Last modified by Saxer Lin on 2025/03/18 17:25

From version 75.2
edited by Xiaoling
on 2023/11/01 15:42
Change comment: There is no comment for this version
To version 54.2
edited by Xiaoling
on 2023/07/13 15:14
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Parent
... ... @@ -1,1 +1,0 @@
1 -Main.User Manual for LoRaWAN End Nodes.WebHome
Content
... ... @@ -1,6 +1,8 @@
1 -
1 +(% style="text-align:center" %)
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
2 2  
3 3  
5 +
4 4  **Table of Contents:**
5 5  
6 6  {{toc/}}
... ... @@ -17,7 +17,7 @@
17 17  
18 18  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
19 19  
20 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
21 21  
22 22  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
23 23  
... ... @@ -25,6 +25,7 @@
25 25  
26 26  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
27 27  
30 +
28 28  == 1.2 ​Features ==
29 29  
30 30  
... ... @@ -38,6 +38,8 @@
38 38  * Downlink to change configure
39 39  * 8500mAh Battery for long term use
40 40  
44 +
45 +
41 41  == 1.3 Specification ==
42 42  
43 43  
... ... @@ -75,6 +75,8 @@
75 75  * Sleep Mode: 5uA @ 3.3v
76 76  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
77 77  
83 +
84 +
78 78  == 1.4 Sleep mode and working mode ==
79 79  
80 80  
... ... @@ -102,6 +102,8 @@
102 102  )))
103 103  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
104 104  
112 +
113 +
105 105  == 1.6 BLE connection ==
106 106  
107 107  
... ... @@ -138,8 +138,9 @@
138 138  
139 139  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
140 140  
150 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
141 141  
142 -[[image:image-20231101154140-1.png||height="514" width="867"]]
152 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
143 143  
144 144  
145 145  = 2. Configure SN50v3-LB to connect to LoRaWAN network =
... ... @@ -463,6 +463,7 @@
463 463  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
464 464  
465 465  
476 +
466 466  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
467 467  
468 468  
... ... @@ -575,78 +575,6 @@
575 575  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
576 576  
577 577  
578 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
579 -
580 -
581 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
582 -
583 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
584 -
585 -
586 -===== 2.3.2.10.a  Uplink, PWM input capture =====
587 -
588 -
589 -[[image:image-20230817172209-2.png||height="439" width="683"]]
590 -
591 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
592 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
593 -|Value|Bat|(% style="width:191px" %)(((
594 -Temperature(DS18B20)(PC13)
595 -)))|(% style="width:78px" %)(((
596 -ADC(PA4)
597 -)))|(% style="width:135px" %)(((
598 -PWM_Setting
599 -
600 -&Digital Interrupt(PA8)
601 -)))|(% style="width:70px" %)(((
602 -Pulse period
603 -)))|(% style="width:89px" %)(((
604 -Duration of high level
605 -)))
606 -
607 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
608 -
609 -
610 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
611 -
612 -**Frequency:**
613 -
614 -(% class="MsoNormal" %)
615 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
616 -
617 -(% class="MsoNormal" %)
618 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
619 -
620 -
621 -(% class="MsoNormal" %)
622 -**Duty cycle:**
623 -
624 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
625 -
626 -[[image:image-20230818092200-1.png||height="344" width="627"]]
627 -
628 -
629 -===== 2.3.2.10.b  Downlink, PWM output =====
630 -
631 -
632 -[[image:image-20230817173800-3.png||height="412" width="685"]]
633 -
634 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
635 -
636 - xx xx xx is the output frequency, the unit is HZ.
637 -
638 - yy is the duty cycle of the output, the unit is %.
639 -
640 - zz zz is the time delay of the output, the unit is ms.
641 -
642 -
643 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
644 -
645 -The oscilloscope displays as follows:
646 -
647 -[[image:image-20230817173858-5.png||height="694" width="921"]]
648 -
649 -
650 650  === 2.3.3  ​Decode payload ===
651 651  
652 652  
... ... @@ -720,10 +720,6 @@
720 720  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
721 721  
722 722  
723 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
724 -
725 -[[image:image-20230811113449-1.png||height="370" width="608"]]
726 -
727 727  ==== 2.3.3.5 Digital Interrupt ====
728 728  
729 729  
... ... @@ -870,31 +870,9 @@
870 870  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
871 871  
872 872  
873 -==== 2.3.3.12  PWM MOD ====
808 +==== 2.3.3.12  Working MOD ====
874 874  
875 875  
876 -* (((
877 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
878 -)))
879 -* (((
880 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
881 -)))
882 -
883 - [[image:image-20230817183249-3.png||height="320" width="417"]]
884 -
885 -* (((
886 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
887 -)))
888 -* (((
889 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
890 -
891 -
892 -
893 -)))
894 -
895 -==== 2.3.3.13  Working MOD ====
896 -
897 -
898 898  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
899 899  
900 900  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -910,8 +910,9 @@
910 910  * 6: MOD7
911 911  * 7: MOD8
912 912  * 8: MOD9
913 -* 9: MOD10
914 914  
827 +
828 +
915 915  == 2.4 Payload Decoder file ==
916 916  
917 917  
... ... @@ -941,6 +941,8 @@
941 941  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
942 942  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
943 943  
858 +
859 +
944 944  == 3.2 General Commands ==
945 945  
946 946  
... ... @@ -988,6 +988,8 @@
988 988  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
989 989  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
990 990  
907 +
908 +
991 991  === 3.3.2 Get Device Status ===
992 992  
993 993  
... ... @@ -1036,6 +1036,8 @@
1036 1036  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1037 1037  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1038 1038  
957 +
958 +
1039 1039  === 3.3.4 Set Power Output Duration ===
1040 1040  
1041 1041  
... ... @@ -1068,6 +1068,8 @@
1068 1068  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1069 1069  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1070 1070  
991 +
992 +
1071 1071  === 3.3.5 Set Weighing parameters ===
1072 1072  
1073 1073  
... ... @@ -1093,6 +1093,8 @@
1093 1093  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1094 1094  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1095 1095  
1018 +
1019 +
1096 1096  === 3.3.6 Set Digital pulse count value ===
1097 1097  
1098 1098  
... ... @@ -1116,6 +1116,8 @@
1116 1116  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1117 1117  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1118 1118  
1043 +
1044 +
1119 1119  === 3.3.7 Set Workmode ===
1120 1120  
1121 1121  
... ... @@ -1140,33 +1140,8 @@
1140 1140  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1141 1141  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1142 1142  
1143 -=== 3.3.8 PWM setting ===
1144 1144  
1145 1145  
1146 -Feature: Set the time acquisition unit for PWM input capture.
1147 -
1148 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1149 -
1150 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1151 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1152 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1153 -0(default)
1154 -
1155 -OK
1156 -)))
1157 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1158 -OK
1159 -
1160 -)))
1161 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1162 -
1163 -(% style="color:blue" %)**Downlink Command: 0x0C**
1164 -
1165 -Format: Command Code (0x0C) followed by 1 bytes.
1166 -
1167 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1168 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1169 -
1170 1170  = 4. Battery & Power Consumption =
1171 1171  
1172 1172  
... ... @@ -1192,6 +1192,8 @@
1192 1192  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1193 1193  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1194 1194  
1096 +
1097 +
1195 1195  = 6. FAQ =
1196 1196  
1197 1197  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1200,22 +1200,8 @@
1200 1200  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1201 1201  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1202 1202  
1203 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1204 1204  
1205 1205  
1206 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1207 -
1208 -
1209 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1210 -
1211 -
1212 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1213 -
1214 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1215 -
1216 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1217 -
1218 -
1219 1219  = 7. Order Info =
1220 1220  
1221 1221  
... ... @@ -1239,6 +1239,8 @@
1239 1239  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1240 1240  * (% style="color:red" %)**NH**(%%): No Hole
1241 1241  
1131 +
1132 +
1242 1242  = 8. ​Packing Info =
1243 1243  
1244 1244  
... ... @@ -1253,6 +1253,8 @@
1253 1253  * Package Size / pcs : cm
1254 1254  * Weight / pcs : g
1255 1255  
1147 +
1148 +
1256 1256  = 9. Support =
1257 1257  
1258 1258  
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231101154140-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -540.3 KB
Content