Changes for page SN50v3-LB -- LoRaWAN Sensor Node User Manual
Last modified by Saxer Lin on 2025/03/18 17:25
Summary
-
Page properties (4 modified, 0 added, 0 removed)
-
Attachments (0 modified, 10 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor Node User Manual 1 +SN50v3-LB -- LoRaWAN Sensor Node User Manual - Parent
-
... ... @@ -1,0 +1,1 @@ 1 +Main.User Manual for LoRaWAN End Nodes.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.Xiaoling - Content
-
... ... @@ -1,10 +1,8 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 + 3 3 4 4 4 +**Table of Contents:** 5 5 6 -**Table of Contents:** 7 - 8 8 {{toc/}} 9 9 10 10 ... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.20 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -42,6 +42,7 @@ 42 42 * 8500mAh Battery for long term use 43 43 44 44 43 + 45 45 == 1.3 Specification == 46 46 47 47 ... ... @@ -80,6 +80,7 @@ 80 80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 81 81 82 82 82 + 83 83 == 1.4 Sleep mode and working mode == 84 84 85 85 ... ... @@ -108,6 +108,7 @@ 108 108 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 109 109 110 110 111 + 111 111 == 1.6 BLE connection == 112 112 113 113 ... ... @@ -126,7 +126,7 @@ 126 126 == 1.7 Pin Definitions == 127 127 128 128 129 -[[image:image-20230610163213-1.png ||height="404" width="699"]]130 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB%20--%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20230610163213-1.png?width=699&height=404&rev=1.1||alt="image-20230610163213-1.png"]] 130 130 131 131 132 132 == 1.8 Mechanical == ... ... @@ -144,9 +144,8 @@ 144 144 145 145 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 146 146 147 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 148 148 149 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]149 +[[image:image-20231101154140-1.png||height="514" width="867"]] 150 150 151 151 152 152 = 2. Configure SN50v3-LB to connect to LoRaWAN network = ... ... @@ -470,7 +470,6 @@ 470 470 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 471 471 472 472 473 - 474 474 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 475 475 476 476 ... ... @@ -583,9 +583,81 @@ 583 583 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 584 584 585 585 586 -=== 2.3. 3Decodepayload ===585 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 587 587 588 588 588 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 589 + 590 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 591 + 592 + 593 +===== 2.3.2.10.a Uplink, PWM input capture ===== 594 + 595 + 596 +[[image:image-20230817172209-2.png||height="439" width="683"]] 597 + 598 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 599 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 600 +|Value|Bat|(% style="width:191px" %)((( 601 +Temperature(DS18B20)(PC13) 602 +)))|(% style="width:78px" %)((( 603 +ADC(PA4) 604 +)))|(% style="width:135px" %)((( 605 +PWM_Setting 606 + 607 +&Digital Interrupt(PA8) 608 +)))|(% style="width:70px" %)((( 609 +Pulse period 610 +)))|(% style="width:89px" %)((( 611 +Duration of high level 612 +))) 613 + 614 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 615 + 616 + 617 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 618 + 619 +**Frequency:** 620 + 621 +(% class="MsoNormal" %) 622 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 623 + 624 +(% class="MsoNormal" %) 625 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 626 + 627 + 628 +(% class="MsoNormal" %) 629 +**Duty cycle:** 630 + 631 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 632 + 633 +[[image:image-20230818092200-1.png||height="344" width="627"]] 634 + 635 + 636 +===== 2.3.2.10.b Downlink, PWM output ===== 637 + 638 + 639 +[[image:image-20230817173800-3.png||height="412" width="685"]] 640 + 641 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 642 + 643 + xx xx xx is the output frequency, the unit is HZ. 644 + 645 + yy is the duty cycle of the output, the unit is %. 646 + 647 + zz zz is the time delay of the output, the unit is ms. 648 + 649 + 650 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 651 + 652 +The oscilloscope displays as follows: 653 + 654 +[[image:image-20230817173858-5.png||height="694" width="921"]] 655 + 656 + 657 +=== 2.3.3 Decode payload === 658 + 659 + 589 589 While using TTN V3 network, you can add the payload format to decode the payload. 590 590 591 591 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -806,9 +806,31 @@ 806 806 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 807 807 808 808 809 -==== 2.3.3.12 W orkingMOD ====880 +==== 2.3.3.12 PWM MOD ==== 810 810 811 811 883 +* ((( 884 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 885 +))) 886 +* ((( 887 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 888 +))) 889 + 890 + [[image:image-20230817183249-3.png||height="320" width="417"]] 891 + 892 +* ((( 893 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 894 +))) 895 +* ((( 896 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 897 + 898 + 899 + 900 +))) 901 + 902 +==== 2.3.3.13 Working MOD ==== 903 + 904 + 812 812 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 813 813 814 814 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -824,8 +824,10 @@ 824 824 * 6: MOD7 825 825 * 7: MOD8 826 826 * 8: MOD9 920 +* 9: MOD10 827 827 828 828 923 + 829 829 == 2.4 Payload Decoder file == 830 830 831 831 ... ... @@ -856,6 +856,7 @@ 856 856 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 857 857 858 858 954 + 859 859 == 3.2 General Commands == 860 860 861 861 ... ... @@ -904,6 +904,7 @@ 904 904 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 905 905 906 906 1003 + 907 907 === 3.3.2 Get Device Status === 908 908 909 909 ... ... @@ -953,6 +953,7 @@ 953 953 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 954 954 955 955 1053 + 956 956 === 3.3.4 Set Power Output Duration === 957 957 958 958 ... ... @@ -986,6 +986,7 @@ 986 986 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 987 987 988 988 1087 + 989 989 === 3.3.5 Set Weighing parameters === 990 990 991 991 ... ... @@ -1012,6 +1012,7 @@ 1012 1012 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1013 1013 1014 1014 1114 + 1015 1015 === 3.3.6 Set Digital pulse count value === 1016 1016 1017 1017 ... ... @@ -1036,6 +1036,7 @@ 1036 1036 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1037 1037 1038 1038 1139 + 1039 1039 === 3.3.7 Set Workmode === 1040 1040 1041 1041 ... ... @@ -1061,6 +1061,36 @@ 1061 1061 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1062 1062 1063 1063 1165 + 1166 +=== 3.3.8 PWM setting === 1167 + 1168 + 1169 +Feature: Set the time acquisition unit for PWM input capture. 1170 + 1171 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1172 + 1173 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1174 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1175 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1176 +0(default) 1177 + 1178 +OK 1179 +))) 1180 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1181 +OK 1182 + 1183 +))) 1184 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1185 + 1186 +(% style="color:blue" %)**Downlink Command: 0x0C** 1187 + 1188 +Format: Command Code (0x0C) followed by 1 bytes. 1189 + 1190 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1191 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1192 + 1193 + 1194 + 1064 1064 = 4. Battery & Power Consumption = 1065 1065 1066 1066 ... ... @@ -1087,6 +1087,7 @@ 1087 1087 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1088 1088 1089 1089 1221 + 1090 1090 = 6. FAQ = 1091 1091 1092 1092 == 6.1 Where can i find source code of SN50v3-LB? == ... ... @@ -1096,6 +1096,7 @@ 1096 1096 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1097 1097 1098 1098 1231 + 1099 1099 == 6.2 How to generate PWM Output in SN50v3-LB? == 1100 1100 1101 1101 ... ... @@ -1136,6 +1136,7 @@ 1136 1136 * (% style="color:red" %)**NH**(%%): No Hole 1137 1137 1138 1138 1272 + 1139 1139 = 8. Packing Info = 1140 1140 1141 1141 ... ... @@ -1150,6 +1150,8 @@ 1150 1150 * Package Size / pcs : cm 1151 1151 * Weight / pcs : g 1152 1152 1287 + 1288 + 1153 1153 = 9. Support = 1154 1154 1155 1155 ... ... @@ -1156,3 +1156,27 @@ 1156 1156 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1157 1157 1158 1158 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 1295 + 1296 + 1297 + 1298 += 10. FCC Warning = 1299 + 1300 + 1301 +Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. 1302 + 1303 +This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. 1304 + 1305 +(% style="color:red" %)**Note:**(%%) This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: 1306 + 1307 +—Reorient or relocate the receiving antenna. 1308 + 1309 +—Increase the separation between the equipment and receiver. 1310 + 1311 +—Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. 1312 + 1313 +—Consult the dealer or an experienced radio/TV technician for help. 1314 + 1315 + 1316 +This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator& your body. 1317 + 1318 +This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content
- image-20231101154140-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +540.3 KB - Content