... ... @@ -1254,7 +1254,6 @@
1254 1254  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1255 1255  * (% style="color:red" %)**NH**(%%): No Hole
1256 1256  
1257 -
1258 1258  = 8. ​Packing Info =
1259 1259  
1260 1260  
... ... @@ -1269,7 +1269,6 @@
1269 1269  * Package Size / pcs : cm
1270 1270  * Weight / pcs : g
1271 1271  
1272 -
1273 1273  = 9. Support =
1274 1274  
1275 1275  
... ... @@ -1276,26 +1276,3 @@
1276 1276  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1277 1277  
1278 1278  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
1279 -
1280 -
1281 -= 10. FCC Warning =
1282 -
1283 -
1284 -Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1285 -
1286 -This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1287 -
1288 -(% style="color:red" %)**Note:**(%%) This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1289 -
1290 -—Reorient or relocate the receiving antenna.
1291 -
1292 -—Increase the separation between the equipment and receiver.
1293 -
1294 -—Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1295 -
1296 -—Consult the dealer or an experienced radio/TV technician for help.
1297 -
1298 -
1299 -This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1300 -
1301 -This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
image-20231101154140-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -540.3 KB
Content