Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230131183542-1.jpeg||height="694" width="694"]]
3
4 **Table of Contents:**
5
6 {{toc/}}
7
8
9
10
11
12
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 ​What is SDI-12 to LoRaWAN Converter ==
23
24
25 The Dragino (% style="color:blue" %)**SDI-12-LB**(%%) is a (% style="color:blue" %)**SDI-12 to LoRaWAN Converter **(%%)designed for Smart Agriculture solution.
26
27 SDI-12 (Serial Digital Interface at 1200 baud) is an asynchronous [[serial communications>>url:https://en.wikipedia.org/wiki/Serial_communication]] protocol for intelligent sensors that monitor environment data. SDI-12 protocol is widely used in Agriculture sensor and Weather Station sensors.
28
29 SDI-12-LB has SDI-12 interface and support 12v output to power external SDI-12 sensor. It can get the environment data from SDI-12 sensor and sends out the data via LoRaWAN wireless protocol.
30
31 The LoRa wireless technology used in SDI-12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32
33 SDI-12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
34
35 Each SDI-12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36
37
38 [[image:image-20230201084414-1.png||height="464" width="1108"]]
39
40
41
42
43 == ​1.2 Features ==
44
45
46 * LoRaWAN 1.0.3 Class A
47 * Ultra-low power consumption
48 * Controllable 5v and 12v output to power external sensor
49 * SDI-12 Protocol to connect to SDI-12 Sensor
50 * Monitor Battery Level
51 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
52 * Support Bluetooth v5.1 and LoRaWAN remote configure.
53 * Support wireless OTA update firmware
54 * Uplink on periodically
55 * Downlink to change configure
56 * 8500mAh Battery for long term use
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Micro Controller:**
62
63 * MCU: 48Mhz ARM
64 * Flash: 256KB
65 * RAM: 64KB
66
67 (% style="color:#037691" %)**Common DC Characteristics:**
68
69 * Supply Voltage: 2.5v ~~ 3.6v
70 * Operating Temperature: -40 ~~ 85°C
71
72 (% style="color:#037691" %)**LoRa Spec:**
73
74 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
75 * Max +22 dBm constant RF output vs.
76 * RX sensitivity: down to -139 dBm.
77 * Excellent blocking immunity
78
79 (% style="color:#037691" %)**Current Input Measuring :**
80
81 * Range: 0 ~~ 20mA
82 * Accuracy: 0.02mA
83 * Resolution: 0.001mA
84
85 (% style="color:#037691" %)**Voltage Input Measuring:**
86
87 * Range: 0 ~~ 30v
88 * Accuracy: 0.02v
89 * Resolution: 0.001v
90
91 (% style="color:#037691" %)**Battery:**
92
93 * Li/SOCI2 un-chargeable battery
94 * Capacity: 8500mAh
95 * Self-Discharge: <1% / Year @ 25°C
96 * Max continuously current: 130mA
97 * Max boost current: 2A, 1 second
98
99 (% style="color:#037691" %)**Power Consumption**
100
101 * Sleep Mode: 5uA @ 3.3v
102 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
103
104 == 1.4 Connect to SDI-12 Sensor ==
105
106
107
108 [[image:1675212538524-889.png]]
109
110
111 == 1.5 Sleep mode and working mode ==
112
113
114 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
115
116 (% style="color:blue" %)**Working Mode: **(%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
117
118
119 == 1.6 Button & LEDs ==
120
121
122 [[image:1675212633011-651.png]]
123
124
125
126 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
127 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
128 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
129 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
130 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
131 )))
132 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
133 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
134 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
135 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
136 )))
137 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
138
139 == 1.7 Pin Mapping ==
140
141
142 [[image:1675213198663-754.png]]
143
144
145 == 1.8 BLE connection ==
146
147
148 SDI-12-LB support BLE remote configure.
149
150 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
151
152 * Press button to send an uplink
153 * Press button to active device.
154 * Device Power on or reset.
155
156 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
157
158
159 == 1.9 Mechanical ==
160
161
162 [[image:image-20230201090139-2.png]]
163
164 [[image:image-20230201090139-3.png]]
165
166 [[image:image-20230201090139-4.png]]
167
168
169 = 2. Configure SDI-12 to connect to LoRaWAN network =
170
171 == 2.1 How it works ==
172
173
174 The SDI-12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the SDI-12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
175
176
177 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) ==
178
179
180 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
181
182
183 [[image:image-20230201090528-5.png||height="465" width="1111"]]
184
185
186 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
187
188
189 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from SDI-12-LB.
190
191 Each SDI-12-LB is shipped with a sticker with the default device EUI as below:
192
193
194 [[image:image-20230201152430-20.jpeg]]
195
196
197 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
198
199
200 (% style="color:blue" %)**Register the device**
201
202 [[image:1675213652444-622.png]]
203
204
205 (% style="color:blue" %)**Add APP EUI and DEV EUI**
206
207
208 [[image:1675213661769-223.png]]
209
210
211 (% style="color:blue" %)**Add APP EUI in the application**
212
213
214 [[image:1675213675852-577.png]]
215
216
217 (% style="color:blue" %)**Add APP KEY**
218
219 [[image:1675213686734-883.png]]
220
221
222 (% style="color:blue" %)**Step 2**(%%): Activate on SDI-12-LB
223
224
225 Press the button for 5 seconds to activate the SDI-12-LB.
226
227 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode** (%%)for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
228
229
230 [[image:1675213704414-644.png]]
231
232
233 == ​2.3 SDI-12 Related Commands ==
234
235
236 User need to configure SDI-12-LB to communicate with SDI-12 sensors otherwise the uplink payload will only include a few bytes.
237
238
239 === 2.3.1 Basic SDI-12 debug command ===
240
241
242 User can run some basic SDI-12 command to debug the connection to the SDI-12 sensor. These commands can be sent via AT Command or LoRaWAN downlink command.
243
244 If SDI-12 sensor return value after get these commands, //SDI-12-LB// will uplink the return on FPORT=100, otherwise, if there is no response from SDI-12 sensor. //SDI-12-LB// will uplink NULL (0x 4E 55 4C 4C) to server.
245
246 The following is the display information on the serial port and the server.
247
248
249 [[image:image-20230201091027-6.png]]
250
251
252 [[image:image-20230201091027-7.png||height="261" width="1179"]]
253
254
255
256 ==== (% style="color:blue" %)**al!  ~-~- Get SDI-12 sensor Identification**(%%) ====
257
258
259 * AT Command: AT+ADDRI=aa
260 * LoRaWAN Downlink(prefix 0xAA00): AA 00 aa
261
262 (% style="color:#037691" %)**Parameter:  **(%%)aa: ASCII value of SDI-12 sensor address in downlink or HEX value in AT Command)
263
264 (% style="color:blue" %)**Example :   **(%%)AT+ADDRI=0 ( Equal to downlink: 0x AA 00 30)
265
266
267 The following is the display information on the serial port and the server.
268
269
270 [[image:image-20230201091257-8.png]]
271
272
273 [[image:image-20230201091257-9.png||height="225" width="1242"]]
274
275
276 ==== (% style="color:blue" %)**aM!,aMC!, aM1!- aM9!, aMC1!- aMC9!**(%%) ====
277
278
279 (% style="color:red" %)**aM! **(%%): Start Non-Concurrent Measurement
280
281 (% style="color:red" %)**aMC! **(%%): Start Non-Concurrent Measurement – Request CRC
282
283 (% style="color:red" %)**aM1!- aM9! **(%%): Additional Measurements
284
285 (% style="color:red" %)**aMC1!- aMC9!**(%%) : Additional Measurements – Request CRC
286
287
288 * AT Command : AT+ADDRM=0,1,0,1
289
290 * LoRaWAN Downlink(prefix 0xAA01): 0xAA 01 30 01 00 01
291
292 Downlink:AA 01 aa bb cc dd
293
294 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
295
296 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
297
298 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
299
300 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)__**aD0!**__(%%) to get return.
301
302
303 The following is the display information on the serial port and the server.
304
305
306 [[image:image-20230201091630-10.png]]
307
308
309 [[image:image-20230201091630-11.png||height="247" width="1165"]]
310
311
312
313 ==== (% style="color:blue" %)**aC!, aCC!,  aC1!- aC9!,  aCC1!- aCC9! **(%%) ====
314
315
316 (% style="color:red" %)**aC!**(%%) : Start Concurrent Measurement
317
318 (% style="color:red" %)**aCC!** (%%): Start Concurrent Measurement – Request CRC
319
320 (% style="color:red" %)**aC1!- aC9!**(%%) : Start Additional Concurrent Measurements
321
322 (% style="color:red" %)**aCC1!- aCC9!**(%%) : Start Additional Concurrent Measurements – Request CRC
323
324
325 * AT Command : AT+ADDRC=0,1,0,1 
326
327 * LoRaWAN Downlink(0xAA02): 0xAA 02 30 01 00 01
328
329 Downlink: AA 02 aa bb cc dd
330
331 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
332
333 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
334
335 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
336
337 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)__**aD0!**__(%%)__ __to get return.
338
339
340 The following is the display information on the serial port and the server.
341
342
343 [[image:image-20230201091954-12.png]]
344
345
346 [[image:image-20230201091954-13.png||height="203" width="1117"]]
347
348
349
350
351 ==== (% style="color:blue" %)**aR0!- aR9!,  aRC0!- aRC9!**(%%) ====
352
353
354 Start Continuous Measurement
355
356 Start Continuous Measurement – Request CRC
357
358
359 * AT Command : AT+ADDRR=0,1,0,1 
360 * LoRaWAN Downlink (0xAA 03): 0xAA 03 30 01 00 01
361
362 Downlink: AA 03 aa bb cc dd
363
364 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
365
366 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
367
368 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
369
370 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)__**aD0!**__(%%) to get return.
371
372
373 The following is the display information on the serial port and the server.
374
375
376 [[image:image-20230201092208-14.png]]
377
378
379 [[image:image-20230201092208-15.png||height="214" width="1140"]]
380
381
382 === 2.3.2 Advance SDI-12 Debug command ===
383
384
385 This command can be used to debug all SDI-12 command.
386
387
388 LoRaWAN Downlink: A8 aa xx xx xx xx bb cc
389
390 (% style="color:#037691" %)**aa **(%%): total SDI-12 command length
391
392 (% style="color:#037691" %)**xx **(%%): SDI-12 command
393
394 (% style="color:#037691" %)**bb **(%%): Delay to wait for return
395
396 (% style="color:#037691" %)**cc **(%%): 0: don't uplink return to LoRaWAN, 1: Uplink return to LoRaWAN on FPORT=100
397
398
399 (% style="color:blue" %)**Example: **(%%) AT+CFGDEV =0RC0!,1
400
401 (% style="color:#037691" %)**0RC0! **(%%): SDI-12 Command,
402
403 (% style="color:#037691" %)**1 **(%%): Delay 1 second.  ( 0: 810 mini-second)
404
405 Equal Downlink: 0xA8 05 30 52 43 30 21 01 01
406
407
408 The following is the display information on the serial port and the server.
409
410
411 [[image:image-20230201092355-16.png]]
412
413
414 [[image:image-20230201092355-17.png||height="426" width="1135"]]
415
416
417 === 2.3.3 Convert ASCII to String ===
418
419
420 This command is used to convert between ASCII and String format.
421
422 AT+CONVFORM ( Max length: 80 bytes)
423
424
425 (% style="color:blue" %)**Example:**
426
427 1) AT+CONVFORM=0, string Convert String from String to ASCII
428
429 [[image:1675214845056-885.png]]
430
431
432 2) AT+CONVFORM=1, ASCII Convert ASCII to String.
433
434 [[image:1675214856590-846.png]]
435
436
437 === 2.3.4 Define periodically SDI-12 commands and uplink. ===
438
439
440 AT+COMMANDx & AT+DATACUTx
441
442 User can define max 15 SDI-12 Commands (AT+COMMAND1 ~~ AT+COMMANDF). On each uplink period (TDC time, default 20 minutes), SDI-12-LB will send these SDI-12 commands and wait for return from SDI-12 sensors. SDI-12-LB will then combine these returns and uplink via LoRaWAN.
443
444
445 * (% style="color:blue" %)**AT Command:**
446
447 (% style="color:#037691" %)**AT+COMMANDx=var1,var2,var3,var4.**
448
449 (% style="color:red" %)**var1**(%%): SDI-12 command , for example: 0RC0!
450
451 (% style="color:red" %)**var2**(%%): Wait timeout for return. (unit: second)
452
453 (% style="color:red" %)**var3**(%%): Whether to send //addrD0!// to get return after var2 timeout. 0: Don't Send //addrD0! //; 1: Send //addrD0!//.
454
455 (% style="color:red" %)**var4**(%%): validation check for return. If return invalid, SDI-12-LB will resend this command. Max 2 retries.
456
457 (% style="color:red" %)**0 **(%%) No validation check;
458
459 (% style="color:red" %)**1** (%%) Check if return chars are printable char(0x20 ~~ 0x7E);
460
461 (% style="color:red" %)**2**(%%)  Check if there is return from SDI-12 sensor
462
463 (% style="color:red" %)**3** (%%) Check if return pass CRC check ( SDI-12 command var1 must include CRC request);
464
465
466 Each AT+COMMANDx is followed by a (% style="color:blue" %)**AT+DATACUT**(%%) command. AT+DATACUT command is used to take the useful string from the SDI-12 sensor so the final payload will have the minimum length to uplink.
467
468
469 (% style="color:blue" %)**AT+DATACUTx**(%%) : This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.
470
471 (% border="1" style="background-color:#f7faff; width:436px" %)
472 |(% style="width:433px" %)(((
473 **AT+DATACUTx=a,b,c**
474
475 **a**:  length for the return of AT+COMMAND
476
477 **b**: 1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.
478
479 **c**:  define the position for valid value. 
480 )))
481
482 For example, if return from AT+COMMAND1 is “013METER   TER12 112T12-00024895” , Below AT+DATACUT1 will get different result to combine payload:
483
484
485 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
486 |(% style="width:170px" %)**AT+DATACUT1 value**|(% style="width:338px" %)**Final Result to combine Payload**
487 |(% style="width:170px" %)34,1,1+2+3|(% style="width:338px" %)0D 00 01 30 31 33
488 |(% style="width:170px" %)34,2,1~~8+12~~16|(% style="width:338px" %)0D 00 01 30 31 33 4D 45 54 45 52 54 45 52 31 32
489 |(% style="width:170px" %)34,2,1~~34|(% style="width:338px" %)0D 00 01 30 31 33 4D 45 54 45 52 20 20 20 54 45 52 31 32 20 31 31 32 54 31 32 2D 30 30 30 32 34 38 39 35 0D 0A
490
491 * (% style="color:blue" %)** Downlink Payload:**
492
493 (% style="color:blue" %)**0xAF**(%%)  downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
494
495
496 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
497
498
499 Format: ** (% style="color:#037691" %)AF MM NN LL XX XX XX XX YY(%%)**
500
501 Where:
502
503 * (% style="color:#037691" %)**MM **(%%): the AT+COMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
504 * (% style="color:#037691" %)**NN **(%%):  1: set the AT+DATACUT value ; 2: set the AT+DATACUT value.
505 * (% style="color:#037691" %)**LL **(%%):  The length of AT+COMMAND or AT+DATACUT command
506 * (% style="color:#037691" %)**XX XX XX XX **(%%): AT+COMMAND or AT+DATACUT command
507 * (% style="color:#037691" %)**YY **(%%):  If YY=0, RS485-LN will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command. 
508
509 (% style="color:blue" %)**Example:**
510
511 [[image:image-20230201094129-18.png]]
512
513
514 (% style="color:blue" %)**Clear SDI12 Command**
515
516 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
517
518
519 * (% style="color:#037691" %)**AT Command:**
520
521 (% style="color:#4f81bd" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase
522
523
524 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
525
526
527 * (% style="color:#037691" %)** Downlink Payload:**
528
529 (% style="color:#4f81bd" %)**0x09 aa bb**(%%)  same as AT+CMDEAR=aa,bb
530
531
532
533 (% style="color:blue" %)**command combination**
534
535 Below shows a screen shot how the results combines together to a uplink payload.
536
537 [[image:1675215745275-920.png]]
538
539
540 If user don't want to use DATACUT for some command, he simply want to uplink all returns. AT+ALLDATAMOD can be set to 1.
541
542 (% style="color:blue" %)**AT+ALLDATAMOD**(%%) will simply get all return and don't do CRC check as result for SDI-12 command. AT+DATACUTx command has higher priority, if AT+DATACUTx has been set, AT+ALLDATAMOD will be ignore for this SDI-12 command.
543
544
545 (% style="color:#4f81bd" %)**For example: **(%%) as below photo, AT+ALLDATAMOD=1, but AT+DATACUT1 has been set, AT+DATACUT1 will be still effect the result.
546
547
548 [[image:1675215782925-448.png]]
549
550
551 If AT+ALLDATAMOD=1, (% style="color:#4f81bd" %)**FX,X**(%%) will be added in the payload, FX specify which command is used and X specify the length of return. for example in above screen, F1 05 means the return is from AT+COMMAND1 and the return is 5 bytes.
552
553
554
555 (% style="color:blue" %)**Compose Uplink**
556
557
558 (% style="color:#4f81bd" %)**AT+DATAUP=0**
559
560 Compose the uplink payload with value returns in sequence and send with A SIGNLE UPLINK.
561
562 Final Payload is Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
563
564 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
565
566
567 [[image:1675215828102-844.png]]
568
569
570 (% style="color:#4f81bd" %)**AT+DATAUP=1**
571
572 Compose the uplink payload with value returns in sequence and send with Multiply UPLINKs.
573
574 Final Payload is
575
576 __**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**__
577
578 1. Battery Info (2 bytes): Battery voltage
579 1. PAYVER (1 byte): Defined by AT+PAYVER
580 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
581 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
582 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
583
584 [[image:1675215848113-696.png]]
585
586
587 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
588
589 * For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
590 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
591 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
592 * For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
593
594 (% style="color:red" %)**When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
595
596 (% style="color:red" %)**When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value.**
597
598
599 == 2.4 Uplink Payload ==
600
601
602 Uplink payloads have two types:
603
604 * Distance Value: Use FPORT=2
605 * Other control commands: Use other FPORT fields.
606
607 The application server should parse the correct value based on FPORT settings.
608
609
610 === 2.4.1 Device Payload, FPORT~=5 ===
611
612
613 Include device configure status. Once SDI-12-LB Joined the network, it will uplink this message to the server.
614
615 Users can also use the downlink command(0x26 01) to ask SDI-12-LB to resend this uplink.
616
617 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
618 |(% colspan="6" style="width:434px" %)**Device Status (FPORT=5)**
619 |(% style="width:102px" %)**Size (bytes)**|(% style="width:67px" %)**1**|(% style="width:80px" %)**2**|(% style="width:89px" %)**1**|(% style="width:52px" %)**1**|(% style="width:44px" %)**2**
620 |(% style="width:102px" %)**Value**|(% style="width:67px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:89px" %)Frequency Band|(% style="width:52px" %)Sub-band|(% style="width:44px" %)BAT
621
622 Example parse in TTNv3
623
624 [[image:1675215946738-635.png]]
625
626
627 (% style="color:#037691" %)**Sensor Model**(%%): For SDI-12-LB, this value is 0x17
628
629 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
630
631 (% style="color:#037691" %)**Frequency Band**:
632
633 *0x01: EU868
634
635 *0x02: US915
636
637 *0x03: IN865
638
639 *0x04: AU915
640
641 *0x05: KZ865
642
643 *0x06: RU864
644
645 *0x07: AS923
646
647 *0x08: AS923-1
648
649 *0x09: AS923-2
650
651 *0x0a: AS923-3
652
653 *0x0b: CN470
654
655 *0x0c: EU433
656
657 *0x0d: KR920
658
659 *0x0e: MA869
660
661
662 (% style="color:#037691" %)**Sub-Band**:
663
664 AU915 and US915:value 0x00 ~~ 0x08
665
666 CN470: value 0x0B ~~ 0x0C
667
668 Other Bands: Always 0x00
669
670
671 (% style="color:#037691" %)**Battery Info**:
672
673 Check the battery voltage.
674
675 Ex1: 0x0B45 = 2885mV
676
677 Ex2: 0x0B49 = 2889mV
678
679
680 === 2.4.2 Uplink Payload, FPORT~=2 ===
681
682
683 There are different cases for uplink. See below
684
685 * SDI-12 Debug Command return: FPORT=100
686
687 * Periodically Uplink: FPORT=2
688
689 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
690 |(% style="width:93px" %)(((
691 **Size(bytes)**
692 )))|(% style="width:83px" %)**2**|(% style="width:70px" %)**1**|(% style="width:234px" %)**Length depends on the return from the commands**
693 |(% style="width:93px" %)**Value**|(% style="width:83px" %)(((
694 Battery(mV)
695 &
696 Interrupt_Flag
697 )))|(% style="width:70px" %)[[PAYLOAD_VER>>||anchor="H3.6Setthepayloadversion"]]|(% style="width:234px" %)(((
698 If the valid payload is too long and exceed the maximum support.
699 Payload length in server,server will show payload not provided in the LoRaWAN server.
700 )))
701
702 [[image:1675216282284-923.png]]
703
704
705 === 2.4.3 Battery Info ===
706
707
708 Check the battery voltage for SDI-12-LB.
709
710 Ex1: 0x0B45 = 2885mV
711
712 Ex2: 0x0B49 = 2889mV
713
714
715 === 2.4.4 Interrupt Pin ===
716
717
718 This data field shows if this packet is generated by (% style="color:#037691" %)**Interrupt Pin**(%%) or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.7PinMapping"]].
719
720 **Example:**
721
722 Ex1: 0x0B45:0x0B&0x80= 0x00    Normal uplink packet.
723
724 Ex2: 0x8B49:0x8B&0x80= 0x80    Interrupt Uplink Packet.
725
726
727 === 2.4.5 Payload version ===
728
729
730
731 === 2.4.6 ​Decode payload in The Things Network ===
732
733
734 While using TTN network, you can add the payload format to decode the payload.
735
736 [[image:1675216779406-595.png]]
737
738
739 There is no fix payload decoder in LoRaWAN server because the SDI-12 sensors returns are different. User need to write the decoder themselves for their case.
740
741 SDI-12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
742
743
744 == 2.5 Uplink Interval ==
745
746
747 The SDI-12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
748
749 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval]]]]
750
751
752
753
754 == 2.6 Frequency Plans ==
755
756
757 The SDI-12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
758
759 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
760
761
762 == 2.7 Firmware Change Log ==
763
764
765 **Firmware download link:**
766
767 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
768
769
770 = 3. Configure SDI-12-LB via AT Command or LoRaWAN Downlink =
771
772
773 Use can configure SDI-12-LB via AT Command or LoRaWAN Downlink.
774
775 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
776 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
777
778 There are two kinds of commands to configure SDI-12-LB, they are:
779
780 * (% style="color:blue" %)**General Commands**.
781
782 These commands are to configure:
783
784 * General system settings like: uplink interval.
785 * LoRaWAN protocol & radio related command.
786
787 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
788
789 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
790
791
792 * (% style="color:blue" %)**Commands special design for SDI-12-LB**
793
794 These commands only valid for SDI-12-LB, as below:
795
796
797 == ​​​​​​​3.1 Set Transmit Interval Time ==
798
799
800 Feature: Change LoRaWAN End Node Transmit Interval.
801
802 (% style="color:blue" %)**AT Command: AT+TDC**
803
804 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
805 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
806 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
807 30000
808 OK
809 the interval is 30000ms = 30s
810 )))
811 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
812 OK
813 Set transmit interval to 60000ms = 60 seconds
814 )))
815
816 (% style="color:blue" %)**Downlink Command: 0x01**
817
818
819 Format: Command Code (0x01) followed by 3 bytes time value.
820
821 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
822
823 * Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
824 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
825
826 == 3.2 Set Interrupt Mode ==
827
828
829 Feature, Set Interrupt mode for GPIO_EXIT.
830
831 (% style="color:blue" %)**AT Command: AT+INTMOD**
832
833 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
834 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 187px;" %)**Function**|=(% style="width: 165px;" %)**Response**
835 |(% style="width:156px" %)AT+INTMOD=?|(% style="width:187px" %)Show current interrupt mode|(% style="width:165px" %)(((
836 0
837 OK
838 the mode is 0 = No interruption
839 )))
840 |(% style="width:156px" %)AT+INTMOD=2|(% style="width:187px" %)(((
841 Set Transmit Interval
842 ~1. (Disable Interrupt),
843 2. (Trigger by rising and falling edge)
844 3. (Trigger by falling edge)
845 4. (Trigger by rising edge)
846 )))|(% style="width:165px" %)OK
847
848 (% style="color:blue" %)**Downlink Command: 0x06**
849
850 Format: Command Code (0x06) followed by 3 bytes.
851
852 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
853
854 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
855 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
856
857 == 3.3 Set the output time ==
858
859
860 Feature, Control the output 3V3 , 5V or 12V.
861
862 (% style="color:blue" %)**AT Command: AT+3V3T**
863
864 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
865 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
866 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
867 0
868 OK
869 )))
870 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
871 OK
872 default setting
873 )))
874 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
875 OK
876 )))
877 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
878 OK
879 )))
880
881 (% style="color:blue" %)**AT Command: AT+5VT**
882
883 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
884 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
885 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
886 0
887 OK
888 )))
889 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
890 OK
891 default setting
892 )))
893 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
894 OK
895 )))
896 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
897 OK
898 )))
899
900 (% style="color:blue" %)**AT Command: AT+12VT**
901
902 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
903 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
904 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
905 0
906 OK
907 )))
908 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
909 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
910 OK
911 )))
912
913 (% style="color:blue" %)**Downlink Command: 0x07**
914
915 Format: Command Code (0x07) followed by 3 bytes.
916
917 The first byte is which power, the second and third bytes are the time to turn on.
918
919 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
920 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
921 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
922 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
923 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
924 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
925
926 == 3.4 Set the all data mode ==
927
928
929 Feature, Set the all data mode.
930
931 (% style="color:blue" %)**AT Command: AT+ALLDATAMOD**
932
933 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
934 |=**Command Example**|=**Function**|=**Response**
935 |AT+ALLDATAMOD=?|Show current all data mode|(((
936 0
937 OK
938 )))
939 |AT+ALLDATAMOD=1|Set all data mode is 1.|OK
940
941 (% style="color:blue" %)**Downlink Command: 0xAB**
942
943 Format: Command Code (0xAB) followed by 1 bytes.
944
945 * Example 1: Downlink Payload: AB 00  ~/~/  AT+ALLDATAMOD=0
946 * Example 2: Downlink Payload: AB 01  ~/~/  AT+ALLDATAMOD=1
947
948 == 3.5 Set the splicing payload for uplink ==
949
950
951 Feature, splicing payload for uplink.
952
953 (% style="color:blue" %)**AT Command: AT+DATAUP**
954
955 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
956 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 266px;" %)**Function**|=**Response**
957 |(% style="width:154px" %)AT+DATAUP =?|(% style="width:266px" %)Show current splicing payload for uplink mode|(((
958 0
959 OK
960 )))
961 |(% style="width:154px" %)AT+DATAUP =0|(% style="width:266px" %)(((
962 Set splicing payload for uplink mode is 0.
963 )))|(((
964 OK
965 )))
966 |(% style="width:154px" %)AT+DATAUP =1|(% style="width:266px" %)Set splicing payload for uplink mode is 1 , and the each splice uplink is sent sequentially.|OK
967 |(% style="width:154px" %)AT+DATAUP =1,20000|(% style="width:266px" %)(((
968 Set splicing payload for uplink mode is 1, and the uplink interval of each splice to 20000 milliseconds.
969 )))|OK
970
971 (% style="color:blue" %)**Downlink Command: 0xAD**
972
973 Format: Command Code (0xAD) followed by 1 bytes or 5 bytes.
974
975 * Example 1: Downlink Payload: AD 00  ~/~/  AT+DATAUP=0
976 * Example 2: Downlink Payload: AD 01  ~/~/  AT+DATAUP =1
977 * Example 3: Downlink Payload: AD 01 00 00 14  ~/~/  AT+DATAUP =1,20000
978
979 This means that the interval is set to 0x000014=20S
980
981
982 == 3.6 Set the payload version ==
983
984 Feature, Set the payload version.
985
986 (% style="color:blue" %)**AT Command: AT+PAYVER**
987
988 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
989 |=(% style="width: 158px;" %)**Command Example**|=(% style="width: 192px;" %)**Function**|=**Response**
990 |(% style="width:158px" %)AT+PAYVER=?|(% style="width:192px" %)Show current payload version|(((
991 1
992 OK
993 )))
994 |(% style="width:158px" %)AT+PAYVER=5|(% style="width:192px" %)Set payload version is 5.|OK
995
996 (% style="color:blue" %)**Downlink Command: 0xAE**
997
998 Format: Command Code (0xAE) followed by 1 bytes.
999
1000 * Example 1: Downlink Payload: AE 01  ~/~/  AT+PAYVER=1
1001 * Example 2: Downlink Payload: AE 05  ~/~/  AT+PAYVER=5
1002
1003 = 4. Battery & how to replace =
1004
1005 == 4.1 Battery Type ==
1006
1007
1008 SDI-12-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1009
1010
1011 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1012
1013 [[image:1675234124233-857.png]]
1014
1015
1016 Minimum Working Voltage for the SDI-12-LB:
1017
1018 SDI-12-LB:  2.45v ~~ 3.6v
1019
1020
1021 == 4.2 Replace Battery ==
1022
1023
1024 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1025
1026 And make sure the positive and negative pins match.
1027
1028
1029 == 4.3 Power Consumption Analyze ==
1030
1031
1032 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1033
1034 Instruction to use as below:
1035
1036 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
1037
1038 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
1039
1040 * Product Model
1041 * Uplink Interval
1042 * Working Mode
1043
1044 And the Life expectation in difference case will be shown on the right.
1045
1046
1047 [[image:1675234155374-163.png]]
1048
1049
1050 The battery related documents as below:
1051
1052 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
1053 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
1054 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
1055
1056 [[image:image-20230201145019-19.png]]
1057
1058
1059 === 4.3.1 ​Battery Note ===
1060
1061
1062 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1063
1064
1065 === 4.3.2 Replace the battery ===
1066
1067
1068 You can change the battery in the SDI-12-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1069
1070 The default battery pack of SDI-12-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1071
1072
1073 = 5. Remote Configure device =
1074
1075 == 5.1 Connect via BLE ==
1076
1077
1078 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
1079
1080
1081 == 5.2 AT Command Set ==
1082
1083
1084
1085 = 6. OTA firmware update =
1086
1087
1088 Please see this link for how to do OTA firmware update.
1089
1090 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1091
1092
1093 = 7. FAQ =
1094
1095 == 7.1 How to use AT Command to access device? ==
1096
1097
1098 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1099
1100
1101 == 7.2 How to update firmware via UART port? ==
1102
1103
1104 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1105
1106
1107 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1108
1109
1110 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
1111 When downloading the images, choose the required image file for download. ​
1112
1113
1114 = 8. ​Order Info =
1115
1116
1117 (% style="color:blue" %)**Part Number: SDI-12-LB-XXX**
1118
1119 XXX: The default frequency band
1120
1121 (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1122 (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1123 (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1124 (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1125 (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1126 (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1127 (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1128 (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1129
1130
1131
1132
1133
1134
1135
1136 = 9. Packing Info =
1137
1138
1139 (% style="color:#037691" %)**Package Includes**:
1140
1141 * SDI-12-LB SDI-12 to LoRaWAN Converter x 1
1142
1143 (% style="color:#037691" %)**Dimension and weight**:
1144
1145 * Device Size: cm
1146 * Device Weight: g
1147 * Package Size / pcs : cm
1148 * Weight / pcs : g
1149
1150 = 10. ​Support =
1151
1152
1153 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1154
1155 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1156
1157
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0