Last modified by Saxer Lin on 2025/03/18 17:25

From version 75.3
edited by Xiaoling
on 2023/11/01 15:46
Change comment: There is no comment for this version
To version 53.2
edited by Xiaoling
on 2023/06/15 08:45
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Parent
... ... @@ -1,1 +1,0 @@
1 -Main.User Manual for LoRaWAN End Nodes.WebHome
Content
... ... @@ -1,6 +1,8 @@
1 -
1 +(% style="text-align:center" %)
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
2 2  
3 3  
5 +
4 4  **Table of Contents:**
5 5  
6 6  {{toc/}}
... ... @@ -17,7 +17,7 @@
17 17  
18 18  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
19 19  
20 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
21 21  
22 22  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
23 23  
... ... @@ -127,7 +127,7 @@
127 127  == 1.7 Pin Definitions ==
128 128  
129 129  
130 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB%20--%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20230610163213-1.png?width=699&height=404&rev=1.1||alt="image-20230610163213-1.png"]]
132 +[[image:image-20230610163213-1.png||height="404" width="699"]]
131 131  
132 132  
133 133  == 1.8 Mechanical ==
... ... @@ -145,8 +145,9 @@
145 145  
146 146  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
147 147  
150 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
148 148  
149 -[[image:image-20231101154140-1.png||height="514" width="867"]]
152 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
150 150  
151 151  
152 152  = 2. Configure SN50v3-LB to connect to LoRaWAN network =
... ... @@ -363,7 +363,8 @@
363 363  ADC(PA4)
364 364  )))|(% style="width:323px" %)(((
365 365  Distance measure by:1)TF-Mini plus LiDAR
366 -Or 2) TF-Luna LiDAR
369 +Or 
370 +2) TF-Luna LiDAR
367 367  )))|(% style="width:188px" %)Distance signal  strength
368 368  
369 369  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -470,6 +470,7 @@
470 470  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
471 471  
472 472  
477 +
473 473  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
474 474  
475 475  
... ... @@ -582,78 +582,6 @@
582 582  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
583 583  
584 584  
585 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
586 -
587 -
588 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
589 -
590 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
591 -
592 -
593 -===== 2.3.2.10.a  Uplink, PWM input capture =====
594 -
595 -
596 -[[image:image-20230817172209-2.png||height="439" width="683"]]
597 -
598 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
599 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
600 -|Value|Bat|(% style="width:191px" %)(((
601 -Temperature(DS18B20)(PC13)
602 -)))|(% style="width:78px" %)(((
603 -ADC(PA4)
604 -)))|(% style="width:135px" %)(((
605 -PWM_Setting
606 -
607 -&Digital Interrupt(PA8)
608 -)))|(% style="width:70px" %)(((
609 -Pulse period
610 -)))|(% style="width:89px" %)(((
611 -Duration of high level
612 -)))
613 -
614 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
615 -
616 -
617 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
618 -
619 -**Frequency:**
620 -
621 -(% class="MsoNormal" %)
622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
623 -
624 -(% class="MsoNormal" %)
625 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
626 -
627 -
628 -(% class="MsoNormal" %)
629 -**Duty cycle:**
630 -
631 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
632 -
633 -[[image:image-20230818092200-1.png||height="344" width="627"]]
634 -
635 -
636 -===== 2.3.2.10.b  Downlink, PWM output =====
637 -
638 -
639 -[[image:image-20230817173800-3.png||height="412" width="685"]]
640 -
641 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
642 -
643 - xx xx xx is the output frequency, the unit is HZ.
644 -
645 - yy is the duty cycle of the output, the unit is %.
646 -
647 - zz zz is the time delay of the output, the unit is ms.
648 -
649 -
650 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
651 -
652 -The oscilloscope displays as follows:
653 -
654 -[[image:image-20230817173858-5.png||height="694" width="921"]]
655 -
656 -
657 657  === 2.3.3  ​Decode payload ===
658 658  
659 659  
... ... @@ -727,10 +727,6 @@
727 727  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
728 728  
729 729  
730 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
731 -
732 -[[image:image-20230811113449-1.png||height="370" width="608"]]
733 -
734 734  ==== 2.3.3.5 Digital Interrupt ====
735 735  
736 736  
... ... @@ -877,31 +877,9 @@
877 877  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
878 878  
879 879  
880 -==== 2.3.3.12  PWM MOD ====
809 +==== 2.3.3.12  Working MOD ====
881 881  
882 882  
883 -* (((
884 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
885 -)))
886 -* (((
887 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
888 -)))
889 -
890 - [[image:image-20230817183249-3.png||height="320" width="417"]]
891 -
892 -* (((
893 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
894 -)))
895 -* (((
896 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
897 -
898 -
899 -
900 -)))
901 -
902 -==== 2.3.3.13  Working MOD ====
903 -
904 -
905 905  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
906 906  
907 907  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -917,7 +917,6 @@
917 917  * 6: MOD7
918 918  * 7: MOD8
919 919  * 8: MOD9
920 -* 9: MOD10
921 921  
922 922  == 2.4 Payload Decoder file ==
923 923  
... ... @@ -1147,33 +1147,6 @@
1147 1147  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1148 1148  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1149 1149  
1150 -=== 3.3.8 PWM setting ===
1151 -
1152 -
1153 -Feature: Set the time acquisition unit for PWM input capture.
1154 -
1155 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1156 -
1157 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1158 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1159 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1160 -0(default)
1161 -
1162 -OK
1163 -)))
1164 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1165 -OK
1166 -
1167 -)))
1168 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1169 -
1170 -(% style="color:blue" %)**Downlink Command: 0x0C**
1171 -
1172 -Format: Command Code (0x0C) followed by 1 bytes.
1173 -
1174 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1175 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1176 -
1177 1177  = 4. Battery & Power Consumption =
1178 1178  
1179 1179  
... ... @@ -1196,8 +1196,8 @@
1196 1196  
1197 1197  **Methods to Update Firmware:**
1198 1198  
1199 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1200 -* Update through UART TTL interface**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1078 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1079 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1201 1201  
1202 1202  = 6. FAQ =
1203 1203  
... ... @@ -1207,22 +1207,6 @@
1207 1207  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1208 1208  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1209 1209  
1210 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1211 -
1212 -
1213 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1214 -
1215 -
1216 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1217 -
1218 -
1219 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1220 -
1221 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1222 -
1223 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1224 -
1225 -
1226 1226  = 7. Order Info =
1227 1227  
1228 1228  
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231101154140-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -540.3 KB
Content