Last modified by Saxer Lin on 2025/03/18 17:25

From version 75.2
edited by Xiaoling
on 2023/11/01 15:42
Change comment: There is no comment for this version
To version 44.1
edited by Ellie Zhang
on 2023/05/17 15:29
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Parent
... ... @@ -1,1 +1,0 @@
1 -Main.User Manual for LoRaWAN End Nodes.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Ellie
Content
... ... @@ -1,6 +1,8 @@
1 -
1 +(% style="text-align:center" %)
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
2 2  
3 3  
5 +
4 4  **Table of Contents:**
5 5  
6 6  {{toc/}}
... ... @@ -17,7 +17,7 @@
17 17  
18 18  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
19 19  
20 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
21 21  
22 22  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
23 23  
... ... @@ -25,6 +25,7 @@
25 25  
26 26  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
27 27  
30 +
28 28  == 1.2 ​Features ==
29 29  
30 30  
... ... @@ -38,6 +38,7 @@
38 38  * Downlink to change configure
39 39  * 8500mAh Battery for long term use
40 40  
44 +
41 41  == 1.3 Specification ==
42 42  
43 43  
... ... @@ -75,6 +75,7 @@
75 75  * Sleep Mode: 5uA @ 3.3v
76 76  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
77 77  
82 +
78 78  == 1.4 Sleep mode and working mode ==
79 79  
80 80  
... ... @@ -102,6 +102,7 @@
102 102  )))
103 103  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
104 104  
110 +
105 105  == 1.6 BLE connection ==
106 106  
107 107  
... ... @@ -120,7 +120,7 @@
120 120  == 1.7 Pin Definitions ==
121 121  
122 122  
123 -[[image:image-20230610163213-1.png||height="404" width="699"]]
129 +[[image:image-20230513102034-2.png]]
124 124  
125 125  
126 126  == 1.8 Mechanical ==
... ... @@ -133,13 +133,14 @@
133 133  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
134 134  
135 135  
136 -== 1.9 Hole Option ==
142 +== Hole Option ==
137 137  
138 138  
139 139  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
140 140  
147 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
141 141  
142 -[[image:image-20231101154140-1.png||height="514" width="867"]]
149 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
143 143  
144 144  
145 145  = 2. Configure SN50v3-LB to connect to LoRaWAN network =
... ... @@ -147,7 +147,7 @@
147 147  == 2.1 How it works ==
148 148  
149 149  
150 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
151 151  
152 152  
153 153  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -155,7 +155,7 @@
155 155  
156 156  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
157 157  
158 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
165 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
159 159  
160 160  
161 161  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -204,7 +204,7 @@
204 204  === 2.3.1 Device Status, FPORT~=5 ===
205 205  
206 206  
207 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
214 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
208 208  
209 209  The Payload format is as below.
210 210  
... ... @@ -212,44 +212,44 @@
212 212  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
213 213  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
214 214  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
215 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
222 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
216 216  
217 217  Example parse in TTNv3
218 218  
219 219  
220 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
221 221  
222 222  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
223 223  
224 224  (% style="color:#037691" %)**Frequency Band**:
225 225  
226 -0x01: EU868
233 +*0x01: EU868
227 227  
228 -0x02: US915
235 +*0x02: US915
229 229  
230 -0x03: IN865
237 +*0x03: IN865
231 231  
232 -0x04: AU915
239 +*0x04: AU915
233 233  
234 -0x05: KZ865
241 +*0x05: KZ865
235 235  
236 -0x06: RU864
243 +*0x06: RU864
237 237  
238 -0x07: AS923
245 +*0x07: AS923
239 239  
240 -0x08: AS923-1
247 +*0x08: AS923-1
241 241  
242 -0x09: AS923-2
249 +*0x09: AS923-2
243 243  
244 -0x0a: AS923-3
251 +*0x0a: AS923-3
245 245  
246 -0x0b: CN470
253 +*0x0b: CN470
247 247  
248 -0x0c: EU433
255 +*0x0c: EU433
249 249  
250 -0x0d: KR920
257 +*0x0d: KR920
251 251  
252 -0x0e: MA869
259 +*0x0e: MA869
253 253  
254 254  
255 255  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -273,22 +273,20 @@
273 273  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
274 274  
275 275  
276 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
283 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
277 277  
278 278  For example:
279 279  
280 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
287 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
281 281  
282 282  
283 283  (% style="color:red" %) **Important Notice:**
284 284  
285 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
292 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
293 +1. All modes share the same Payload Explanation from HERE.
294 +1. By default, the device will send an uplink message every 20 minutes.
286 286  
287 -2. All modes share the same Payload Explanation from HERE.
288 288  
289 -3. By default, the device will send an uplink message every 20 minutes.
290 -
291 -
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 294  
... ... @@ -296,7 +296,7 @@
296 296  
297 297  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 298  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
299 -|Value|Bat|(% style="width:191px" %)(((
304 +|**Value**|Bat|(% style="width:191px" %)(((
300 300  Temperature(DS18B20)(PC13)
301 301  )))|(% style="width:78px" %)(((
302 302  ADC(PA4)
... ... @@ -311,6 +311,7 @@
311 311  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
312 312  
313 313  
319 +
314 314  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315 315  
316 316  
... ... @@ -318,7 +318,7 @@
318 318  
319 319  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
320 320  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
321 -|Value|BAT|(% style="width:196px" %)(((
327 +|**Value**|BAT|(% style="width:196px" %)(((
322 322  Temperature(DS18B20)(PC13)
323 323  )))|(% style="width:87px" %)(((
324 324  ADC(PA4)
... ... @@ -325,8 +325,9 @@
325 325  )))|(% style="width:189px" %)(((
326 326  Digital in(PB15) & Digital Interrupt(PA8)
327 327  )))|(% style="width:208px" %)(((
328 -Distance measure by: 1) LIDAR-Lite V3HP
329 -Or 2) Ultrasonic Sensor
334 +Distance measure by:1) LIDAR-Lite V3HP
335 +Or
336 +2) Ultrasonic Sensor
330 330  )))|(% style="width:117px" %)Reserved
331 331  
332 332  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -348,7 +348,7 @@
348 348  
349 349  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
350 350  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
351 -|Value|BAT|(% style="width:183px" %)(((
358 +|**Value**|BAT|(% style="width:183px" %)(((
352 352  Temperature(DS18B20)(PC13)
353 353  )))|(% style="width:173px" %)(((
354 354  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -356,7 +356,8 @@
356 356  ADC(PA4)
357 357  )))|(% style="width:323px" %)(((
358 358  Distance measure by:1)TF-Mini plus LiDAR
359 -Or 2) TF-Luna LiDAR
366 +Or 
367 +2) TF-Luna LiDAR
360 360  )))|(% style="width:188px" %)Distance signal  strength
361 361  
362 362  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -373,7 +373,7 @@
373 373  
374 374  (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
375 375  
376 -[[image:image-20230610170047-1.png||height="452" width="799"]]
384 +[[image:image-20230513105207-4.png||height="469" width="802"]]
377 377  
378 378  
379 379  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
... ... @@ -385,7 +385,7 @@
385 385  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
386 386  **Size(bytes)**
387 387  )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
388 -|Value|(% style="width:68px" %)(((
396 +|**Value**|(% style="width:68px" %)(((
389 389  ADC1(PA4)
390 390  )))|(% style="width:75px" %)(((
391 391  ADC2(PA5)
... ... @@ -409,7 +409,7 @@
409 409  
410 410  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
411 411  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
412 -|Value|BAT|(% style="width:186px" %)(((
420 +|**Value**|BAT|(% style="width:186px" %)(((
413 413  Temperature1(DS18B20)(PC13)
414 414  )))|(% style="width:82px" %)(((
415 415  ADC(PA4)
... ... @@ -420,10 +420,10 @@
420 420  
421 421  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
422 422  
423 -
424 424  [[image:image-20230513134006-1.png||height="559" width="736"]]
425 425  
426 426  
434 +
427 427  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
428 428  
429 429  
... ... @@ -431,8 +431,8 @@
431 431  
432 432  Each HX711 need to be calibrated before used. User need to do below two steps:
433 433  
434 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
435 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
442 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
443 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
436 436  1. (((
437 437  Weight has 4 bytes, the unit is g.
438 438  
... ... @@ -442,7 +442,7 @@
442 442  
443 443  For example:
444 444  
445 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
453 +**AT+GETSENSORVALUE =0**
446 446  
447 447  Response:  Weight is 401 g
448 448  
... ... @@ -452,7 +452,7 @@
452 452  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
453 453  **Size(bytes)**
454 454  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
455 -|Value|BAT|(% style="width:193px" %)(((
463 +|**Value**|BAT|(% style="width:193px" %)(((
456 456  Temperature(DS18B20)(PC13)
457 457  )))|(% style="width:85px" %)(((
458 458  ADC(PA4)
... ... @@ -463,6 +463,7 @@
463 463  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
464 464  
465 465  
474 +
466 466  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
467 467  
468 468  
... ... @@ -477,7 +477,7 @@
477 477  
478 478  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
479 479  |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
480 -|Value|BAT|(% style="width:256px" %)(((
489 +|**Value**|BAT|(% style="width:256px" %)(((
481 481  Temperature(DS18B20)(PC13)
482 482  )))|(% style="width:108px" %)(((
483 483  ADC(PA4)
... ... @@ -490,6 +490,7 @@
490 490  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
491 491  
492 492  
502 +
493 493  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
494 494  
495 495  
... ... @@ -497,7 +497,7 @@
497 497  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
498 498  **Size(bytes)**
499 499  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
500 -|Value|BAT|(% style="width:188px" %)(((
510 +|**Value**|BAT|(% style="width:188px" %)(((
501 501  Temperature(DS18B20)
502 502  (PC13)
503 503  )))|(% style="width:83px" %)(((
... ... @@ -516,7 +516,7 @@
516 516  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
517 517  **Size(bytes)**
518 518  )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
519 -|Value|BAT|(% style="width:207px" %)(((
529 +|**Value**|BAT|(% style="width:207px" %)(((
520 520  Temperature(DS18B20)
521 521  (PC13)
522 522  )))|(% style="width:94px" %)(((
... ... @@ -539,7 +539,7 @@
539 539  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
540 540  **Size(bytes)**
541 541  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
542 -|Value|BAT|(((
552 +|**Value**|BAT|(((
543 543  Temperature
544 544  (DS18B20)(PC13)
545 545  )))|(((
... ... @@ -575,78 +575,6 @@
575 575  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
576 576  
577 577  
578 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
579 -
580 -
581 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
582 -
583 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
584 -
585 -
586 -===== 2.3.2.10.a  Uplink, PWM input capture =====
587 -
588 -
589 -[[image:image-20230817172209-2.png||height="439" width="683"]]
590 -
591 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
592 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
593 -|Value|Bat|(% style="width:191px" %)(((
594 -Temperature(DS18B20)(PC13)
595 -)))|(% style="width:78px" %)(((
596 -ADC(PA4)
597 -)))|(% style="width:135px" %)(((
598 -PWM_Setting
599 -
600 -&Digital Interrupt(PA8)
601 -)))|(% style="width:70px" %)(((
602 -Pulse period
603 -)))|(% style="width:89px" %)(((
604 -Duration of high level
605 -)))
606 -
607 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
608 -
609 -
610 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
611 -
612 -**Frequency:**
613 -
614 -(% class="MsoNormal" %)
615 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
616 -
617 -(% class="MsoNormal" %)
618 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
619 -
620 -
621 -(% class="MsoNormal" %)
622 -**Duty cycle:**
623 -
624 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
625 -
626 -[[image:image-20230818092200-1.png||height="344" width="627"]]
627 -
628 -
629 -===== 2.3.2.10.b  Downlink, PWM output =====
630 -
631 -
632 -[[image:image-20230817173800-3.png||height="412" width="685"]]
633 -
634 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
635 -
636 - xx xx xx is the output frequency, the unit is HZ.
637 -
638 - yy is the duty cycle of the output, the unit is %.
639 -
640 - zz zz is the time delay of the output, the unit is ms.
641 -
642 -
643 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
644 -
645 -The oscilloscope displays as follows:
646 -
647 -[[image:image-20230817173858-5.png||height="694" width="921"]]
648 -
649 -
650 650  === 2.3.3  ​Decode payload ===
651 651  
652 652  
... ... @@ -656,13 +656,13 @@
656 656  
657 657  The payload decoder function for TTN V3 are here:
658 658  
659 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
597 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
660 660  
661 661  
662 662  ==== 2.3.3.1 Battery Info ====
663 663  
664 664  
665 -Check the battery voltage for SN50v3-LB.
603 +Check the battery voltage for SN50v3.
666 666  
667 667  Ex1: 0x0B45 = 2885mV
668 668  
... ... @@ -710,24 +710,19 @@
710 710  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
711 711  
712 712  
713 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
651 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
714 714  
715 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
653 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
716 716  
717 717  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
718 718  
719 -
720 720  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
721 721  
722 722  
723 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
724 -
725 -[[image:image-20230811113449-1.png||height="370" width="608"]]
726 -
727 727  ==== 2.3.3.5 Digital Interrupt ====
728 728  
729 729  
730 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
663 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
731 731  
732 732  (% style="color:blue" %)** Interrupt connection method:**
733 733  
... ... @@ -740,18 +740,18 @@
740 740  
741 741  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
742 742  
743 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
676 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
744 744  
745 745  
746 746  (% style="color:blue" %)**Below is the installation example:**
747 747  
748 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
681 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
749 749  
750 750  * (((
751 -One pin to SN50v3-LB's PA8 pin
684 +One pin to SN50_v3's PA8 pin
752 752  )))
753 753  * (((
754 -The other pin to SN50v3-LB's VDD pin
687 +The other pin to SN50_v3's VDD pin
755 755  )))
756 756  
757 757  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -768,7 +768,7 @@
768 768  
769 769  The command is:
770 770  
771 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
704 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
772 772  
773 773  Below shows some screen captures in TTN V3:
774 774  
... ... @@ -775,7 +775,7 @@
775 775  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
776 776  
777 777  
778 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
711 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
779 779  
780 780  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
781 781  
... ... @@ -787,13 +787,12 @@
787 787  
788 788  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
789 789  
790 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
723 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
791 791  
792 -
793 793  Below is the connection to SHT20/ SHT31. The connection is as below:
794 794  
795 -[[image:image-20230610170152-2.png||height="501" width="846"]]
796 796  
728 +[[image:image-20230513103633-3.png||height="448" width="716"]]
797 797  
798 798  The device will be able to get the I2C sensor data now and upload to IoT Server.
799 799  
... ... @@ -821,7 +821,7 @@
821 821  
822 822  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
823 823  
824 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
756 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
825 825  
826 826  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
827 827  
... ... @@ -830,7 +830,7 @@
830 830  [[image:image-20230512173903-6.png||height="596" width="715"]]
831 831  
832 832  
833 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
765 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
834 834  
835 835  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
836 836  
... ... @@ -842,13 +842,13 @@
842 842  ==== 2.3.3.9  Battery Output - BAT pin ====
843 843  
844 844  
845 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
777 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
846 846  
847 847  
848 848  ==== 2.3.3.10  +5V Output ====
849 849  
850 850  
851 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
783 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
852 852  
853 853  The 5V output time can be controlled by AT Command.
854 854  
... ... @@ -856,7 +856,7 @@
856 856  
857 857  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
858 858  
859 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
791 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
860 860  
861 861  
862 862  ==== 2.3.3.11  BH1750 Illumination Sensor ====
... ... @@ -870,31 +870,9 @@
870 870  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
871 871  
872 872  
873 -==== 2.3.3.12  PWM MOD ====
805 +==== 2.3.3.12  Working MOD ====
874 874  
875 875  
876 -* (((
877 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
878 -)))
879 -* (((
880 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
881 -)))
882 -
883 - [[image:image-20230817183249-3.png||height="320" width="417"]]
884 -
885 -* (((
886 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
887 -)))
888 -* (((
889 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
890 -
891 -
892 -
893 -)))
894 -
895 -==== 2.3.3.13  Working MOD ====
896 -
897 -
898 898  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
899 899  
900 900  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -910,8 +910,8 @@
910 910  * 6: MOD7
911 911  * 7: MOD8
912 912  * 8: MOD9
913 -* 9: MOD10
914 914  
824 +
915 915  == 2.4 Payload Decoder file ==
916 916  
917 917  
... ... @@ -941,6 +941,7 @@
941 941  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
942 942  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
943 943  
854 +
944 944  == 3.2 General Commands ==
945 945  
946 946  
... ... @@ -957,7 +957,7 @@
957 957  == 3.3 Commands special design for SN50v3-LB ==
958 958  
959 959  
960 -These commands only valid for SN50v3-LB, as below:
871 +These commands only valid for S31x-LB, as below:
961 961  
962 962  
963 963  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -968,7 +968,7 @@
968 968  (% style="color:blue" %)**AT Command: AT+TDC**
969 969  
970 970  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
971 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
882 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
972 972  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
973 973  30000
974 974  OK
... ... @@ -988,14 +988,15 @@
988 988  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
989 989  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
990 990  
902 +
991 991  === 3.3.2 Get Device Status ===
992 992  
993 993  
994 994  Send a LoRaWAN downlink to ask the device to send its status.
995 995  
996 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
908 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
997 997  
998 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
910 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
999 999  
1000 1000  
1001 1001  === 3.3.3 Set Interrupt Mode ===
... ... @@ -1006,7 +1006,7 @@
1006 1006  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1007 1007  
1008 1008  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1009 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
921 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1010 1010  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1011 1011  0
1012 1012  OK
... ... @@ -1036,6 +1036,7 @@
1036 1036  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1037 1037  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1038 1038  
951 +
1039 1039  === 3.3.4 Set Power Output Duration ===
1040 1040  
1041 1041  
... ... @@ -1050,7 +1050,7 @@
1050 1050  (% style="color:blue" %)**AT Command: AT+5VT**
1051 1051  
1052 1052  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1053 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
966 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1054 1054  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1055 1055  500(default)
1056 1056  OK
... ... @@ -1068,6 +1068,7 @@
1068 1068  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1069 1069  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1070 1070  
984 +
1071 1071  === 3.3.5 Set Weighing parameters ===
1072 1072  
1073 1073  
... ... @@ -1076,7 +1076,7 @@
1076 1076  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1077 1077  
1078 1078  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1079 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
993 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1080 1080  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1081 1081  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1082 1082  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1093,6 +1093,7 @@
1093 1093  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1094 1094  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1095 1095  
1010 +
1096 1096  === 3.3.6 Set Digital pulse count value ===
1097 1097  
1098 1098  
... ... @@ -1103,7 +1103,7 @@
1103 1103  (% style="color:blue" %)**AT Command: AT+SETCNT**
1104 1104  
1105 1105  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1106 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1021 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1107 1107  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1108 1108  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1109 1109  
... ... @@ -1116,6 +1116,7 @@
1116 1116  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1117 1117  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1118 1118  
1034 +
1119 1119  === 3.3.7 Set Workmode ===
1120 1120  
1121 1121  
... ... @@ -1124,7 +1124,7 @@
1124 1124  (% style="color:blue" %)**AT Command: AT+MOD**
1125 1125  
1126 1126  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1127 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1043 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1128 1128  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1129 1129  OK
1130 1130  )))
... ... @@ -1140,33 +1140,7 @@
1140 1140  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1141 1141  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1142 1142  
1143 -=== 3.3.8 PWM setting ===
1144 1144  
1145 -
1146 -Feature: Set the time acquisition unit for PWM input capture.
1147 -
1148 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1149 -
1150 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1151 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1152 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1153 -0(default)
1154 -
1155 -OK
1156 -)))
1157 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1158 -OK
1159 -
1160 -)))
1161 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1162 -
1163 -(% style="color:blue" %)**Downlink Command: 0x0C**
1164 -
1165 -Format: Command Code (0x0C) followed by 1 bytes.
1166 -
1167 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1168 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1169 -
1170 1170  = 4. Battery & Power Consumption =
1171 1171  
1172 1172  
... ... @@ -1179,19 +1179,21 @@
1179 1179  
1180 1180  
1181 1181  (% class="wikigeneratedid" %)
1182 -**User can change firmware SN50v3-LB to:**
1072 +User can change firmware SN50v3-LB to:
1183 1183  
1184 1184  * Change Frequency band/ region.
1185 1185  * Update with new features.
1186 1186  * Fix bugs.
1187 1187  
1188 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1078 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1189 1189  
1190 -**Methods to Update Firmware:**
1191 1191  
1192 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1193 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1081 +Methods to Update Firmware:
1194 1194  
1083 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1084 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1085 +
1086 +
1195 1195  = 6. FAQ =
1196 1196  
1197 1197  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1200,22 +1200,7 @@
1200 1200  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1201 1201  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1202 1202  
1203 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1204 1204  
1205 -
1206 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1207 -
1208 -
1209 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1210 -
1211 -
1212 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1213 -
1214 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1215 -
1216 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1217 -
1218 -
1219 1219  = 7. Order Info =
1220 1220  
1221 1221  
... ... @@ -1239,6 +1239,7 @@
1239 1239  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1240 1240  * (% style="color:red" %)**NH**(%%): No Hole
1241 1241  
1119 +
1242 1242  = 8. ​Packing Info =
1243 1243  
1244 1244  
... ... @@ -1253,6 +1253,7 @@
1253 1253  * Package Size / pcs : cm
1254 1254  * Weight / pcs : g
1255 1255  
1134 +
1256 1256  = 9. Support =
1257 1257  
1258 1258  
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231101154140-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -540.3 KB
Content