Changes for page SN50v3-LB -- LoRaWAN Sensor Node User Manual
Last modified by Saxer Lin on 2025/03/18 17:25
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 16 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231101154140-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB --LoRaWAN Sensor Node User Manual1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Parent
-
... ... @@ -1,1 +1,0 @@ 1 -Main.User Manual for LoRaWAN End Nodes.WebHome - Content
-
... ... @@ -1,6 +1,8 @@ 1 - 1 +(% style="text-align:center" %) 2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 2 2 3 3 5 + 4 4 **Table of Contents:** 5 5 6 6 {{toc/}} ... ... @@ -17,7 +17,7 @@ 17 17 18 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 19 19 20 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 21 21 22 22 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 23 23 ... ... @@ -25,6 +25,7 @@ 25 25 26 26 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 27 27 30 + 28 28 == 1.2 Features == 29 29 30 30 ... ... @@ -38,6 +38,8 @@ 38 38 * Downlink to change configure 39 39 * 8500mAh Battery for long term use 40 40 44 + 45 + 41 41 == 1.3 Specification == 42 42 43 43 ... ... @@ -75,6 +75,8 @@ 75 75 * Sleep Mode: 5uA @ 3.3v 76 76 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 77 77 83 + 84 + 78 78 == 1.4 Sleep mode and working mode == 79 79 80 80 ... ... @@ -102,6 +102,8 @@ 102 102 ))) 103 103 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 104 104 112 + 113 + 105 105 == 1.6 BLE connection == 106 106 107 107 ... ... @@ -120,7 +120,7 @@ 120 120 == 1.7 Pin Definitions == 121 121 122 122 123 -[[image:image-20230 610163213-1.png||height="404" width="699"]]132 +[[image:image-20230513102034-2.png]] 124 124 125 125 126 126 == 1.8 Mechanical == ... ... @@ -133,13 +133,14 @@ 133 133 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 134 134 135 135 136 -== 1.9Hole Option ==145 +== Hole Option == 137 137 138 138 139 139 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 140 140 150 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 141 141 142 -[[image:i mage-20231101154140-1.png||height="514" width="867"]]152 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 143 143 144 144 145 145 = 2. Configure SN50v3-LB to connect to LoRaWAN network = ... ... @@ -147,7 +147,7 @@ 147 147 == 2.1 How it works == 148 148 149 149 150 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 151 151 152 152 153 153 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -155,7 +155,7 @@ 155 155 156 156 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 157 157 158 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.168 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 159 159 160 160 161 161 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -204,7 +204,7 @@ 204 204 === 2.3.1 Device Status, FPORT~=5 === 205 205 206 206 207 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.217 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 208 208 209 209 The Payload format is as below. 210 210 ... ... @@ -212,44 +212,44 @@ 212 212 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 213 213 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 214 214 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 215 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 225 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 216 216 217 217 Example parse in TTNv3 218 218 219 219 220 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 221 221 222 222 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 223 223 224 224 (% style="color:#037691" %)**Frequency Band**: 225 225 226 -0x01: EU868 236 +*0x01: EU868 227 227 228 -0x02: US915 238 +*0x02: US915 229 229 230 -0x03: IN865 240 +*0x03: IN865 231 231 232 -0x04: AU915 242 +*0x04: AU915 233 233 234 -0x05: KZ865 244 +*0x05: KZ865 235 235 236 -0x06: RU864 246 +*0x06: RU864 237 237 238 -0x07: AS923 248 +*0x07: AS923 239 239 240 -0x08: AS923-1 250 +*0x08: AS923-1 241 241 242 -0x09: AS923-2 252 +*0x09: AS923-2 243 243 244 -0x0a: AS923-3 254 +*0x0a: AS923-3 245 245 246 -0x0b: CN470 256 +*0x0b: CN470 247 247 248 -0x0c: EU433 258 +*0x0c: EU433 249 249 250 -0x0d: KR920 260 +*0x0d: KR920 251 251 252 -0x0e: MA869 262 +*0x0e: MA869 253 253 254 254 255 255 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -273,22 +273,21 @@ 273 273 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 274 274 275 275 276 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.286 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 277 277 278 278 For example: 279 279 280 - (% style="color:blue" %)**AT+MOD=2 **(%%)290 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 281 281 282 282 283 283 (% style="color:red" %) **Important Notice:** 284 284 285 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 295 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 296 +1. All modes share the same Payload Explanation from HERE. 297 +1. By default, the device will send an uplink message every 20 minutes. 286 286 287 -2. All modes share the same Payload Explanation from HERE. 288 288 289 -3. By default, the device will send an uplink message every 20 minutes. 290 290 291 - 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 294 ... ... @@ -296,7 +296,7 @@ 296 296 297 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 298 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 299 -|Value|Bat|(% style="width:191px" %)((( 308 +|**Value**|Bat|(% style="width:191px" %)((( 300 300 Temperature(DS18B20)(PC13) 301 301 )))|(% style="width:78px" %)((( 302 302 ADC(PA4) ... ... @@ -311,6 +311,7 @@ 311 311 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 312 312 313 313 323 + 314 314 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 315 315 316 316 ... ... @@ -318,7 +318,7 @@ 318 318 319 319 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 320 320 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 321 -|Value|BAT|(% style="width:196px" %)((( 331 +|**Value**|BAT|(% style="width:196px" %)((( 322 322 Temperature(DS18B20)(PC13) 323 323 )))|(% style="width:87px" %)((( 324 324 ADC(PA4) ... ... @@ -325,8 +325,9 @@ 325 325 )))|(% style="width:189px" %)((( 326 326 Digital in(PB15) & Digital Interrupt(PA8) 327 327 )))|(% style="width:208px" %)((( 328 -Distance measure by: 1) LIDAR-Lite V3HP 329 -Or 2) Ultrasonic Sensor 338 +Distance measure by:1) LIDAR-Lite V3HP 339 +Or 340 +2) Ultrasonic Sensor 330 330 )))|(% style="width:117px" %)Reserved 331 331 332 332 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -339,7 +339,7 @@ 339 339 340 340 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 341 341 342 - (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**353 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 343 343 344 344 [[image:image-20230512173903-6.png||height="596" width="715"]] 345 345 ... ... @@ -348,7 +348,7 @@ 348 348 349 349 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 350 350 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 351 -|Value|BAT|(% style="width:183px" %)((( 362 +|**Value**|BAT|(% style="width:183px" %)((( 352 352 Temperature(DS18B20)(PC13) 353 353 )))|(% style="width:173px" %)((( 354 354 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -356,7 +356,8 @@ 356 356 ADC(PA4) 357 357 )))|(% style="width:323px" %)((( 358 358 Distance measure by:1)TF-Mini plus LiDAR 359 -Or 2) TF-Luna LiDAR 370 +Or 371 +2) TF-Luna LiDAR 360 360 )))|(% style="width:188px" %)Distance signal strength 361 361 362 362 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] ... ... @@ -364,7 +364,7 @@ 364 364 365 365 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 366 366 367 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**379 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 368 368 369 369 [[image:image-20230512180609-7.png||height="555" width="802"]] 370 370 ... ... @@ -371,9 +371,9 @@ 371 371 372 372 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 373 373 374 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**386 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 375 375 376 -[[image:image-20230 610170047-1.png||height="452" width="799"]]388 +[[image:image-20230513105207-4.png||height="469" width="802"]] 377 377 378 378 379 379 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== ... ... @@ -385,7 +385,7 @@ 385 385 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 386 386 **Size(bytes)** 387 387 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 388 -|Value|(% style="width:68px" %)((( 400 +|**Value**|(% style="width:68px" %)((( 389 389 ADC1(PA4) 390 390 )))|(% style="width:75px" %)((( 391 391 ADC2(PA5) ... ... @@ -409,7 +409,7 @@ 409 409 410 410 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 411 411 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 412 -|Value|BAT|(% style="width:186px" %)((( 424 +|**Value**|BAT|(% style="width:186px" %)((( 413 413 Temperature1(DS18B20)(PC13) 414 414 )))|(% style="width:82px" %)((( 415 415 ADC(PA4) ... ... @@ -420,10 +420,10 @@ 420 420 421 421 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 422 422 423 - 424 424 [[image:image-20230513134006-1.png||height="559" width="736"]] 425 425 426 426 438 + 427 427 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 428 428 429 429 ... ... @@ -431,8 +431,8 @@ 431 431 432 432 Each HX711 need to be calibrated before used. User need to do below two steps: 433 433 434 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.435 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.446 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 447 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 436 436 1. ((( 437 437 Weight has 4 bytes, the unit is g. 438 438 ... ... @@ -442,7 +442,7 @@ 442 442 443 443 For example: 444 444 445 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**457 +**AT+GETSENSORVALUE =0** 446 446 447 447 Response: Weight is 401 g 448 448 ... ... @@ -452,7 +452,7 @@ 452 452 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 453 453 **Size(bytes)** 454 454 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 455 -|Value|BAT|(% style="width:193px" %)((( 467 +|**Value**|BAT|(% style="width:193px" %)((( 456 456 Temperature(DS18B20)(PC13) 457 457 )))|(% style="width:85px" %)((( 458 458 ADC(PA4) ... ... @@ -463,6 +463,7 @@ 463 463 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 464 464 465 465 478 + 466 466 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 467 467 468 468 ... ... @@ -477,7 +477,7 @@ 477 477 478 478 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 479 479 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 480 -|Value|BAT|(% style="width:256px" %)((( 493 +|**Value**|BAT|(% style="width:256px" %)((( 481 481 Temperature(DS18B20)(PC13) 482 482 )))|(% style="width:108px" %)((( 483 483 ADC(PA4) ... ... @@ -490,6 +490,7 @@ 490 490 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 491 491 492 492 506 + 493 493 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 494 494 495 495 ... ... @@ -497,7 +497,7 @@ 497 497 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 498 498 **Size(bytes)** 499 499 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 500 -|Value|BAT|(% style="width:188px" %)((( 514 +|**Value**|BAT|(% style="width:188px" %)((( 501 501 Temperature(DS18B20) 502 502 (PC13) 503 503 )))|(% style="width:83px" %)((( ... ... @@ -516,7 +516,7 @@ 516 516 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 517 517 **Size(bytes)** 518 518 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 519 -|Value|BAT|(% style="width:207px" %)((( 533 +|**Value**|BAT|(% style="width:207px" %)((( 520 520 Temperature(DS18B20) 521 521 (PC13) 522 522 )))|(% style="width:94px" %)((( ... ... @@ -539,18 +539,18 @@ 539 539 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 540 540 **Size(bytes)** 541 541 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 542 -|Value|BAT|((( 543 -Temperature 544 -( DS18B20)(PC13)556 +|**Value**|BAT|((( 557 +Temperature1(DS18B20) 558 +(PC13) 545 545 )))|((( 546 -Temperature2 547 -( DS18B20)(PB9)560 +Temperature2(DS18B20) 561 +(PB9) 548 548 )))|((( 549 549 Digital Interrupt 550 550 (PB15) 551 551 )))|(% style="width:193px" %)((( 552 -Temperature3 553 -( DS18B20)(PB8)566 +Temperature3(DS18B20) 567 +(PB8) 554 554 )))|(% style="width:78px" %)((( 555 555 Count1(PA8) 556 556 )))|(% style="width:78px" %)((( ... ... @@ -575,78 +575,6 @@ 575 575 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 576 576 577 577 578 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 579 - 580 - 581 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 582 - 583 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 584 - 585 - 586 -===== 2.3.2.10.a Uplink, PWM input capture ===== 587 - 588 - 589 -[[image:image-20230817172209-2.png||height="439" width="683"]] 590 - 591 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 592 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 593 -|Value|Bat|(% style="width:191px" %)((( 594 -Temperature(DS18B20)(PC13) 595 -)))|(% style="width:78px" %)((( 596 -ADC(PA4) 597 -)))|(% style="width:135px" %)((( 598 -PWM_Setting 599 - 600 -&Digital Interrupt(PA8) 601 -)))|(% style="width:70px" %)((( 602 -Pulse period 603 -)))|(% style="width:89px" %)((( 604 -Duration of high level 605 -))) 606 - 607 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 608 - 609 - 610 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 611 - 612 -**Frequency:** 613 - 614 -(% class="MsoNormal" %) 615 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 616 - 617 -(% class="MsoNormal" %) 618 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 619 - 620 - 621 -(% class="MsoNormal" %) 622 -**Duty cycle:** 623 - 624 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 625 - 626 -[[image:image-20230818092200-1.png||height="344" width="627"]] 627 - 628 - 629 -===== 2.3.2.10.b Downlink, PWM output ===== 630 - 631 - 632 -[[image:image-20230817173800-3.png||height="412" width="685"]] 633 - 634 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 635 - 636 - xx xx xx is the output frequency, the unit is HZ. 637 - 638 - yy is the duty cycle of the output, the unit is %. 639 - 640 - zz zz is the time delay of the output, the unit is ms. 641 - 642 - 643 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 644 - 645 -The oscilloscope displays as follows: 646 - 647 -[[image:image-20230817173858-5.png||height="694" width="921"]] 648 - 649 - 650 650 === 2.3.3 Decode payload === 651 651 652 652 ... ... @@ -656,13 +656,13 @@ 656 656 657 657 The payload decoder function for TTN V3 are here: 658 658 659 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]601 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 660 660 661 661 662 662 ==== 2.3.3.1 Battery Info ==== 663 663 664 664 665 -Check the battery voltage for SN50v3 -LB.607 +Check the battery voltage for SN50v3. 666 666 667 667 Ex1: 0x0B45 = 2885mV 668 668 ... ... @@ -710,24 +710,19 @@ 710 710 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 711 711 712 712 713 -The measuring range of the ADC is only about 0 .1V to 1.1V The voltage resolution is about 0.24mv.655 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 714 714 715 -When the measured output voltage of the sensor is not within the range of 0 .1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.657 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 716 716 717 717 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 718 718 719 - 720 720 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 721 721 722 722 723 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 724 - 725 -[[image:image-20230811113449-1.png||height="370" width="608"]] 726 - 727 727 ==== 2.3.3.5 Digital Interrupt ==== 728 728 729 729 730 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 -LBwill send a packet to the server.667 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 731 731 732 732 (% style="color:blue" %)** Interrupt connection method:** 733 733 ... ... @@ -740,18 +740,18 @@ 740 740 741 741 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 742 742 743 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3 -LBinterrupt interface to detect the status for the door or window.680 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 744 744 745 745 746 746 (% style="color:blue" %)**Below is the installation example:** 747 747 748 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3 -LBas follows:685 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 749 749 750 750 * ((( 751 -One pin to SN50v3 -LB's PA8 pin688 +One pin to SN50_v3's PA8 pin 752 752 ))) 753 753 * ((( 754 -The other pin to SN50v3 -LB's VDD pin691 +The other pin to SN50_v3's VDD pin 755 755 ))) 756 756 757 757 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -768,7 +768,7 @@ 768 768 769 769 The command is: 770 770 771 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ 708 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 772 772 773 773 Below shows some screen captures in TTN V3: 774 774 ... ... @@ -775,7 +775,7 @@ 775 775 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 776 776 777 777 778 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:715 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 779 779 780 780 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 781 781 ... ... @@ -787,13 +787,12 @@ 787 787 788 788 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 789 789 790 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LBwill be a good reference.**727 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 791 791 792 - 793 793 Below is the connection to SHT20/ SHT31. The connection is as below: 794 794 795 -[[image:image-20230610170152-2.png||height="501" width="846"]] 796 796 732 +[[image:image-20230513103633-3.png||height="448" width="716"]] 797 797 798 798 The device will be able to get the I2C sensor data now and upload to IoT Server. 799 799 ... ... @@ -821,7 +821,7 @@ 821 821 822 822 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 823 823 824 -The SN50v3 -LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.760 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 825 825 826 826 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 827 827 ... ... @@ -830,7 +830,7 @@ 830 830 [[image:image-20230512173903-6.png||height="596" width="715"]] 831 831 832 832 833 -Connect to the SN50v3 -LBand run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).769 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 834 834 835 835 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 836 836 ... ... @@ -842,13 +842,13 @@ 842 842 ==== 2.3.3.9 Battery Output - BAT pin ==== 843 843 844 844 845 -The BAT pin of SN50v3 -LBis connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.781 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 846 846 847 847 848 848 ==== 2.3.3.10 +5V Output ==== 849 849 850 850 851 -SN50v3 -LBwill enable +5V output before all sampling and disable the +5v after all sampling.787 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 852 852 853 853 The 5V output time can be controlled by AT Command. 854 854 ... ... @@ -856,7 +856,7 @@ 856 856 857 857 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 858 858 859 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.795 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 860 860 861 861 862 862 ==== 2.3.3.11 BH1750 Illumination Sensor ==== ... ... @@ -870,31 +870,9 @@ 870 870 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 871 871 872 872 873 -==== 2.3.3.12 PWMMOD ====809 +==== 2.3.3.12 Working MOD ==== 874 874 875 875 876 -* ((( 877 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 878 -))) 879 -* ((( 880 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 881 -))) 882 - 883 - [[image:image-20230817183249-3.png||height="320" width="417"]] 884 - 885 -* ((( 886 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 887 -))) 888 -* ((( 889 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 890 - 891 - 892 - 893 -))) 894 - 895 -==== 2.3.3.13 Working MOD ==== 896 - 897 - 898 898 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 899 899 900 900 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -910,8 +910,9 @@ 910 910 * 6: MOD7 911 911 * 7: MOD8 912 912 * 8: MOD9 913 -* 9: MOD10 914 914 828 + 829 + 915 915 == 2.4 Payload Decoder file == 916 916 917 917 ... ... @@ -941,6 +941,8 @@ 941 941 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 942 942 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 943 943 859 + 860 + 944 944 == 3.2 General Commands == 945 945 946 946 ... ... @@ -957,7 +957,7 @@ 957 957 == 3.3 Commands special design for SN50v3-LB == 958 958 959 959 960 -These commands only valid for S N50v3-LB, as below:877 +These commands only valid for S31x-LB, as below: 961 961 962 962 963 963 === 3.3.1 Set Transmit Interval Time === ... ... @@ -968,7 +968,7 @@ 968 968 (% style="color:blue" %)**AT Command: AT+TDC** 969 969 970 970 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 971 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**888 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 972 972 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 973 973 30000 974 974 OK ... ... @@ -988,14 +988,16 @@ 988 988 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 989 989 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 990 990 908 + 909 + 991 991 === 3.3.2 Get Device Status === 992 992 993 993 994 994 Send a LoRaWAN downlink to ask the device to send its status. 995 995 996 -(% style="color:blue" %)**Downlink Payload: 0x26 01 **915 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 997 997 998 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.917 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 999 999 1000 1000 1001 1001 === 3.3.3 Set Interrupt Mode === ... ... @@ -1006,7 +1006,7 @@ 1006 1006 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1007 1007 1008 1008 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1009 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**928 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1010 1010 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1011 1011 0 1012 1012 OK ... ... @@ -1021,6 +1021,7 @@ 1021 1021 )))|(% style="width:157px" %)OK 1022 1022 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 1023 1023 Set Transmit Interval 943 + 1024 1024 trigger by rising edge. 1025 1025 )))|(% style="width:157px" %)OK 1026 1026 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -1036,6 +1036,8 @@ 1036 1036 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1037 1037 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1038 1038 959 + 960 + 1039 1039 === 3.3.4 Set Power Output Duration === 1040 1040 1041 1041 ... ... @@ -1050,7 +1050,7 @@ 1050 1050 (% style="color:blue" %)**AT Command: AT+5VT** 1051 1051 1052 1052 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1053 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**975 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1054 1054 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1055 1055 500(default) 1056 1056 OK ... ... @@ -1068,6 +1068,8 @@ 1068 1068 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1069 1069 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1070 1070 993 + 994 + 1071 1071 === 3.3.5 Set Weighing parameters === 1072 1072 1073 1073 ... ... @@ -1076,7 +1076,7 @@ 1076 1076 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1077 1077 1078 1078 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1079 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1003 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1080 1080 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1081 1081 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1082 1082 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1093,6 +1093,8 @@ 1093 1093 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1094 1094 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1095 1095 1020 + 1021 + 1096 1096 === 3.3.6 Set Digital pulse count value === 1097 1097 1098 1098 ... ... @@ -1103,7 +1103,7 @@ 1103 1103 (% style="color:blue" %)**AT Command: AT+SETCNT** 1104 1104 1105 1105 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1106 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1032 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1107 1107 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1108 1108 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1109 1109 ... ... @@ -1116,6 +1116,8 @@ 1116 1116 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1117 1117 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1118 1118 1045 + 1046 + 1119 1119 === 3.3.7 Set Workmode === 1120 1120 1121 1121 ... ... @@ -1124,7 +1124,7 @@ 1124 1124 (% style="color:blue" %)**AT Command: AT+MOD** 1125 1125 1126 1126 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1127 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1055 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1128 1128 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1129 1129 OK 1130 1130 ))) ... ... @@ -1140,33 +1140,8 @@ 1140 1140 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1141 1141 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1142 1142 1143 -=== 3.3.8 PWM setting === 1144 1144 1145 1145 1146 -Feature: Set the time acquisition unit for PWM input capture. 1147 - 1148 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1149 - 1150 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1151 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1152 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1153 -0(default) 1154 - 1155 -OK 1156 -))) 1157 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1158 -OK 1159 - 1160 -))) 1161 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1162 - 1163 -(% style="color:blue" %)**Downlink Command: 0x0C** 1164 - 1165 -Format: Command Code (0x0C) followed by 1 bytes. 1166 - 1167 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1168 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1169 - 1170 1170 = 4. Battery & Power Consumption = 1171 1171 1172 1172 ... ... @@ -1179,19 +1179,22 @@ 1179 1179 1180 1180 1181 1181 (% class="wikigeneratedid" %) 1182 - **User can change firmware SN50v3-LB to:**1085 +User can change firmware SN50v3-LB to: 1183 1183 1184 1184 * Change Frequency band/ region. 1185 1185 * Update with new features. 1186 1186 * Fix bugs. 1187 1187 1188 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**1091 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1189 1189 1190 -**Methods to Update Firmware:** 1191 1191 1192 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1193 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1094 +Methods to Update Firmware: 1194 1194 1096 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1097 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1098 + 1099 + 1100 + 1195 1195 = 6. FAQ = 1196 1196 1197 1197 == 6.1 Where can i find source code of SN50v3-LB? == ... ... @@ -1200,22 +1200,8 @@ 1200 1200 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1201 1201 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1202 1202 1203 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1204 1204 1205 1205 1206 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1207 - 1208 - 1209 -== 6.3 How to put several sensors to a SN50v3-LB? == 1210 - 1211 - 1212 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1213 - 1214 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1215 - 1216 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1217 - 1218 - 1219 1219 = 7. Order Info = 1220 1220 1221 1221 ... ... @@ -1239,6 +1239,8 @@ 1239 1239 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1240 1240 * (% style="color:red" %)**NH**(%%): No Hole 1241 1241 1134 + 1135 + 1242 1242 = 8. Packing Info = 1243 1243 1244 1244 ... ... @@ -1253,6 +1253,8 @@ 1253 1253 * Package Size / pcs : cm 1254 1254 * Weight / pcs : g 1255 1255 1150 + 1151 + 1256 1256 = 9. Support = 1257 1257 1258 1258
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content
- image-20231101154140-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -540.3 KB - Content