Last modified by Saxer Lin on 2025/03/18 17:25

From version 75.4
edited by Xiaoling
on 2023/11/01 17:57
Change comment: There is no comment for this version
To version 65.1
edited by Saxer Lin
on 2023/08/17 17:41
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Parent
... ... @@ -1,1 +1,0 @@
1 -Main.User Manual for LoRaWAN End Nodes.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,6 +1,8 @@
1 -
1 +(% style="text-align:center" %)
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
2 2  
3 3  
5 +
4 4  **Table of Contents:**
5 5  
6 6  {{toc/}}
... ... @@ -17,7 +17,7 @@
17 17  
18 18  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
19 19  
20 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
21 21  
22 22  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
23 23  
... ... @@ -124,7 +124,7 @@
124 124  == 1.7 Pin Definitions ==
125 125  
126 126  
127 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB%20--%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20230610163213-1.png?width=699&height=404&rev=1.1||alt="image-20230610163213-1.png"]]
129 +[[image:image-20230610163213-1.png||height="404" width="699"]]
128 128  
129 129  
130 130  == 1.8 Mechanical ==
... ... @@ -142,8 +142,9 @@
142 142  
143 143  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
144 144  
147 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
145 145  
146 -[[image:image-20231101154140-1.png||height="514" width="867"]]
149 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147 147  
148 148  
149 149  = 2. Configure SN50v3-LB to connect to LoRaWAN network =
... ... @@ -581,15 +581,11 @@
581 581  
582 582  ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
583 583  
584 -
585 585  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 586  
587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588 588  
589 -
590 590  ===== 2.3.2.10.a  Uplink, PWM input capture =====
591 591  
592 -
593 593  [[image:image-20230817172209-2.png||height="439" width="683"]]
594 594  
595 595  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
... ... @@ -611,28 +611,15 @@
611 611  [[image:image-20230817170702-1.png||height="161" width="1044"]]
612 612  
613 613  
614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
613 +(% style="color:blue" %)**AT+PWMSET=AA(Default is 0)  ==> Corresponding downlink: 0B AA**
615 615  
616 -**Frequency:**
615 +When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. 
617 617  
618 -(% class="MsoNormal" %)
619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
617 +When AA is 1, the unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. 
620 620  
621 -(% class="MsoNormal" %)
622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
623 623  
624 -
625 -(% class="MsoNormal" %)
626 -**Duty cycle:**
627 -
628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
629 -
630 -[[image:image-20230818092200-1.png||height="344" width="627"]]
631 -
632 -
633 633  ===== 2.3.2.10.b  Downlink, PWM output =====
634 634  
635 -
636 636  [[image:image-20230817173800-3.png||height="412" width="685"]]
637 637  
638 638  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -651,7 +651,7 @@
651 651  [[image:image-20230817173858-5.png||height="694" width="921"]]
652 652  
653 653  
654 -=== 2.3.3 ​Decode payload ===
640 +=== 2.3.3  ​Decode payload ===
655 655  
656 656  
657 657  While using TTN V3 network, you can add the payload format to decode the payload.
... ... @@ -877,25 +877,6 @@
877 877  ==== 2.3.3.12  PWM MOD ====
878 878  
879 879  
880 -* (((
881 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
882 -)))
883 -* (((
884 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
885 -)))
886 -
887 - [[image:image-20230817183249-3.png||height="320" width="417"]]
888 -
889 -* (((
890 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
891 -)))
892 -* (((
893 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
894 -
895 -
896 -
897 -)))
898 -
899 899  ==== 2.3.3.13  Working MOD ====
900 900  
901 901  
... ... @@ -916,6 +916,7 @@
916 916  * 8: MOD9
917 917  * 9: MOD10
918 918  
886 +
919 919  == 2.4 Payload Decoder file ==
920 920  
921 921  
... ... @@ -945,6 +945,7 @@
945 945  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
946 946  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
947 947  
916 +
948 948  == 3.2 General Commands ==
949 949  
950 950  
... ... @@ -992,6 +992,7 @@
992 992  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
993 993  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
994 994  
964 +
995 995  === 3.3.2 Get Device Status ===
996 996  
997 997  
... ... @@ -1040,6 +1040,7 @@
1040 1040  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1041 1041  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1042 1042  
1013 +
1043 1043  === 3.3.4 Set Power Output Duration ===
1044 1044  
1045 1045  
... ... @@ -1072,6 +1072,7 @@
1072 1072  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1073 1073  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1074 1074  
1046 +
1075 1075  === 3.3.5 Set Weighing parameters ===
1076 1076  
1077 1077  
... ... @@ -1097,6 +1097,7 @@
1097 1097  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1098 1098  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1099 1099  
1072 +
1100 1100  === 3.3.6 Set Digital pulse count value ===
1101 1101  
1102 1102  
... ... @@ -1120,6 +1120,7 @@
1120 1120  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1121 1121  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1122 1122  
1096 +
1123 1123  === 3.3.7 Set Workmode ===
1124 1124  
1125 1125  
... ... @@ -1144,33 +1144,7 @@
1144 1144  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1145 1145  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1146 1146  
1147 -=== 3.3.8 PWM setting ===
1148 1148  
1149 -
1150 -Feature: Set the time acquisition unit for PWM input capture.
1151 -
1152 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1153 -
1154 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1155 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1156 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1157 -0(default)
1158 -
1159 -OK
1160 -)))
1161 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1162 -OK
1163 -
1164 -)))
1165 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1166 -
1167 -(% style="color:blue" %)**Downlink Command: 0x0C**
1168 -
1169 -Format: Command Code (0x0C) followed by 1 bytes.
1170 -
1171 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1172 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1173 -
1174 1174  = 4. Battery & Power Consumption =
1175 1175  
1176 1176  
... ... @@ -1196,6 +1196,7 @@
1196 1196  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1197 1197  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1198 1198  
1147 +
1199 1199  = 6. FAQ =
1200 1200  
1201 1201  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1204,6 +1204,7 @@
1204 1204  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1205 1205  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1206 1206  
1156 +
1207 1207  == 6.2 How to generate PWM Output in SN50v3-LB? ==
1208 1208  
1209 1209  
... ... @@ -1243,6 +1243,7 @@
1243 1243  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1244 1244  * (% style="color:red" %)**NH**(%%): No Hole
1245 1245  
1196 +
1246 1246  = 8. ​Packing Info =
1247 1247  
1248 1248  
... ... @@ -1257,6 +1257,7 @@
1257 1257  * Package Size / pcs : cm
1258 1258  * Weight / pcs : g
1259 1259  
1211 +
1260 1260  = 9. Support =
1261 1261  
1262 1262  
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231101154140-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -540.3 KB
Content