Changes for page SN50v3-LB -- LoRaWAN Sensor Node User Manual
Last modified by Saxer Lin on 2025/03/18 17:25
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 12 removed)
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231101154140-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB --LoRaWAN Sensor Node User Manual1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Parent
-
... ... @@ -1,1 +1,0 @@ 1 -Main.User Manual for LoRaWAN End Nodes.WebHome - Content
-
... ... @@ -1,6 +1,8 @@ 1 - 1 +(% style="text-align:center" %) 2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 2 2 3 3 5 + 4 4 **Table of Contents:** 5 5 6 6 {{toc/}} ... ... @@ -17,7 +17,7 @@ 17 17 18 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 19 19 20 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 21 21 22 22 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 23 23 ... ... @@ -39,8 +39,6 @@ 39 39 * Downlink to change configure 40 40 * 8500mAh Battery for long term use 41 41 42 - 43 - 44 44 == 1.3 Specification == 45 45 46 46 ... ... @@ -78,8 +78,6 @@ 78 78 * Sleep Mode: 5uA @ 3.3v 79 79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 80 80 81 - 82 - 83 83 == 1.4 Sleep mode and working mode == 84 84 85 85 ... ... @@ -107,8 +107,6 @@ 107 107 ))) 108 108 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 109 109 110 - 111 - 112 112 == 1.6 BLE connection == 113 113 114 114 ... ... @@ -127,7 +127,7 @@ 127 127 == 1.7 Pin Definitions == 128 128 129 129 130 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB%20--%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20230610163213-1.png?width=699&height=404&rev=1.1||alt="image-20230610163213-1.png"]]126 +[[image:image-20230610163213-1.png||height="404" width="699"]] 131 131 132 132 133 133 == 1.8 Mechanical == ... ... @@ -145,8 +145,9 @@ 145 145 146 146 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 147 147 144 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 148 148 149 -[[image:i mage-20231101154140-1.png||height="514" width="867"]]146 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 150 150 151 151 152 152 = 2. Configure SN50v3-LB to connect to LoRaWAN network = ... ... @@ -230,33 +230,33 @@ 230 230 231 231 (% style="color:#037691" %)**Frequency Band**: 232 232 233 -0x01: EU868 230 +*0x01: EU868 234 234 235 -0x02: US915 232 +*0x02: US915 236 236 237 -0x03: IN865 234 +*0x03: IN865 238 238 239 -0x04: AU915 236 +*0x04: AU915 240 240 241 -0x05: KZ865 238 +*0x05: KZ865 242 242 243 -0x06: RU864 240 +*0x06: RU864 244 244 245 -0x07: AS923 242 +*0x07: AS923 246 246 247 -0x08: AS923-1 244 +*0x08: AS923-1 248 248 249 -0x09: AS923-2 246 +*0x09: AS923-2 250 250 251 -0x0a: AS923-3 248 +*0x0a: AS923-3 252 252 253 -0x0b: CN470 250 +*0x0b: CN470 254 254 255 -0x0c: EU433 252 +*0x0c: EU433 256 256 257 -0x0d: KR920 254 +*0x0d: KR920 258 258 259 -0x0e: MA869 256 +*0x0e: MA869 260 260 261 261 262 262 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -332,8 +332,9 @@ 332 332 )))|(% style="width:189px" %)((( 333 333 Digital in(PB15) & Digital Interrupt(PA8) 334 334 )))|(% style="width:208px" %)((( 335 -Distance measure by: 1) LIDAR-Lite V3HP 336 -Or 2) Ultrasonic Sensor 332 +Distance measure by:1) LIDAR-Lite V3HP 333 +Or 334 +2) Ultrasonic Sensor 337 337 )))|(% style="width:117px" %)Reserved 338 338 339 339 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -363,7 +363,8 @@ 363 363 ADC(PA4) 364 364 )))|(% style="width:323px" %)((( 365 365 Distance measure by:1)TF-Mini plus LiDAR 366 -Or 2) TF-Luna LiDAR 364 +Or 365 +2) TF-Luna LiDAR 367 367 )))|(% style="width:188px" %)Distance signal strength 368 368 369 369 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] ... ... @@ -470,6 +470,7 @@ 470 470 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 471 471 472 472 472 + 473 473 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 474 474 475 475 ... ... @@ -582,78 +582,6 @@ 582 582 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 583 583 584 584 585 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 586 - 587 - 588 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 589 - 590 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 591 - 592 - 593 -===== 2.3.2.10.a Uplink, PWM input capture ===== 594 - 595 - 596 -[[image:image-20230817172209-2.png||height="439" width="683"]] 597 - 598 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 599 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 600 -|Value|Bat|(% style="width:191px" %)((( 601 -Temperature(DS18B20)(PC13) 602 -)))|(% style="width:78px" %)((( 603 -ADC(PA4) 604 -)))|(% style="width:135px" %)((( 605 -PWM_Setting 606 - 607 -&Digital Interrupt(PA8) 608 -)))|(% style="width:70px" %)((( 609 -Pulse period 610 -)))|(% style="width:89px" %)((( 611 -Duration of high level 612 -))) 613 - 614 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 615 - 616 - 617 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 618 - 619 -**Frequency:** 620 - 621 -(% class="MsoNormal" %) 622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 623 - 624 -(% class="MsoNormal" %) 625 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 626 - 627 - 628 -(% class="MsoNormal" %) 629 -**Duty cycle:** 630 - 631 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 632 - 633 -[[image:image-20230818092200-1.png||height="344" width="627"]] 634 - 635 - 636 -===== 2.3.2.10.b Downlink, PWM output ===== 637 - 638 - 639 -[[image:image-20230817173800-3.png||height="412" width="685"]] 640 - 641 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 642 - 643 - xx xx xx is the output frequency, the unit is HZ. 644 - 645 - yy is the duty cycle of the output, the unit is %. 646 - 647 - zz zz is the time delay of the output, the unit is ms. 648 - 649 - 650 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 651 - 652 -The oscilloscope displays as follows: 653 - 654 -[[image:image-20230817173858-5.png||height="694" width="921"]] 655 - 656 - 657 657 === 2.3.3 Decode payload === 658 658 659 659 ... ... @@ -717,9 +717,9 @@ 717 717 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 718 718 719 719 720 -The measuring range of the ADC is only about 0 .1V to 1.1V The voltage resolution is about 0.24mv.648 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 721 721 722 -When the measured output voltage of the sensor is not within the range of 0 .1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.650 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 723 723 724 724 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 725 725 ... ... @@ -727,10 +727,6 @@ 727 727 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 728 728 729 729 730 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 731 - 732 -[[image:image-20230811113449-1.png||height="370" width="608"]] 733 - 734 734 ==== 2.3.3.5 Digital Interrupt ==== 735 735 736 736 ... ... @@ -877,31 +877,9 @@ 877 877 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 878 878 879 879 880 -==== 2.3.3.12 PWMMOD ====804 +==== 2.3.3.12 Working MOD ==== 881 881 882 882 883 -* ((( 884 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 885 -))) 886 -* ((( 887 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 888 -))) 889 - 890 - [[image:image-20230817183249-3.png||height="320" width="417"]] 891 - 892 -* ((( 893 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 894 -))) 895 -* ((( 896 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 897 - 898 - 899 - 900 -))) 901 - 902 -==== 2.3.3.13 Working MOD ==== 903 - 904 - 905 905 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 906 906 907 907 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -917,7 +917,6 @@ 917 917 * 6: MOD7 918 918 * 7: MOD8 919 919 * 8: MOD9 920 -* 9: MOD10 921 921 922 922 == 2.4 Payload Decoder file == 923 923 ... ... @@ -1013,7 +1013,7 @@ 1013 1013 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1014 1014 1015 1015 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1016 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**917 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1017 1017 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1018 1018 0 1019 1019 OK ... ... @@ -1057,7 +1057,7 @@ 1057 1057 (% style="color:blue" %)**AT Command: AT+5VT** 1058 1058 1059 1059 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1060 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**961 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1061 1061 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1062 1062 500(default) 1063 1063 OK ... ... @@ -1083,7 +1083,7 @@ 1083 1083 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1084 1084 1085 1085 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1086 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**987 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1087 1087 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1088 1088 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1089 1089 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1110,7 +1110,7 @@ 1110 1110 (% style="color:blue" %)**AT Command: AT+SETCNT** 1111 1111 1112 1112 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1113 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1014 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1114 1114 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1115 1115 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1116 1116 ... ... @@ -1131,7 +1131,7 @@ 1131 1131 (% style="color:blue" %)**AT Command: AT+MOD** 1132 1132 1133 1133 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1134 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1035 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1135 1135 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1136 1136 OK 1137 1137 ))) ... ... @@ -1147,33 +1147,6 @@ 1147 1147 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1148 1148 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1149 1149 1150 -=== 3.3.8 PWM setting === 1151 - 1152 - 1153 -Feature: Set the time acquisition unit for PWM input capture. 1154 - 1155 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1156 - 1157 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1158 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1159 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1160 -0(default) 1161 - 1162 -OK 1163 -))) 1164 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1165 -OK 1166 - 1167 -))) 1168 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1169 - 1170 -(% style="color:blue" %)**Downlink Command: 0x0C** 1171 - 1172 -Format: Command Code (0x0C) followed by 1 bytes. 1173 - 1174 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1175 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1176 - 1177 1177 = 4. Battery & Power Consumption = 1178 1178 1179 1179 ... ... @@ -1196,8 +1196,8 @@ 1196 1196 1197 1197 **Methods to Update Firmware:** 1198 1198 1199 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**1200 -* Update through UART TTL interface :**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.1073 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1074 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1201 1201 1202 1202 = 6. FAQ = 1203 1203 ... ... @@ -1207,22 +1207,6 @@ 1207 1207 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1208 1208 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1209 1209 1210 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1211 - 1212 - 1213 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1214 - 1215 - 1216 -== 6.3 How to put several sensors to a SN50v3-LB? == 1217 - 1218 - 1219 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1220 - 1221 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1222 - 1223 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1224 - 1225 - 1226 1226 = 7. Order Info = 1227 1227 1228 1228
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content
- image-20231101154140-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -540.3 KB - Content