Last modified by Saxer Lin on 2025/03/18 17:25

From version 75.3
edited by Xiaoling
on 2023/11/01 15:46
Change comment: There is no comment for this version
To version 44.1
edited by Ellie Zhang
on 2023/05/17 15:29
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Parent
... ... @@ -1,1 +1,0 @@
1 -Main.User Manual for LoRaWAN End Nodes.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Ellie
Content
... ... @@ -1,6 +1,8 @@
1 -
1 +(% style="text-align:center" %)
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
2 2  
3 3  
5 +
4 4  **Table of Contents:**
5 5  
6 6  {{toc/}}
... ... @@ -17,7 +17,7 @@
17 17  
18 18  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
19 19  
20 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
21 21  
22 22  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
23 23  
... ... @@ -40,7 +40,6 @@
40 40  * 8500mAh Battery for long term use
41 41  
42 42  
43 -
44 44  == 1.3 Specification ==
45 45  
46 46  
... ... @@ -79,7 +79,6 @@
79 79  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80 80  
81 81  
82 -
83 83  == 1.4 Sleep mode and working mode ==
84 84  
85 85  
... ... @@ -108,7 +108,6 @@
108 108  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109 109  
110 110  
111 -
112 112  == 1.6 BLE connection ==
113 113  
114 114  
... ... @@ -127,7 +127,7 @@
127 127  == 1.7 Pin Definitions ==
128 128  
129 129  
130 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB%20--%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20230610163213-1.png?width=699&height=404&rev=1.1||alt="image-20230610163213-1.png"]]
129 +[[image:image-20230513102034-2.png]]
131 131  
132 132  
133 133  == 1.8 Mechanical ==
... ... @@ -140,13 +140,14 @@
140 140  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
141 141  
142 142  
143 -== 1.9 Hole Option ==
142 +== Hole Option ==
144 144  
145 145  
146 146  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
147 147  
147 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
148 148  
149 -[[image:image-20231101154140-1.png||height="514" width="867"]]
149 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
150 150  
151 151  
152 152  = 2. Configure SN50v3-LB to connect to LoRaWAN network =
... ... @@ -154,7 +154,7 @@
154 154  == 2.1 How it works ==
155 155  
156 156  
157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 158  
159 159  
160 160  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -162,7 +162,7 @@
162 162  
163 163  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
164 164  
165 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
165 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166 166  
167 167  
168 168  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -211,7 +211,7 @@
211 211  === 2.3.1 Device Status, FPORT~=5 ===
212 212  
213 213  
214 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
214 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
215 215  
216 216  The Payload format is as below.
217 217  
... ... @@ -219,44 +219,44 @@
219 219  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 220  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
221 221  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
222 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
222 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
223 223  
224 224  Example parse in TTNv3
225 225  
226 226  
227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
228 228  
229 229  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
230 230  
231 231  (% style="color:#037691" %)**Frequency Band**:
232 232  
233 -0x01: EU868
233 +*0x01: EU868
234 234  
235 -0x02: US915
235 +*0x02: US915
236 236  
237 -0x03: IN865
237 +*0x03: IN865
238 238  
239 -0x04: AU915
239 +*0x04: AU915
240 240  
241 -0x05: KZ865
241 +*0x05: KZ865
242 242  
243 -0x06: RU864
243 +*0x06: RU864
244 244  
245 -0x07: AS923
245 +*0x07: AS923
246 246  
247 -0x08: AS923-1
247 +*0x08: AS923-1
248 248  
249 -0x09: AS923-2
249 +*0x09: AS923-2
250 250  
251 -0x0a: AS923-3
251 +*0x0a: AS923-3
252 252  
253 -0x0b: CN470
253 +*0x0b: CN470
254 254  
255 -0x0c: EU433
255 +*0x0c: EU433
256 256  
257 -0x0d: KR920
257 +*0x0d: KR920
258 258  
259 -0x0e: MA869
259 +*0x0e: MA869
260 260  
261 261  
262 262  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -280,22 +280,20 @@
280 280  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
281 281  
282 282  
283 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
283 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
284 284  
285 285  For example:
286 286  
287 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
287 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288 288  
289 289  
290 290  (% style="color:red" %) **Important Notice:**
291 291  
292 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
292 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
293 +1. All modes share the same Payload Explanation from HERE.
294 +1. By default, the device will send an uplink message every 20 minutes.
293 293  
294 -2. All modes share the same Payload Explanation from HERE.
295 295  
296 -3. By default, the device will send an uplink message every 20 minutes.
297 -
298 -
299 299  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
300 300  
301 301  
... ... @@ -303,7 +303,7 @@
303 303  
304 304  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
305 305  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
306 -|Value|Bat|(% style="width:191px" %)(((
304 +|**Value**|Bat|(% style="width:191px" %)(((
307 307  Temperature(DS18B20)(PC13)
308 308  )))|(% style="width:78px" %)(((
309 309  ADC(PA4)
... ... @@ -318,6 +318,7 @@
318 318  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
319 319  
320 320  
319 +
321 321  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
322 322  
323 323  
... ... @@ -325,7 +325,7 @@
325 325  
326 326  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
327 327  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
328 -|Value|BAT|(% style="width:196px" %)(((
327 +|**Value**|BAT|(% style="width:196px" %)(((
329 329  Temperature(DS18B20)(PC13)
330 330  )))|(% style="width:87px" %)(((
331 331  ADC(PA4)
... ... @@ -332,8 +332,9 @@
332 332  )))|(% style="width:189px" %)(((
333 333  Digital in(PB15) & Digital Interrupt(PA8)
334 334  )))|(% style="width:208px" %)(((
335 -Distance measure by: 1) LIDAR-Lite V3HP
336 -Or 2) Ultrasonic Sensor
334 +Distance measure by:1) LIDAR-Lite V3HP
335 +Or
336 +2) Ultrasonic Sensor
337 337  )))|(% style="width:117px" %)Reserved
338 338  
339 339  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -355,7 +355,7 @@
355 355  
356 356  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
357 357  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
358 -|Value|BAT|(% style="width:183px" %)(((
358 +|**Value**|BAT|(% style="width:183px" %)(((
359 359  Temperature(DS18B20)(PC13)
360 360  )))|(% style="width:173px" %)(((
361 361  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -363,7 +363,8 @@
363 363  ADC(PA4)
364 364  )))|(% style="width:323px" %)(((
365 365  Distance measure by:1)TF-Mini plus LiDAR
366 -Or 2) TF-Luna LiDAR
366 +Or 
367 +2) TF-Luna LiDAR
367 367  )))|(% style="width:188px" %)Distance signal  strength
368 368  
369 369  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -380,7 +380,7 @@
380 380  
381 381  (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
382 382  
383 -[[image:image-20230610170047-1.png||height="452" width="799"]]
384 +[[image:image-20230513105207-4.png||height="469" width="802"]]
384 384  
385 385  
386 386  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
... ... @@ -392,7 +392,7 @@
392 392  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
393 393  **Size(bytes)**
394 394  )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
395 -|Value|(% style="width:68px" %)(((
396 +|**Value**|(% style="width:68px" %)(((
396 396  ADC1(PA4)
397 397  )))|(% style="width:75px" %)(((
398 398  ADC2(PA5)
... ... @@ -416,7 +416,7 @@
416 416  
417 417  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 418  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
419 -|Value|BAT|(% style="width:186px" %)(((
420 +|**Value**|BAT|(% style="width:186px" %)(((
420 420  Temperature1(DS18B20)(PC13)
421 421  )))|(% style="width:82px" %)(((
422 422  ADC(PA4)
... ... @@ -427,10 +427,10 @@
427 427  
428 428  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
429 429  
430 -
431 431  [[image:image-20230513134006-1.png||height="559" width="736"]]
432 432  
433 433  
434 +
434 434  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
435 435  
436 436  
... ... @@ -438,8 +438,8 @@
438 438  
439 439  Each HX711 need to be calibrated before used. User need to do below two steps:
440 440  
441 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
442 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
443 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
443 443  1. (((
444 444  Weight has 4 bytes, the unit is g.
445 445  
... ... @@ -449,7 +449,7 @@
449 449  
450 450  For example:
451 451  
452 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
453 +**AT+GETSENSORVALUE =0**
453 453  
454 454  Response:  Weight is 401 g
455 455  
... ... @@ -459,7 +459,7 @@
459 459  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
460 460  **Size(bytes)**
461 461  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
462 -|Value|BAT|(% style="width:193px" %)(((
463 +|**Value**|BAT|(% style="width:193px" %)(((
463 463  Temperature(DS18B20)(PC13)
464 464  )))|(% style="width:85px" %)(((
465 465  ADC(PA4)
... ... @@ -470,6 +470,7 @@
470 470  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
471 471  
472 472  
474 +
473 473  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
474 474  
475 475  
... ... @@ -484,7 +484,7 @@
484 484  
485 485  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
486 486  |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
487 -|Value|BAT|(% style="width:256px" %)(((
489 +|**Value**|BAT|(% style="width:256px" %)(((
488 488  Temperature(DS18B20)(PC13)
489 489  )))|(% style="width:108px" %)(((
490 490  ADC(PA4)
... ... @@ -497,6 +497,7 @@
497 497  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
498 498  
499 499  
502 +
500 500  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
501 501  
502 502  
... ... @@ -504,7 +504,7 @@
504 504  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
505 505  **Size(bytes)**
506 506  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
507 -|Value|BAT|(% style="width:188px" %)(((
510 +|**Value**|BAT|(% style="width:188px" %)(((
508 508  Temperature(DS18B20)
509 509  (PC13)
510 510  )))|(% style="width:83px" %)(((
... ... @@ -523,7 +523,7 @@
523 523  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
524 524  **Size(bytes)**
525 525  )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
526 -|Value|BAT|(% style="width:207px" %)(((
529 +|**Value**|BAT|(% style="width:207px" %)(((
527 527  Temperature(DS18B20)
528 528  (PC13)
529 529  )))|(% style="width:94px" %)(((
... ... @@ -546,7 +546,7 @@
546 546  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
547 547  **Size(bytes)**
548 548  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
549 -|Value|BAT|(((
552 +|**Value**|BAT|(((
550 550  Temperature
551 551  (DS18B20)(PC13)
552 552  )))|(((
... ... @@ -582,78 +582,6 @@
582 582  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
583 583  
584 584  
585 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
586 -
587 -
588 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
589 -
590 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
591 -
592 -
593 -===== 2.3.2.10.a  Uplink, PWM input capture =====
594 -
595 -
596 -[[image:image-20230817172209-2.png||height="439" width="683"]]
597 -
598 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
599 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
600 -|Value|Bat|(% style="width:191px" %)(((
601 -Temperature(DS18B20)(PC13)
602 -)))|(% style="width:78px" %)(((
603 -ADC(PA4)
604 -)))|(% style="width:135px" %)(((
605 -PWM_Setting
606 -
607 -&Digital Interrupt(PA8)
608 -)))|(% style="width:70px" %)(((
609 -Pulse period
610 -)))|(% style="width:89px" %)(((
611 -Duration of high level
612 -)))
613 -
614 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
615 -
616 -
617 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
618 -
619 -**Frequency:**
620 -
621 -(% class="MsoNormal" %)
622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
623 -
624 -(% class="MsoNormal" %)
625 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
626 -
627 -
628 -(% class="MsoNormal" %)
629 -**Duty cycle:**
630 -
631 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
632 -
633 -[[image:image-20230818092200-1.png||height="344" width="627"]]
634 -
635 -
636 -===== 2.3.2.10.b  Downlink, PWM output =====
637 -
638 -
639 -[[image:image-20230817173800-3.png||height="412" width="685"]]
640 -
641 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
642 -
643 - xx xx xx is the output frequency, the unit is HZ.
644 -
645 - yy is the duty cycle of the output, the unit is %.
646 -
647 - zz zz is the time delay of the output, the unit is ms.
648 -
649 -
650 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
651 -
652 -The oscilloscope displays as follows:
653 -
654 -[[image:image-20230817173858-5.png||height="694" width="921"]]
655 -
656 -
657 657  === 2.3.3  ​Decode payload ===
658 658  
659 659  
... ... @@ -663,13 +663,13 @@
663 663  
664 664  The payload decoder function for TTN V3 are here:
665 665  
666 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
597 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
667 667  
668 668  
669 669  ==== 2.3.3.1 Battery Info ====
670 670  
671 671  
672 -Check the battery voltage for SN50v3-LB.
603 +Check the battery voltage for SN50v3.
673 673  
674 674  Ex1: 0x0B45 = 2885mV
675 675  
... ... @@ -717,24 +717,19 @@
717 717  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
718 718  
719 719  
720 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
651 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
721 721  
722 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
653 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
723 723  
724 724  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
725 725  
726 -
727 727  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
728 728  
729 729  
730 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
731 -
732 -[[image:image-20230811113449-1.png||height="370" width="608"]]
733 -
734 734  ==== 2.3.3.5 Digital Interrupt ====
735 735  
736 736  
737 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
663 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
738 738  
739 739  (% style="color:blue" %)** Interrupt connection method:**
740 740  
... ... @@ -747,18 +747,18 @@
747 747  
748 748  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
749 749  
750 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
676 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
751 751  
752 752  
753 753  (% style="color:blue" %)**Below is the installation example:**
754 754  
755 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
681 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
756 756  
757 757  * (((
758 -One pin to SN50v3-LB's PA8 pin
684 +One pin to SN50_v3's PA8 pin
759 759  )))
760 760  * (((
761 -The other pin to SN50v3-LB's VDD pin
687 +The other pin to SN50_v3's VDD pin
762 762  )))
763 763  
764 764  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -775,7 +775,7 @@
775 775  
776 776  The command is:
777 777  
778 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
704 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
779 779  
780 780  Below shows some screen captures in TTN V3:
781 781  
... ... @@ -782,7 +782,7 @@
782 782  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
783 783  
784 784  
785 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
711 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
786 786  
787 787  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
788 788  
... ... @@ -794,13 +794,12 @@
794 794  
795 795  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
796 796  
797 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
723 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
798 798  
799 -
800 800  Below is the connection to SHT20/ SHT31. The connection is as below:
801 801  
802 -[[image:image-20230610170152-2.png||height="501" width="846"]]
803 803  
728 +[[image:image-20230513103633-3.png||height="448" width="716"]]
804 804  
805 805  The device will be able to get the I2C sensor data now and upload to IoT Server.
806 806  
... ... @@ -828,7 +828,7 @@
828 828  
829 829  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
830 830  
831 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
756 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
832 832  
833 833  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
834 834  
... ... @@ -837,7 +837,7 @@
837 837  [[image:image-20230512173903-6.png||height="596" width="715"]]
838 838  
839 839  
840 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
765 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
841 841  
842 842  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
843 843  
... ... @@ -849,13 +849,13 @@
849 849  ==== 2.3.3.9  Battery Output - BAT pin ====
850 850  
851 851  
852 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
777 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
853 853  
854 854  
855 855  ==== 2.3.3.10  +5V Output ====
856 856  
857 857  
858 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
783 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
859 859  
860 860  The 5V output time can be controlled by AT Command.
861 861  
... ... @@ -863,7 +863,7 @@
863 863  
864 864  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
865 865  
866 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
791 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
867 867  
868 868  
869 869  ==== 2.3.3.11  BH1750 Illumination Sensor ====
... ... @@ -877,31 +877,9 @@
877 877  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
878 878  
879 879  
880 -==== 2.3.3.12  PWM MOD ====
805 +==== 2.3.3.12  Working MOD ====
881 881  
882 882  
883 -* (((
884 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
885 -)))
886 -* (((
887 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
888 -)))
889 -
890 - [[image:image-20230817183249-3.png||height="320" width="417"]]
891 -
892 -* (((
893 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
894 -)))
895 -* (((
896 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
897 -
898 -
899 -
900 -)))
901 -
902 -==== 2.3.3.13  Working MOD ====
903 -
904 -
905 905  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
906 906  
907 907  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -917,8 +917,8 @@
917 917  * 6: MOD7
918 918  * 7: MOD8
919 919  * 8: MOD9
920 -* 9: MOD10
921 921  
824 +
922 922  == 2.4 Payload Decoder file ==
923 923  
924 924  
... ... @@ -948,6 +948,7 @@
948 948  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
949 949  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
950 950  
854 +
951 951  == 3.2 General Commands ==
952 952  
953 953  
... ... @@ -964,7 +964,7 @@
964 964  == 3.3 Commands special design for SN50v3-LB ==
965 965  
966 966  
967 -These commands only valid for SN50v3-LB, as below:
871 +These commands only valid for S31x-LB, as below:
968 968  
969 969  
970 970  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -975,7 +975,7 @@
975 975  (% style="color:blue" %)**AT Command: AT+TDC**
976 976  
977 977  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
978 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
882 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
979 979  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
980 980  30000
981 981  OK
... ... @@ -995,14 +995,15 @@
995 995  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
996 996  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
997 997  
902 +
998 998  === 3.3.2 Get Device Status ===
999 999  
1000 1000  
1001 1001  Send a LoRaWAN downlink to ask the device to send its status.
1002 1002  
1003 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
908 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1004 1004  
1005 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
910 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1006 1006  
1007 1007  
1008 1008  === 3.3.3 Set Interrupt Mode ===
... ... @@ -1013,7 +1013,7 @@
1013 1013  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1014 1014  
1015 1015  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1016 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
921 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1017 1017  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1018 1018  0
1019 1019  OK
... ... @@ -1043,6 +1043,7 @@
1043 1043  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1044 1044  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1045 1045  
951 +
1046 1046  === 3.3.4 Set Power Output Duration ===
1047 1047  
1048 1048  
... ... @@ -1057,7 +1057,7 @@
1057 1057  (% style="color:blue" %)**AT Command: AT+5VT**
1058 1058  
1059 1059  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1060 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
966 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1061 1061  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1062 1062  500(default)
1063 1063  OK
... ... @@ -1075,6 +1075,7 @@
1075 1075  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1076 1076  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1077 1077  
984 +
1078 1078  === 3.3.5 Set Weighing parameters ===
1079 1079  
1080 1080  
... ... @@ -1083,7 +1083,7 @@
1083 1083  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1084 1084  
1085 1085  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1086 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
993 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1087 1087  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1088 1088  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1089 1089  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1100,6 +1100,7 @@
1100 1100  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1101 1101  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1102 1102  
1010 +
1103 1103  === 3.3.6 Set Digital pulse count value ===
1104 1104  
1105 1105  
... ... @@ -1110,7 +1110,7 @@
1110 1110  (% style="color:blue" %)**AT Command: AT+SETCNT**
1111 1111  
1112 1112  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1113 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1021 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1114 1114  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1115 1115  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1116 1116  
... ... @@ -1123,6 +1123,7 @@
1123 1123  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1124 1124  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1125 1125  
1034 +
1126 1126  === 3.3.7 Set Workmode ===
1127 1127  
1128 1128  
... ... @@ -1131,7 +1131,7 @@
1131 1131  (% style="color:blue" %)**AT Command: AT+MOD**
1132 1132  
1133 1133  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1134 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1043 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1135 1135  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1136 1136  OK
1137 1137  )))
... ... @@ -1147,33 +1147,7 @@
1147 1147  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1148 1148  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1149 1149  
1150 -=== 3.3.8 PWM setting ===
1151 1151  
1152 -
1153 -Feature: Set the time acquisition unit for PWM input capture.
1154 -
1155 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1156 -
1157 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1158 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1159 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1160 -0(default)
1161 -
1162 -OK
1163 -)))
1164 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1165 -OK
1166 -
1167 -)))
1168 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1169 -
1170 -(% style="color:blue" %)**Downlink Command: 0x0C**
1171 -
1172 -Format: Command Code (0x0C) followed by 1 bytes.
1173 -
1174 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1175 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1176 -
1177 1177  = 4. Battery & Power Consumption =
1178 1178  
1179 1179  
... ... @@ -1186,19 +1186,21 @@
1186 1186  
1187 1187  
1188 1188  (% class="wikigeneratedid" %)
1189 -**User can change firmware SN50v3-LB to:**
1072 +User can change firmware SN50v3-LB to:
1190 1190  
1191 1191  * Change Frequency band/ region.
1192 1192  * Update with new features.
1193 1193  * Fix bugs.
1194 1194  
1195 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1078 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1196 1196  
1197 -**Methods to Update Firmware:**
1198 1198  
1199 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1200 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1081 +Methods to Update Firmware:
1201 1201  
1083 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1084 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1085 +
1086 +
1202 1202  = 6. FAQ =
1203 1203  
1204 1204  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1207,22 +1207,7 @@
1207 1207  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1208 1208  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1209 1209  
1210 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1211 1211  
1212 -
1213 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1214 -
1215 -
1216 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1217 -
1218 -
1219 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1220 -
1221 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1222 -
1223 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1224 -
1225 -
1226 1226  = 7. Order Info =
1227 1227  
1228 1228  
... ... @@ -1246,6 +1246,7 @@
1246 1246  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1247 1247  * (% style="color:red" %)**NH**(%%): No Hole
1248 1248  
1119 +
1249 1249  = 8. ​Packing Info =
1250 1250  
1251 1251  
... ... @@ -1260,6 +1260,7 @@
1260 1260  * Package Size / pcs : cm
1261 1261  * Weight / pcs : g
1262 1262  
1134 +
1263 1263  = 9. Support =
1264 1264  
1265 1265  
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231101154140-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -540.3 KB
Content