Changes for page SN50v3-LB -- LoRaWAN Sensor Node User Manual
Last modified by Saxer Lin on 2025/03/18 17:25
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 16 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231101154140-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB --LoRaWAN Sensor Node User Manual1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Parent
-
... ... @@ -1,1 +1,0 @@ 1 -Main.User Manual for LoRaWAN End Nodes.WebHome - Content
-
... ... @@ -1,6 +1,8 @@ 1 - 1 +(% style="text-align:center" %) 2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 2 2 3 3 5 + 4 4 **Table of Contents:** 5 5 6 6 {{toc/}} ... ... @@ -17,7 +17,7 @@ 17 17 18 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 19 19 20 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 21 21 22 22 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 23 23 ... ... @@ -39,6 +39,8 @@ 39 39 * Downlink to change configure 40 40 * 8500mAh Battery for long term use 41 41 44 + 45 + 42 42 == 1.3 Specification == 43 43 44 44 ... ... @@ -76,6 +76,8 @@ 76 76 * Sleep Mode: 5uA @ 3.3v 77 77 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 78 78 83 + 84 + 79 79 == 1.4 Sleep mode and working mode == 80 80 81 81 ... ... @@ -103,6 +103,8 @@ 103 103 ))) 104 104 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 105 105 112 + 113 + 106 106 == 1.6 BLE connection == 107 107 108 108 ... ... @@ -121,7 +121,7 @@ 121 121 == 1.7 Pin Definitions == 122 122 123 123 124 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB%20--%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20230610163213-1.png?width=699&height=404&rev=1.1||alt="image-20230610163213-1.png"]]132 +[[image:image-20230513102034-2.png]] 125 125 126 126 127 127 == 1.8 Mechanical == ... ... @@ -134,13 +134,14 @@ 134 134 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 135 135 136 136 137 -== 1.9Hole Option ==145 +== Hole Option == 138 138 139 139 140 140 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 141 141 150 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 142 142 143 -[[image:i mage-20231101154140-1.png||height="514" width="867"]]152 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 144 144 145 145 146 146 = 2. Configure SN50v3-LB to connect to LoRaWAN network = ... ... @@ -148,7 +148,7 @@ 148 148 == 2.1 How it works == 149 149 150 150 151 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 152 152 153 153 154 154 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -156,7 +156,7 @@ 156 156 157 157 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 158 158 159 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.168 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 160 160 161 161 162 162 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -205,7 +205,7 @@ 205 205 === 2.3.1 Device Status, FPORT~=5 === 206 206 207 207 208 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.217 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 209 209 210 210 The Payload format is as below. 211 211 ... ... @@ -213,44 +213,44 @@ 213 213 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 214 214 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 215 215 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 216 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 225 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 217 217 218 218 Example parse in TTNv3 219 219 220 220 221 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 222 222 223 223 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 224 224 225 225 (% style="color:#037691" %)**Frequency Band**: 226 226 227 -0x01: EU868 236 +*0x01: EU868 228 228 229 -0x02: US915 238 +*0x02: US915 230 230 231 -0x03: IN865 240 +*0x03: IN865 232 232 233 -0x04: AU915 242 +*0x04: AU915 234 234 235 -0x05: KZ865 244 +*0x05: KZ865 236 236 237 -0x06: RU864 246 +*0x06: RU864 238 238 239 -0x07: AS923 248 +*0x07: AS923 240 240 241 -0x08: AS923-1 250 +*0x08: AS923-1 242 242 243 -0x09: AS923-2 252 +*0x09: AS923-2 244 244 245 -0x0a: AS923-3 254 +*0x0a: AS923-3 246 246 247 -0x0b: CN470 256 +*0x0b: CN470 248 248 249 -0x0c: EU433 258 +*0x0c: EU433 250 250 251 -0x0d: KR920 260 +*0x0d: KR920 252 252 253 -0x0e: MA869 262 +*0x0e: MA869 254 254 255 255 256 256 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -274,22 +274,21 @@ 274 274 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 275 275 276 276 277 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.286 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 278 278 279 279 For example: 280 280 281 - (% style="color:blue" %)**AT+MOD=2 **(%%)290 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 282 282 283 283 284 284 (% style="color:red" %) **Important Notice:** 285 285 286 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 295 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 296 +1. All modes share the same Payload Explanation from HERE. 297 +1. By default, the device will send an uplink message every 20 minutes. 287 287 288 -2. All modes share the same Payload Explanation from HERE. 289 289 290 -3. By default, the device will send an uplink message every 20 minutes. 291 291 292 - 293 293 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 294 294 295 295 ... ... @@ -297,7 +297,7 @@ 297 297 298 298 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 299 299 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 300 -|Value|Bat|(% style="width:191px" %)((( 308 +|**Value**|Bat|(% style="width:191px" %)((( 301 301 Temperature(DS18B20)(PC13) 302 302 )))|(% style="width:78px" %)((( 303 303 ADC(PA4) ... ... @@ -312,6 +312,7 @@ 312 312 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 313 313 314 314 323 + 315 315 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 316 316 317 317 ... ... @@ -319,7 +319,7 @@ 319 319 320 320 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 321 321 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 322 -|Value|BAT|(% style="width:196px" %)((( 331 +|**Value**|BAT|(% style="width:196px" %)((( 323 323 Temperature(DS18B20)(PC13) 324 324 )))|(% style="width:87px" %)((( 325 325 ADC(PA4) ... ... @@ -326,8 +326,9 @@ 326 326 )))|(% style="width:189px" %)((( 327 327 Digital in(PB15) & Digital Interrupt(PA8) 328 328 )))|(% style="width:208px" %)((( 329 -Distance measure by: 1) LIDAR-Lite V3HP 330 -Or 2) Ultrasonic Sensor 338 +Distance measure by:1) LIDAR-Lite V3HP 339 +Or 340 +2) Ultrasonic Sensor 331 331 )))|(% style="width:117px" %)Reserved 332 332 333 333 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -340,7 +340,7 @@ 340 340 341 341 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 342 342 343 - (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**353 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 344 344 345 345 [[image:image-20230512173903-6.png||height="596" width="715"]] 346 346 ... ... @@ -349,7 +349,7 @@ 349 349 350 350 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 351 351 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 352 -|Value|BAT|(% style="width:183px" %)((( 362 +|**Value**|BAT|(% style="width:183px" %)((( 353 353 Temperature(DS18B20)(PC13) 354 354 )))|(% style="width:173px" %)((( 355 355 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -357,7 +357,8 @@ 357 357 ADC(PA4) 358 358 )))|(% style="width:323px" %)((( 359 359 Distance measure by:1)TF-Mini plus LiDAR 360 -Or 2) TF-Luna LiDAR 370 +Or 371 +2) TF-Luna LiDAR 361 361 )))|(% style="width:188px" %)Distance signal strength 362 362 363 363 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] ... ... @@ -365,7 +365,7 @@ 365 365 366 366 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 367 367 368 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**379 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 369 369 370 370 [[image:image-20230512180609-7.png||height="555" width="802"]] 371 371 ... ... @@ -372,9 +372,9 @@ 372 372 373 373 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 374 374 375 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**386 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 376 376 377 -[[image:image-20230 610170047-1.png||height="452" width="799"]]388 +[[image:image-20230513105207-4.png||height="469" width="802"]] 378 378 379 379 380 380 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== ... ... @@ -386,7 +386,7 @@ 386 386 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 387 387 **Size(bytes)** 388 388 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 389 -|Value|(% style="width:68px" %)((( 400 +|**Value**|(% style="width:68px" %)((( 390 390 ADC1(PA4) 391 391 )))|(% style="width:75px" %)((( 392 392 ADC2(PA5) ... ... @@ -410,7 +410,7 @@ 410 410 411 411 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 412 412 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 413 -|Value|BAT|(% style="width:186px" %)((( 424 +|**Value**|BAT|(% style="width:186px" %)((( 414 414 Temperature1(DS18B20)(PC13) 415 415 )))|(% style="width:82px" %)((( 416 416 ADC(PA4) ... ... @@ -421,10 +421,10 @@ 421 421 422 422 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 423 423 424 - 425 425 [[image:image-20230513134006-1.png||height="559" width="736"]] 426 426 427 427 438 + 428 428 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 429 429 430 430 ... ... @@ -432,8 +432,8 @@ 432 432 433 433 Each HX711 need to be calibrated before used. User need to do below two steps: 434 434 435 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.436 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.446 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 447 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 437 437 1. ((( 438 438 Weight has 4 bytes, the unit is g. 439 439 ... ... @@ -443,7 +443,7 @@ 443 443 444 444 For example: 445 445 446 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**457 +**AT+GETSENSORVALUE =0** 447 447 448 448 Response: Weight is 401 g 449 449 ... ... @@ -453,7 +453,7 @@ 453 453 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 454 454 **Size(bytes)** 455 455 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 456 -|Value|BAT|(% style="width:193px" %)((( 467 +|**Value**|BAT|(% style="width:193px" %)((( 457 457 Temperature(DS18B20)(PC13) 458 458 )))|(% style="width:85px" %)((( 459 459 ADC(PA4) ... ... @@ -464,6 +464,7 @@ 464 464 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 465 465 466 466 478 + 467 467 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 468 468 469 469 ... ... @@ -478,7 +478,7 @@ 478 478 479 479 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 480 480 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 481 -|Value|BAT|(% style="width:256px" %)((( 493 +|**Value**|BAT|(% style="width:256px" %)((( 482 482 Temperature(DS18B20)(PC13) 483 483 )))|(% style="width:108px" %)((( 484 484 ADC(PA4) ... ... @@ -491,6 +491,7 @@ 491 491 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 492 492 493 493 506 + 494 494 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 495 495 496 496 ... ... @@ -498,7 +498,7 @@ 498 498 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 499 499 **Size(bytes)** 500 500 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 501 -|Value|BAT|(% style="width:188px" %)((( 514 +|**Value**|BAT|(% style="width:188px" %)((( 502 502 Temperature(DS18B20) 503 503 (PC13) 504 504 )))|(% style="width:83px" %)((( ... ... @@ -517,7 +517,7 @@ 517 517 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 518 518 **Size(bytes)** 519 519 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 520 -|Value|BAT|(% style="width:207px" %)((( 533 +|**Value**|BAT|(% style="width:207px" %)((( 521 521 Temperature(DS18B20) 522 522 (PC13) 523 523 )))|(% style="width:94px" %)((( ... ... @@ -540,7 +540,7 @@ 540 540 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 541 541 **Size(bytes)** 542 542 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 543 -|Value|BAT|((( 556 +|**Value**|BAT|((( 544 544 Temperature 545 545 (DS18B20)(PC13) 546 546 )))|((( ... ... @@ -576,81 +576,9 @@ 576 576 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 577 577 578 578 579 -=== =2.3.2.10MOD~=10 (PWM inputcapture andoutput mode,Sincefirmware v1.2)====592 +=== 2.3.3 Decode payload === 580 580 581 581 582 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 583 - 584 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 585 - 586 - 587 -===== 2.3.2.10.a Uplink, PWM input capture ===== 588 - 589 - 590 -[[image:image-20230817172209-2.png||height="439" width="683"]] 591 - 592 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 593 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 594 -|Value|Bat|(% style="width:191px" %)((( 595 -Temperature(DS18B20)(PC13) 596 -)))|(% style="width:78px" %)((( 597 -ADC(PA4) 598 -)))|(% style="width:135px" %)((( 599 -PWM_Setting 600 - 601 -&Digital Interrupt(PA8) 602 -)))|(% style="width:70px" %)((( 603 -Pulse period 604 -)))|(% style="width:89px" %)((( 605 -Duration of high level 606 -))) 607 - 608 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 609 - 610 - 611 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 612 - 613 -**Frequency:** 614 - 615 -(% class="MsoNormal" %) 616 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 617 - 618 -(% class="MsoNormal" %) 619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 620 - 621 - 622 -(% class="MsoNormal" %) 623 -**Duty cycle:** 624 - 625 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 626 - 627 -[[image:image-20230818092200-1.png||height="344" width="627"]] 628 - 629 - 630 -===== 2.3.2.10.b Downlink, PWM output ===== 631 - 632 - 633 -[[image:image-20230817173800-3.png||height="412" width="685"]] 634 - 635 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 636 - 637 - xx xx xx is the output frequency, the unit is HZ. 638 - 639 - yy is the duty cycle of the output, the unit is %. 640 - 641 - zz zz is the time delay of the output, the unit is ms. 642 - 643 - 644 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 645 - 646 -The oscilloscope displays as follows: 647 - 648 -[[image:image-20230817173858-5.png||height="694" width="921"]] 649 - 650 - 651 -=== 2.3.3 Decode payload === 652 - 653 - 654 654 While using TTN V3 network, you can add the payload format to decode the payload. 655 655 656 656 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -657,13 +657,13 @@ 657 657 658 658 The payload decoder function for TTN V3 are here: 659 659 660 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]601 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 661 661 662 662 663 663 ==== 2.3.3.1 Battery Info ==== 664 664 665 665 666 -Check the battery voltage for SN50v3 -LB.607 +Check the battery voltage for SN50v3. 667 667 668 668 Ex1: 0x0B45 = 2885mV 669 669 ... ... @@ -711,24 +711,19 @@ 711 711 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 712 712 713 713 714 -The measuring range of the ADC is only about 0 .1V to 1.1V The voltage resolution is about 0.24mv.655 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 715 715 716 -When the measured output voltage of the sensor is not within the range of 0 .1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.657 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 717 717 718 718 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 719 719 720 - 721 721 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 722 722 723 723 724 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 725 - 726 -[[image:image-20230811113449-1.png||height="370" width="608"]] 727 - 728 728 ==== 2.3.3.5 Digital Interrupt ==== 729 729 730 730 731 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 -LBwill send a packet to the server.667 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 732 732 733 733 (% style="color:blue" %)** Interrupt connection method:** 734 734 ... ... @@ -741,18 +741,18 @@ 741 741 742 742 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 743 743 744 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3 -LBinterrupt interface to detect the status for the door or window.680 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 745 745 746 746 747 747 (% style="color:blue" %)**Below is the installation example:** 748 748 749 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3 -LBas follows:685 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 750 750 751 751 * ((( 752 -One pin to SN50v3 -LB's PA8 pin688 +One pin to SN50_v3's PA8 pin 753 753 ))) 754 754 * ((( 755 -The other pin to SN50v3 -LB's VDD pin691 +The other pin to SN50_v3's VDD pin 756 756 ))) 757 757 758 758 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -769,7 +769,7 @@ 769 769 770 770 The command is: 771 771 772 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ 708 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 773 773 774 774 Below shows some screen captures in TTN V3: 775 775 ... ... @@ -776,7 +776,7 @@ 776 776 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 777 777 778 778 779 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:715 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 780 780 781 781 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 782 782 ... ... @@ -788,13 +788,12 @@ 788 788 789 789 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 790 790 791 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LBwill be a good reference.**727 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 792 792 793 - 794 794 Below is the connection to SHT20/ SHT31. The connection is as below: 795 795 796 -[[image:image-20230610170152-2.png||height="501" width="846"]] 797 797 732 +[[image:image-20230513103633-3.png||height="448" width="716"]] 798 798 799 799 The device will be able to get the I2C sensor data now and upload to IoT Server. 800 800 ... ... @@ -822,7 +822,7 @@ 822 822 823 823 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 824 824 825 -The SN50v3 -LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.760 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 826 826 827 827 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 828 828 ... ... @@ -831,7 +831,7 @@ 831 831 [[image:image-20230512173903-6.png||height="596" width="715"]] 832 832 833 833 834 -Connect to the SN50v3 -LBand run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).769 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 835 835 836 836 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 837 837 ... ... @@ -843,13 +843,13 @@ 843 843 ==== 2.3.3.9 Battery Output - BAT pin ==== 844 844 845 845 846 -The BAT pin of SN50v3 -LBis connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.781 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 847 847 848 848 849 849 ==== 2.3.3.10 +5V Output ==== 850 850 851 851 852 -SN50v3 -LBwill enable +5V output before all sampling and disable the +5v after all sampling.787 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 853 853 854 854 The 5V output time can be controlled by AT Command. 855 855 ... ... @@ -857,7 +857,7 @@ 857 857 858 858 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 859 859 860 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.795 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 861 861 862 862 863 863 ==== 2.3.3.11 BH1750 Illumination Sensor ==== ... ... @@ -871,31 +871,9 @@ 871 871 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 872 872 873 873 874 -==== 2.3.3.12 PWMMOD ====809 +==== 2.3.3.12 Working MOD ==== 875 875 876 876 877 -* ((( 878 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 879 -))) 880 -* ((( 881 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 882 -))) 883 - 884 - [[image:image-20230817183249-3.png||height="320" width="417"]] 885 - 886 -* ((( 887 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 888 -))) 889 -* ((( 890 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 891 - 892 - 893 - 894 -))) 895 - 896 -==== 2.3.3.13 Working MOD ==== 897 - 898 - 899 899 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 900 900 901 901 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -911,8 +911,9 @@ 911 911 * 6: MOD7 912 912 * 7: MOD8 913 913 * 8: MOD9 914 -* 9: MOD10 915 915 828 + 829 + 916 916 == 2.4 Payload Decoder file == 917 917 918 918 ... ... @@ -942,6 +942,8 @@ 942 942 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 943 943 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 944 944 859 + 860 + 945 945 == 3.2 General Commands == 946 946 947 947 ... ... @@ -958,7 +958,7 @@ 958 958 == 3.3 Commands special design for SN50v3-LB == 959 959 960 960 961 -These commands only valid for S N50v3-LB, as below:877 +These commands only valid for S31x-LB, as below: 962 962 963 963 964 964 === 3.3.1 Set Transmit Interval Time === ... ... @@ -969,7 +969,7 @@ 969 969 (% style="color:blue" %)**AT Command: AT+TDC** 970 970 971 971 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 972 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**888 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 973 973 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 974 974 30000 975 975 OK ... ... @@ -989,14 +989,16 @@ 989 989 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 990 990 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 991 991 908 + 909 + 992 992 === 3.3.2 Get Device Status === 993 993 994 994 995 995 Send a LoRaWAN downlink to ask the device to send its status. 996 996 997 -(% style="color:blue" %)**Downlink Payload: 0x26 01 **915 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 998 998 999 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.917 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 1000 1000 1001 1001 1002 1002 === 3.3.3 Set Interrupt Mode === ... ... @@ -1007,7 +1007,7 @@ 1007 1007 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1008 1008 1009 1009 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1010 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**928 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1011 1011 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1012 1012 0 1013 1013 OK ... ... @@ -1037,6 +1037,8 @@ 1037 1037 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1038 1038 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1039 1039 958 + 959 + 1040 1040 === 3.3.4 Set Power Output Duration === 1041 1041 1042 1042 ... ... @@ -1051,7 +1051,7 @@ 1051 1051 (% style="color:blue" %)**AT Command: AT+5VT** 1052 1052 1053 1053 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1054 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**974 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1055 1055 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1056 1056 500(default) 1057 1057 OK ... ... @@ -1069,6 +1069,8 @@ 1069 1069 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1070 1070 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1071 1071 992 + 993 + 1072 1072 === 3.3.5 Set Weighing parameters === 1073 1073 1074 1074 ... ... @@ -1077,7 +1077,7 @@ 1077 1077 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1078 1078 1079 1079 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1080 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1002 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1081 1081 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1082 1082 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1083 1083 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1094,6 +1094,8 @@ 1094 1094 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1095 1095 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1096 1096 1019 + 1020 + 1097 1097 === 3.3.6 Set Digital pulse count value === 1098 1098 1099 1099 ... ... @@ -1104,7 +1104,7 @@ 1104 1104 (% style="color:blue" %)**AT Command: AT+SETCNT** 1105 1105 1106 1106 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1107 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1031 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1108 1108 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1109 1109 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1110 1110 ... ... @@ -1117,6 +1117,8 @@ 1117 1117 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1118 1118 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1119 1119 1044 + 1045 + 1120 1120 === 3.3.7 Set Workmode === 1121 1121 1122 1122 ... ... @@ -1125,7 +1125,7 @@ 1125 1125 (% style="color:blue" %)**AT Command: AT+MOD** 1126 1126 1127 1127 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1128 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1054 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1129 1129 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1130 1130 OK 1131 1131 ))) ... ... @@ -1141,33 +1141,8 @@ 1141 1141 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1142 1142 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1143 1143 1144 -=== 3.3.8 PWM setting === 1145 1145 1146 1146 1147 -Feature: Set the time acquisition unit for PWM input capture. 1148 - 1149 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1150 - 1151 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1152 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1153 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1154 -0(default) 1155 - 1156 -OK 1157 -))) 1158 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1159 -OK 1160 - 1161 -))) 1162 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1163 - 1164 -(% style="color:blue" %)**Downlink Command: 0x0C** 1165 - 1166 -Format: Command Code (0x0C) followed by 1 bytes. 1167 - 1168 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1169 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1170 - 1171 1171 = 4. Battery & Power Consumption = 1172 1172 1173 1173 ... ... @@ -1180,19 +1180,22 @@ 1180 1180 1181 1181 1182 1182 (% class="wikigeneratedid" %) 1183 - **User can change firmware SN50v3-LB to:**1084 +User can change firmware SN50v3-LB to: 1184 1184 1185 1185 * Change Frequency band/ region. 1186 1186 * Update with new features. 1187 1187 * Fix bugs. 1188 1188 1189 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**1090 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1190 1190 1191 -**Methods to Update Firmware:** 1192 1192 1193 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1194 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1093 +Methods to Update Firmware: 1195 1195 1095 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1096 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1097 + 1098 + 1099 + 1196 1196 = 6. FAQ = 1197 1197 1198 1198 == 6.1 Where can i find source code of SN50v3-LB? == ... ... @@ -1201,22 +1201,8 @@ 1201 1201 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1202 1202 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1203 1203 1204 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1205 1205 1206 1206 1207 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1208 - 1209 - 1210 -== 6.3 How to put several sensors to a SN50v3-LB? == 1211 - 1212 - 1213 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1214 - 1215 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1216 - 1217 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1218 - 1219 - 1220 1220 = 7. Order Info = 1221 1221 1222 1222 ... ... @@ -1240,6 +1240,8 @@ 1240 1240 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1241 1241 * (% style="color:red" %)**NH**(%%): No Hole 1242 1242 1133 + 1134 + 1243 1243 = 8. Packing Info = 1244 1244 1245 1245 ... ... @@ -1254,6 +1254,8 @@ 1254 1254 * Package Size / pcs : cm 1255 1255 * Weight / pcs : g 1256 1256 1149 + 1150 + 1257 1257 = 9. Support = 1258 1258 1259 1259 ... ... @@ -1260,27 +1260,3 @@ 1260 1260 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1261 1261 1262 1262 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 1263 - 1264 - 1265 - 1266 -= 10. FCC Warning = 1267 - 1268 - 1269 -Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. 1270 - 1271 -This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. 1272 - 1273 -(% style="color:red" %) **Note:**(%%) This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: 1274 - 1275 -—Reorient or relocate the receiving antenna. 1276 - 1277 -—Increase the separation between the equipment and receiver. 1278 - 1279 -—Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. 1280 - 1281 -—Consult the dealer or an experienced radio/TV technician for help. 1282 - 1283 - 1284 -This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator& your body. 1285 - 1286 -This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content
- image-20231101154140-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -540.3 KB - Content