Changes for page SN50v3-LB -- LoRaWAN Sensor Node User Manual
Last modified by Saxer Lin on 2025/03/18 17:25
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 16 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231101154140-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB --LoRaWAN Sensor Node User Manual1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Parent
-
... ... @@ -1,1 +1,0 @@ 1 -Main.User Manual for LoRaWAN End Nodes.WebHome - Content
-
... ... @@ -1,6 +1,8 @@ 1 - 1 +(% style="text-align:center" %) 2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 2 2 3 3 5 + 4 4 **Table of Contents:** 5 5 6 6 {{toc/}} ... ... @@ -17,7 +17,7 @@ 17 17 18 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 19 19 20 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 21 21 22 22 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 23 23 ... ... @@ -39,7 +39,6 @@ 39 39 * Downlink to change configure 40 40 * 8500mAh Battery for long term use 41 41 42 - 43 43 == 1.3 Specification == 44 44 45 45 ... ... @@ -77,7 +77,6 @@ 77 77 * Sleep Mode: 5uA @ 3.3v 78 78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 79 79 80 - 81 81 == 1.4 Sleep mode and working mode == 82 82 83 83 ... ... @@ -105,7 +105,6 @@ 105 105 ))) 106 106 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 107 107 108 - 109 109 == 1.6 BLE connection == 110 110 111 111 ... ... @@ -124,7 +124,7 @@ 124 124 == 1.7 Pin Definitions == 125 125 126 126 127 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB%20--%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20230610163213-1.png?width=699&height=404&rev=1.1||alt="image-20230610163213-1.png"]]126 +[[image:image-20230513102034-2.png]] 128 128 129 129 130 130 == 1.8 Mechanical == ... ... @@ -137,13 +137,14 @@ 137 137 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 138 138 139 139 140 -== 1.9Hole Option ==139 +== Hole Option == 141 141 142 142 143 143 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 144 144 144 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 145 145 146 -[[image:i mage-20231101154140-1.png||height="514" width="867"]]146 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 147 147 148 148 149 149 = 2. Configure SN50v3-LB to connect to LoRaWAN network = ... ... @@ -151,7 +151,7 @@ 151 151 == 2.1 How it works == 152 152 153 153 154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.154 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 155 155 156 156 157 157 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -159,7 +159,7 @@ 159 159 160 160 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 161 161 162 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.162 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 163 163 164 164 165 165 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -208,7 +208,7 @@ 208 208 === 2.3.1 Device Status, FPORT~=5 === 209 209 210 210 211 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.211 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 212 212 213 213 The Payload format is as below. 214 214 ... ... @@ -216,44 +216,44 @@ 216 216 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 217 217 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 218 218 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 219 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 220 220 221 221 Example parse in TTNv3 222 222 223 223 224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C224 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 225 225 226 226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 227 227 228 228 (% style="color:#037691" %)**Frequency Band**: 229 229 230 -0x01: EU868 230 +*0x01: EU868 231 231 232 -0x02: US915 232 +*0x02: US915 233 233 234 -0x03: IN865 234 +*0x03: IN865 235 235 236 -0x04: AU915 236 +*0x04: AU915 237 237 238 -0x05: KZ865 238 +*0x05: KZ865 239 239 240 -0x06: RU864 240 +*0x06: RU864 241 241 242 -0x07: AS923 242 +*0x07: AS923 243 243 244 -0x08: AS923-1 244 +*0x08: AS923-1 245 245 246 -0x09: AS923-2 246 +*0x09: AS923-2 247 247 248 -0x0a: AS923-3 248 +*0x0a: AS923-3 249 249 250 -0x0b: CN470 250 +*0x0b: CN470 251 251 252 -0x0c: EU433 252 +*0x0c: EU433 253 253 254 -0x0d: KR920 254 +*0x0d: KR920 255 255 256 -0x0e: MA869 256 +*0x0e: MA869 257 257 258 258 259 259 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -286,7 +286,7 @@ 286 286 287 287 (% style="color:red" %) **Important Notice:** 288 288 289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3 -LBtransmit in DR0 with 12 bytes payload.289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 290 290 291 291 2. All modes share the same Payload Explanation from HERE. 292 292 ... ... @@ -300,7 +300,7 @@ 300 300 301 301 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 302 302 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 303 -|Value|Bat|(% style="width:191px" %)((( 303 +|**Value**|Bat|(% style="width:191px" %)((( 304 304 Temperature(DS18B20)(PC13) 305 305 )))|(% style="width:78px" %)((( 306 306 ADC(PA4) ... ... @@ -315,6 +315,7 @@ 315 315 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 316 316 317 317 318 + 318 318 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 319 319 320 320 ... ... @@ -322,7 +322,7 @@ 322 322 323 323 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 324 324 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 325 -|Value|BAT|(% style="width:196px" %)((( 326 +|**Value**|BAT|(% style="width:196px" %)((( 326 326 Temperature(DS18B20)(PC13) 327 327 )))|(% style="width:87px" %)((( 328 328 ADC(PA4) ... ... @@ -329,8 +329,9 @@ 329 329 )))|(% style="width:189px" %)((( 330 330 Digital in(PB15) & Digital Interrupt(PA8) 331 331 )))|(% style="width:208px" %)((( 332 -Distance measure by: 1) LIDAR-Lite V3HP 333 -Or 2) Ultrasonic Sensor 333 +Distance measure by:1) LIDAR-Lite V3HP 334 +Or 335 +2) Ultrasonic Sensor 334 334 )))|(% style="width:117px" %)Reserved 335 335 336 336 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -352,7 +352,7 @@ 352 352 353 353 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 354 354 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 355 -|Value|BAT|(% style="width:183px" %)((( 357 +|**Value**|BAT|(% style="width:183px" %)((( 356 356 Temperature(DS18B20)(PC13) 357 357 )))|(% style="width:173px" %)((( 358 358 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -360,7 +360,8 @@ 360 360 ADC(PA4) 361 361 )))|(% style="width:323px" %)((( 362 362 Distance measure by:1)TF-Mini plus LiDAR 363 -Or 2) TF-Luna LiDAR 365 +Or 366 +2) TF-Luna LiDAR 364 364 )))|(% style="width:188px" %)Distance signal strength 365 365 366 366 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] ... ... @@ -377,7 +377,7 @@ 377 377 378 378 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 379 379 380 -[[image:image-20230 610170047-1.png||height="452" width="799"]]383 +[[image:image-20230513105207-4.png||height="469" width="802"]] 381 381 382 382 383 383 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== ... ... @@ -389,7 +389,7 @@ 389 389 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 390 390 **Size(bytes)** 391 391 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 392 -|Value|(% style="width:68px" %)((( 395 +|**Value**|(% style="width:68px" %)((( 393 393 ADC1(PA4) 394 394 )))|(% style="width:75px" %)((( 395 395 ADC2(PA5) ... ... @@ -413,7 +413,7 @@ 413 413 414 414 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 415 415 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 416 -|Value|BAT|(% style="width:186px" %)((( 419 +|**Value**|BAT|(% style="width:186px" %)((( 417 417 Temperature1(DS18B20)(PC13) 418 418 )))|(% style="width:82px" %)((( 419 419 ADC(PA4) ... ... @@ -424,10 +424,10 @@ 424 424 425 425 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 426 426 427 - 428 428 [[image:image-20230513134006-1.png||height="559" width="736"]] 429 429 430 430 433 + 431 431 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 432 432 433 433 ... ... @@ -456,7 +456,7 @@ 456 456 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 457 457 **Size(bytes)** 458 458 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 459 -|Value|BAT|(% style="width:193px" %)((( 462 +|**Value**|BAT|(% style="width:193px" %)((( 460 460 Temperature(DS18B20)(PC13) 461 461 )))|(% style="width:85px" %)((( 462 462 ADC(PA4) ... ... @@ -467,6 +467,7 @@ 467 467 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 468 468 469 469 473 + 470 470 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 471 471 472 472 ... ... @@ -481,7 +481,7 @@ 481 481 482 482 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 483 483 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 484 -|Value|BAT|(% style="width:256px" %)((( 488 +|**Value**|BAT|(% style="width:256px" %)((( 485 485 Temperature(DS18B20)(PC13) 486 486 )))|(% style="width:108px" %)((( 487 487 ADC(PA4) ... ... @@ -494,6 +494,7 @@ 494 494 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 495 495 496 496 501 + 497 497 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 498 498 499 499 ... ... @@ -501,7 +501,7 @@ 501 501 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 502 502 **Size(bytes)** 503 503 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 504 -|Value|BAT|(% style="width:188px" %)((( 509 +|**Value**|BAT|(% style="width:188px" %)((( 505 505 Temperature(DS18B20) 506 506 (PC13) 507 507 )))|(% style="width:83px" %)((( ... ... @@ -520,7 +520,7 @@ 520 520 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 521 521 **Size(bytes)** 522 522 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 523 -|Value|BAT|(% style="width:207px" %)((( 528 +|**Value**|BAT|(% style="width:207px" %)((( 524 524 Temperature(DS18B20) 525 525 (PC13) 526 526 )))|(% style="width:94px" %)((( ... ... @@ -543,7 +543,7 @@ 543 543 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 544 544 **Size(bytes)** 545 545 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 546 -|Value|BAT|((( 551 +|**Value**|BAT|((( 547 547 Temperature 548 548 (DS18B20)(PC13) 549 549 )))|((( ... ... @@ -579,81 +579,9 @@ 579 579 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 580 580 581 581 582 -=== =2.3.2.10MOD~=10 (PWM inputcapture andoutput mode,Sincefirmware v1.2)====587 +=== 2.3.3 Decode payload === 583 583 584 584 585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 - 587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 588 - 589 - 590 -===== 2.3.2.10.a Uplink, PWM input capture ===== 591 - 592 - 593 -[[image:image-20230817172209-2.png||height="439" width="683"]] 594 - 595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 597 -|Value|Bat|(% style="width:191px" %)((( 598 -Temperature(DS18B20)(PC13) 599 -)))|(% style="width:78px" %)((( 600 -ADC(PA4) 601 -)))|(% style="width:135px" %)((( 602 -PWM_Setting 603 - 604 -&Digital Interrupt(PA8) 605 -)))|(% style="width:70px" %)((( 606 -Pulse period 607 -)))|(% style="width:89px" %)((( 608 -Duration of high level 609 -))) 610 - 611 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 612 - 613 - 614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 615 - 616 -**Frequency:** 617 - 618 -(% class="MsoNormal" %) 619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 620 - 621 -(% class="MsoNormal" %) 622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 623 - 624 - 625 -(% class="MsoNormal" %) 626 -**Duty cycle:** 627 - 628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 629 - 630 -[[image:image-20230818092200-1.png||height="344" width="627"]] 631 - 632 - 633 -===== 2.3.2.10.b Downlink, PWM output ===== 634 - 635 - 636 -[[image:image-20230817173800-3.png||height="412" width="685"]] 637 - 638 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 639 - 640 - xx xx xx is the output frequency, the unit is HZ. 641 - 642 - yy is the duty cycle of the output, the unit is %. 643 - 644 - zz zz is the time delay of the output, the unit is ms. 645 - 646 - 647 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 648 - 649 -The oscilloscope displays as follows: 650 - 651 -[[image:image-20230817173858-5.png||height="694" width="921"]] 652 - 653 - 654 -=== 2.3.3 Decode payload === 655 - 656 - 657 657 While using TTN V3 network, you can add the payload format to decode the payload. 658 658 659 659 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -714,9 +714,9 @@ 714 714 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 715 715 716 716 717 -The measuring range of the ADC is only about 0 .1V to 1.1V The voltage resolution is about 0.24mv.650 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 718 718 719 -When the measured output voltage of the sensor is not within the range of 0 .1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.652 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 720 720 721 721 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 722 722 ... ... @@ -724,10 +724,6 @@ 724 724 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 725 725 726 726 727 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 728 - 729 -[[image:image-20230811113449-1.png||height="370" width="608"]] 730 - 731 731 ==== 2.3.3.5 Digital Interrupt ==== 732 732 733 733 ... ... @@ -779,7 +779,7 @@ 779 779 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 780 780 781 781 782 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:711 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 783 783 784 784 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 785 785 ... ... @@ -796,9 +796,8 @@ 796 796 797 797 Below is the connection to SHT20/ SHT31. The connection is as below: 798 798 799 -[[image:image-20230 610170152-2.png||height="501" width="846"]]728 +[[image:image-20230513103633-3.png||height="448" width="716"]] 800 800 801 - 802 802 The device will be able to get the I2C sensor data now and upload to IoT Server. 803 803 804 804 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -846,7 +846,7 @@ 846 846 ==== 2.3.3.9 Battery Output - BAT pin ==== 847 847 848 848 849 -The BAT pin of SN50v3 -LBis connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.777 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 850 850 851 851 852 852 ==== 2.3.3.10 +5V Output ==== ... ... @@ -860,7 +860,7 @@ 860 860 861 861 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 862 862 863 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.791 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 864 864 865 865 866 866 ==== 2.3.3.11 BH1750 Illumination Sensor ==== ... ... @@ -874,31 +874,9 @@ 874 874 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 875 875 876 876 877 -==== 2.3.3.12 PWMMOD ====805 +==== 2.3.3.12 Working MOD ==== 878 878 879 879 880 -* ((( 881 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 882 -))) 883 -* ((( 884 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 885 -))) 886 - 887 - [[image:image-20230817183249-3.png||height="320" width="417"]] 888 - 889 -* ((( 890 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 891 -))) 892 -* ((( 893 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 894 - 895 - 896 - 897 -))) 898 - 899 -==== 2.3.3.13 Working MOD ==== 900 - 901 - 902 902 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 903 903 904 904 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -914,7 +914,6 @@ 914 914 * 6: MOD7 915 915 * 7: MOD8 916 916 * 8: MOD9 917 -* 9: MOD10 918 918 919 919 == 2.4 Payload Decoder file == 920 920 ... ... @@ -972,7 +972,7 @@ 972 972 (% style="color:blue" %)**AT Command: AT+TDC** 973 973 974 974 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 975 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**880 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 976 976 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 977 977 30000 978 978 OK ... ... @@ -997,9 +997,9 @@ 997 997 998 998 Send a LoRaWAN downlink to ask the device to send its status. 999 999 1000 -(% style="color:blue" %)**Downlink Payload: 0x26 01 **905 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 1001 1001 1002 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.907 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 1003 1003 1004 1004 1005 1005 === 3.3.3 Set Interrupt Mode === ... ... @@ -1010,7 +1010,7 @@ 1010 1010 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1011 1011 1012 1012 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1013 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**918 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1014 1014 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1015 1015 0 1016 1016 OK ... ... @@ -1054,7 +1054,7 @@ 1054 1054 (% style="color:blue" %)**AT Command: AT+5VT** 1055 1055 1056 1056 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1057 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**962 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1058 1058 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1059 1059 500(default) 1060 1060 OK ... ... @@ -1080,7 +1080,7 @@ 1080 1080 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1081 1081 1082 1082 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1083 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**988 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1084 1084 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1085 1085 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1086 1086 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1107,7 +1107,7 @@ 1107 1107 (% style="color:blue" %)**AT Command: AT+SETCNT** 1108 1108 1109 1109 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1110 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1015 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1111 1111 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1112 1112 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1113 1113 ... ... @@ -1128,7 +1128,7 @@ 1128 1128 (% style="color:blue" %)**AT Command: AT+MOD** 1129 1129 1130 1130 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1131 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1036 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1132 1132 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1133 1133 OK 1134 1134 ))) ... ... @@ -1144,33 +1144,6 @@ 1144 1144 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1145 1145 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1146 1146 1147 -=== 3.3.8 PWM setting === 1148 - 1149 - 1150 -Feature: Set the time acquisition unit for PWM input capture. 1151 - 1152 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1153 - 1154 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1155 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1156 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1157 -0(default) 1158 - 1159 -OK 1160 -))) 1161 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1162 -OK 1163 - 1164 -))) 1165 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1166 - 1167 -(% style="color:blue" %)**Downlink Command: 0x0C** 1168 - 1169 -Format: Command Code (0x0C) followed by 1 bytes. 1170 - 1171 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1172 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1173 - 1174 1174 = 4. Battery & Power Consumption = 1175 1175 1176 1176 ... ... @@ -1183,19 +1183,20 @@ 1183 1183 1184 1184 1185 1185 (% class="wikigeneratedid" %) 1186 - **User can change firmware SN50v3-LB to:**1064 +User can change firmware SN50v3-LB to: 1187 1187 1188 1188 * Change Frequency band/ region. 1189 1189 * Update with new features. 1190 1190 * Fix bugs. 1191 1191 1192 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**1070 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1193 1193 1194 -**Methods to Update Firmware:** 1195 1195 1196 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1197 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1073 +Methods to Update Firmware: 1198 1198 1075 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1076 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1077 + 1199 1199 = 6. FAQ = 1200 1200 1201 1201 == 6.1 Where can i find source code of SN50v3-LB? == ... ... @@ -1204,22 +1204,6 @@ 1204 1204 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1205 1205 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1206 1206 1207 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1208 - 1209 - 1210 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1211 - 1212 - 1213 -== 6.3 How to put several sensors to a SN50v3-LB? == 1214 - 1215 - 1216 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1217 - 1218 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1219 - 1220 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1221 - 1222 - 1223 1223 = 7. Order Info = 1224 1224 1225 1225
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content
- image-20231101154140-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -540.3 KB - Content