Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230131183542-1.jpeg||height="694" width="694"]]
3
4 **Table of Contents:**
5
6 {{toc/}}
7
8
9
10
11
12
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 ​What is SDI-12 to LoRaWAN Converter ==
23
24
25 The Dragino (% style="color:blue" %)**SDI-12-LB**(%%) is a (% style="color:blue" %)**SDI-12 to LoRaWAN Converter **(%%)designed for Smart Agriculture solution.
26
27 SDI-12 (Serial Digital Interface at 1200 baud) is an asynchronous [[serial communications>>url:https://en.wikipedia.org/wiki/Serial_communication]] protocol for intelligent sensors that monitor environment data. SDI-12 protocol is widely used in Agriculture sensor and Weather Station sensors.
28
29 SDI-12-LB has SDI-12 interface and support 12v output to power external SDI-12 sensor. It can get the environment data from SDI-12 sensor and sends out the data via LoRaWAN wireless protocol.
30
31 The LoRa wireless technology used in SDI-12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32
33 SDI-12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
34
35 Each SDI-12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36
37
38 [[image:image-20230201084414-1.png||height="464" width="1108"]]
39
40
41
42
43 == ​1.2 Features ==
44
45
46 * LoRaWAN 1.0.3 Class A
47 * Ultra-low power consumption
48 * Controllable 5v and 12v output to power external sensor
49 * SDI-12 Protocol to connect to SDI-12 Sensor
50 * Monitor Battery Level
51 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
52 * Support Bluetooth v5.1 and LoRaWAN remote configure.
53 * Support wireless OTA update firmware
54 * Uplink on periodically
55 * Downlink to change configure
56 * 8500mAh Battery for long term use
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Micro Controller:**
62
63 * MCU: 48Mhz ARM
64 * Flash: 256KB
65 * RAM: 64KB
66
67 (% style="color:#037691" %)**Common DC Characteristics:**
68
69 * Supply Voltage: 2.5v ~~ 3.6v
70 * Operating Temperature: -40 ~~ 85°C
71
72 (% style="color:#037691" %)**LoRa Spec:**
73
74 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
75 * Max +22 dBm constant RF output vs.
76 * RX sensitivity: down to -139 dBm.
77 * Excellent blocking immunity
78
79 (% style="color:#037691" %)**Current Input Measuring :**
80
81 * Range: 0 ~~ 20mA
82 * Accuracy: 0.02mA
83 * Resolution: 0.001mA
84
85 (% style="color:#037691" %)**Voltage Input Measuring:**
86
87 * Range: 0 ~~ 30v
88 * Accuracy: 0.02v
89 * Resolution: 0.001v
90
91 (% style="color:#037691" %)**Battery:**
92
93 * Li/SOCI2 un-chargeable battery
94 * Capacity: 8500mAh
95 * Self-Discharge: <1% / Year @ 25°C
96 * Max continuously current: 130mA
97 * Max boost current: 2A, 1 second
98
99 (% style="color:#037691" %)**Power Consumption**
100
101 * Sleep Mode: 5uA @ 3.3v
102 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
103
104 == 1.4 Connect to SDI-12 Sensor ==
105
106
107
108 [[image:1675212538524-889.png]]
109
110
111 == 1.5 Sleep mode and working mode ==
112
113
114 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
115
116 (% style="color:blue" %)**Working Mode: **(%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
117
118
119 == 1.6 Button & LEDs ==
120
121
122 [[image:1675212633011-651.png]]
123
124
125
126 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
127 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
128 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
129 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
130 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
131 )))
132 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
133 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
134 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
135 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
136 )))
137 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
138
139 == 1.7 Pin Mapping ==
140
141
142 [[image:1675213198663-754.png]]
143
144
145 == 1.8 BLE connection ==
146
147
148 SDI-12-LB support BLE remote configure.
149
150 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
151
152 * Press button to send an uplink
153 * Press button to active device.
154 * Device Power on or reset.
155
156 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
157
158
159 == 1.9 Mechanical ==
160
161
162 [[image:image-20230201090139-2.png]]
163
164 [[image:image-20230201090139-3.png]]
165
166 [[image:image-20230201090139-4.png]]
167
168
169 = 2. Configure SDI-12 to connect to LoRaWAN network =
170
171 == 2.1 How it works ==
172
173
174 The SDI-12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the SDI-12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
175
176
177 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) ==
178
179
180 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
181
182
183 [[image:image-20230201090528-5.png||height="465" width="1111"]]
184
185
186 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
187
188
189 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from SDI-12-LB.
190
191 Each SDI-12-LB is shipped with a sticker with the default device EUI as below:
192
193
194 [[image:image-20230201152430-20.jpeg]]
195
196
197 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
198
199
200 (% style="color:blue" %)**Register the device**
201
202 [[image:1675213652444-622.png]]
203
204
205 (% style="color:blue" %)**Add APP EUI and DEV EUI**
206
207
208 [[image:1675213661769-223.png]]
209
210
211 (% style="color:blue" %)**Add APP EUI in the application**
212
213
214 [[image:1675213675852-577.png]]
215
216
217 (% style="color:blue" %)**Add APP KEY**
218
219 [[image:1675213686734-883.png]]
220
221
222 (% style="color:blue" %)**Step 2**(%%): Activate on SDI-12-LB
223
224
225 Press the button for 5 seconds to activate the SDI-12-LB.
226
227 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode** (%%)for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
228
229
230 [[image:1675213704414-644.png]]
231
232
233 == ​2.3 SDI-12 Related Commands ==
234
235
236 User need to configure SDI-12-LB to communicate with SDI-12 sensors otherwise the uplink payload will only include a few bytes.
237
238
239 === 2.3.1 Basic SDI-12 debug command ===
240
241
242 User can run some basic SDI-12 command to debug the connection to the SDI-12 sensor. These commands can be sent via AT Command or LoRaWAN downlink command.
243
244 If SDI-12 sensor return value after get these commands, //SDI-12-LB// will uplink the return on FPORT=100, otherwise, if there is no response from SDI-12 sensor. //SDI-12-LB// will uplink NULL (0x 4E 55 4C 4C) to server.
245
246 The following is the display information on the serial port and the server.
247
248
249 [[image:image-20230201091027-6.png]]
250
251
252 [[image:image-20230201091027-7.png||height="261" width="1179"]]
253
254
255
256 ==== (% style="color:blue" %)**al!  ~-~- Get SDI-12 sensor Identification**(%%) ====
257
258
259 * AT Command: AT+ADDRI=aa
260 * LoRaWAN Downlink(prefix 0xAA00): AA 00 aa
261
262 (% style="color:#037691" %)**Parameter:  **(%%)aa: ASCII value of SDI-12 sensor address in downlink or HEX value in AT Command)
263
264 (% style="color:blue" %)**Example :   **(%%)AT+ADDRI=0 ( Equal to downlink: 0x AA 00 30)
265
266
267 The following is the display information on the serial port and the server.
268
269
270 [[image:image-20230201091257-8.png]]
271
272
273 [[image:image-20230201091257-9.png||height="225" width="1242"]]
274
275
276 ==== (% style="color:blue" %)**aM!,aMC!, aM1!- aM9!, aMC1!- aMC9!**(%%) ====
277
278
279 (% style="color:red" %)**aM! **(%%): Start Non-Concurrent Measurement
280
281 (% style="color:red" %)**aMC! **(%%): Start Non-Concurrent Measurement – Request CRC
282
283 (% style="color:red" %)**aM1!- aM9! **(%%): Additional Measurements
284
285 (% style="color:red" %)**aMC1!- aMC9!**(%%) : Additional Measurements – Request CRC
286
287
288 * AT Command : AT+ADDRM=0,1,0,1
289
290 * LoRaWAN Downlink(prefix 0xAA01): 0xAA 01 30 01 00 01
291
292 Downlink:AA 01 aa bb cc dd
293
294 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
295
296 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
297
298 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
299
300 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)**aD0!**(%%) to get return.
301
302
303 The following is the display information on the serial port and the server.
304
305
306 [[image:image-20230201091630-10.png]]
307
308
309 [[image:image-20230201091630-11.png||height="247" width="1165"]]
310
311
312
313 ==== (% style="color:blue" %)**aC!, aCC!,  aC1!- aC9!,  aCC1!- aCC9! **(%%) ====
314
315
316 (% style="color:red" %)**aC!**(%%) : Start Concurrent Measurement
317
318 (% style="color:red" %)**aCC!** (%%): Start Concurrent Measurement – Request CRC
319
320 (% style="color:red" %)**aC1!- aC9!**(%%) : Start Additional Concurrent Measurements
321
322 (% style="color:red" %)**aCC1!- aCC9!**(%%) : Start Additional Concurrent Measurements – Request CRC
323
324
325 * AT Command : AT+ADDRC=0,1,0,1 
326
327 * LoRaWAN Downlink(0xAA02): 0xAA 02 30 01 00 01
328
329 Downlink: AA 02 aa bb cc dd
330
331 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
332
333 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
334
335 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
336
337 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)**aD0!**(%%) to get return.
338
339
340 The following is the display information on the serial port and the server.
341
342
343 [[image:image-20230201091954-12.png]]
344
345
346 [[image:image-20230201091954-13.png||height="203" width="1117"]]
347
348
349
350
351 ==== (% style="color:blue" %)**aR0!- aR9!,  aRC0!- aRC9!**(%%) ====
352
353
354 Start Continuous Measurement
355
356 Start Continuous Measurement – Request CRC
357
358
359 * AT Command : AT+ADDRR=0,1,0,1 
360 * LoRaWAN Downlink (0xAA 03): 0xAA 03 30 01 00 01
361
362 Downlink: AA 03 aa bb cc dd
363
364 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
365
366 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
367
368 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
369
370 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)**aD0!**(%%) to get return.
371
372
373 The following is the display information on the serial port and the server.
374
375
376
377 [[image:image-20230201092208-14.png]]
378
379
380 [[image:image-20230201092208-15.png||height="214" width="1140"]]
381
382
383 === 2.3.2 Advance SDI-12 Debug command ===
384
385
386 This command can be used to debug all SDI-12 command.
387
388
389 LoRaWAN Downlink: A8 aa xx xx xx xx bb cc
390
391 (% style="color:#037691" %)**aa **(%%): total SDI-12 command length
392
393 (% style="color:#037691" %)**xx **(%%): SDI-12 command
394
395 (% style="color:#037691" %)**bb **(%%): Delay to wait for return
396
397 (% style="color:#037691" %)**cc **(%%): 0: don't uplink return to LoRaWAN, 1: Uplink return to LoRaWAN on FPORT=100
398
399
400 (% style="color:blue" %)**Example: **(%%) AT+CFGDEV =0RC0!,1
401
402 (% style="color:#037691" %)**0RC0! **(%%): SDI-12 Command,
403
404 (% style="color:#037691" %)**1 **(%%): Delay 1 second.  ( 0: 810 mini-second)
405
406 Equal Downlink: 0xA8 05 30 52 43 30 21 01 01
407
408
409 The following is the display information on the serial port and the server.
410
411
412 [[image:image-20230201092355-16.png]]
413
414
415 [[image:image-20230201092355-17.png||height="426" width="1135"]]
416
417
418 === 2.3.3 Convert ASCII to String ===
419
420
421 This command is used to convert between ASCII and String format.
422
423 AT+CONVFORM ( Max length: 80 bytes)
424
425
426 (% style="color:blue" %)**Example:**
427
428 1) AT+CONVFORM=0, string Convert String from String to ASCII
429
430 [[image:1675214845056-885.png]]
431
432
433 2) AT+CONVFORM=1, ASCII Convert ASCII to String.
434
435 [[image:1675214856590-846.png]]
436
437
438 === 2.3.4 Define periodically SDI-12 commands and uplink. ===
439
440
441 AT+COMMANDx & AT+DATACUTx
442
443 User can define max 15 SDI-12 Commands (AT+COMMAND1 ~~ AT+COMMANDF). On each uplink period (TDC time, default 20 minutes), SDI-12-LB will send these SDI-12 commands and wait for return from SDI-12 sensors. SDI-12-LB will then combine these returns and uplink via LoRaWAN.
444
445
446 * (% style="color:blue" %)**AT Command:**
447
448 (% style="color:#037691" %)**AT+COMMANDx=var1,var2,var3,var4.**
449
450 (% style="color:red" %)**var1**(%%): SDI-12 command , for example: 0RC0!
451
452 (% style="color:red" %)**var2**(%%): Wait timeout for return. (unit: second)
453
454 (% style="color:red" %)**var3**(%%): Whether to send //addrD0!// to get return after var2 timeout. 0: Don't Send //addrD0! //; 1: Send //addrD0!//.
455
456 (% style="color:red" %)**var4**(%%): validation check for return. If return invalid, SDI-12-LB will resend this command. Max 2 retries.
457
458 (% style="color:red" %)**0 **(%%) No validation check;
459
460 (% style="color:red" %)**1** (%%) Check if return chars are printable char(0x20 ~~ 0x7E);
461
462 (% style="color:#red" %)**2**(%%)  Check if there is return from SDI-12 sensor
463
464 (% style="color:red" %)**3** (%%) Check if return pass CRC check ( SDI-12 command var1 must include CRC request);
465
466
467 Each AT+COMMANDx is followed by a (% style="color:blue" %)**AT+DATACUT**(%%) command. AT+DATACUT command is used to take the useful string from the SDI-12 sensor so the final payload will have the minimum length to uplink.
468
469
470 (% style="color:blue" %)**AT+DATACUTx**(%%) : This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.
471
472 (% border="1" style="background-color:#f7faff; width:436px" %)
473 |(% style="width:433px" %)(((
474 **AT+DATACUTx=a,b,c**
475
476 **a**:  length for the return of AT+COMMAND
477
478 **b**: 1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.
479
480 **c**:  define the position for valid value. 
481 )))
482
483 For example, if return from AT+COMMAND1 is “013METER   TER12 112T12-00024895” , Below AT+DATACUT1 will get different result to combine payload:
484
485
486 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
487 |(% style="width:170px" %)**AT+DATACUT1 value**|(% style="width:338px" %)**Final Result to combine Payload**
488 |(% style="width:170px" %)34,1,1+2+3|(% style="width:338px" %)0D 00 01 30 31 33
489 |(% style="width:170px" %)34,2,1~~8+12~~16|(% style="width:338px" %)0D 00 01 30 31 33 4D 45 54 45 52 54 45 52 31 32
490 |(% style="width:170px" %)34,2,1~~34|(% style="width:338px" %)0D 00 01 30 31 33 4D 45 54 45 52 20 20 20 54 45 52 31 32 20 31 31 32 54 31 32 2D 30 30 30 32 34 38 39 35 0D 0A
491
492 * (% style="color:blue" %)** Downlink Payload:**
493
494 (% style="color:blue" %)**0xAF**(%%)  downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
495
496
497 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
498
499
500 Format: ** (% style="color:#037691" %)AF MM NN LL XX XX XX XX YY(%%)**
501
502 Where:
503
504 * (% style="color:#037691" %)**MM **(%%): the AT+COMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
505 * (% style="color:#037691" %)**NN **(%%):  1: set the AT+DATACUT value ; 2: set the AT+DATACUT value.
506 * (% style="color:#037691" %)**LL **(%%):  The length of AT+COMMAND or AT+DATACUT command
507 * (% style="color:#037691" %)**XX XX XX XX **(%%): AT+COMMAND or AT+DATACUT command
508 * (% style="color:#037691" %)**YY **(%%):  If YY=0, RS485-LN will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command. 
509
510 (% style="color:blue" %)**Example:**
511
512 [[image:image-20230201094129-18.png]]
513
514
515 (% style="color:blue" %)**Clear SDI12 Command**
516
517 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
518
519
520 * (% style="color:#037691" %)**AT Command:**
521
522 (% style="color:#4f81bd" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase
523
524
525 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
526
527
528 * (% style="color:#037691" %)** Downlink Payload:**
529
530 (% style="color:#4f81bd" %)**0x09 aa bb**(%%)  same as AT+CMDEAR=aa,bb
531
532
533
534 (% style="color:blue" %)**command combination**
535
536 Below shows a screen shot how the results combines together to a uplink payload.
537
538 [[image:1675215745275-920.png]]
539
540
541 If user don't want to use DATACUT for some command, he simply want to uplink all returns. AT+ALLDATAMOD can be set to 1.
542
543 (% style="color:blue" %)**AT+ALLDATAMOD**(%%) will simply get all return and don't do CRC check as result for SDI-12 command. AT+DATACUTx command has higher priority, if AT+DATACUTx has been set, AT+ALLDATAMOD will be ignore for this SDI-12 command.
544
545
546 (% style="color:#4f81bd" %)**For example: ** as below photo, AT+ALLDATAMOD=1, but AT+DATACUT1 has been set, AT+DATACUT1 will be still effect the result.
547
548
549 [[image:1675215782925-448.png]]
550
551
552 If AT+ALLDATAMOD=1, (% style="color:#4f81bd" %)**FX,X**(%%) will be added in the payload, FX specify which command is used and X specify the length of return. for example in above screen, F1 05 means the return is from AT+COMMAND1 and the return is 5 bytes.
553
554
555
556 (% style="color:blue" %)**Compose Uplink**
557
558
559 (% style="color:#4f81bd" %)**AT+DATAUP=0**
560
561 Compose the uplink payload with value returns in sequence and send with A SIGNLE UPLINK.
562
563 Final Payload is Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
564
565 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
566
567
568 [[image:1675215828102-844.png]]
569
570
571 (% style="color:#4f81bd" %)**AT+DATAUP=1**
572
573 Compose the uplink payload with value returns in sequence and send with Multiply UPLINKs.
574
575 Final Payload is
576
577 __**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**__
578
579 1. Battery Info (2 bytes): Battery voltage
580 1. PAYVER (1 byte): Defined by AT+PAYVER
581 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
582 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
583 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
584
585 [[image:1675215848113-696.png]]
586
587
588 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
589
590 * For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
591 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
592 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
593 * For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
594
595 (% style="color:red" %)**When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
596
597 (% style="color:red" %)**When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value.**
598
599
600 == 2.4 Uplink Payload ==
601
602
603 Uplink payloads have two types:
604
605 * Distance Value: Use FPORT=2
606 * Other control commands: Use other FPORT fields.
607
608 The application server should parse the correct value based on FPORT settings.
609
610
611 === 2.4.1 Device Payload, FPORT~=5 ===
612
613
614 Include device configure status. Once SDI-12-LB Joined the network, it will uplink this message to the server.
615
616 Users can also use the downlink command(0x26 01) to ask SDI-12-LB to resend this uplink.
617
618 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
619 |(% colspan="6" style="width:434px" %)**Device Status (FPORT=5)**
620 |(% style="width:102px" %)**Size (bytes)**|(% style="width:67px" %)**1**|(% style="width:80px" %)**2**|(% style="width:89px" %)**1**|(% style="width:52px" %)**1**|(% style="width:44px" %)**2**
621 |(% style="width:102px" %)**Value**|(% style="width:67px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:89px" %)Frequency Band|(% style="width:52px" %)Sub-band|(% style="width:44px" %)BAT
622
623 Example parse in TTNv3
624
625 [[image:1675215946738-635.png]]
626
627
628 (% style="color:#037691" %)**Sensor Model**(%%): For SDI-12-LB, this value is 0x17
629
630 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
631
632 (% style="color:#037691" %)**Frequency Band**:
633
634 *0x01: EU868
635
636 *0x02: US915
637
638 *0x03: IN865
639
640 *0x04: AU915
641
642 *0x05: KZ865
643
644 *0x06: RU864
645
646 *0x07: AS923
647
648 *0x08: AS923-1
649
650 *0x09: AS923-2
651
652 *0x0a: AS923-3
653
654 *0x0b: CN470
655
656 *0x0c: EU433
657
658 *0x0d: KR920
659
660 *0x0e: MA869
661
662
663 (% style="color:#037691" %)**Sub-Band**:
664
665 AU915 and US915:value 0x00 ~~ 0x08
666
667 CN470: value 0x0B ~~ 0x0C
668
669 Other Bands: Always 0x00
670
671
672 (% style="color:#037691" %)**Battery Info**:
673
674 Check the battery voltage.
675
676 Ex1: 0x0B45 = 2885mV
677
678 Ex2: 0x0B49 = 2889mV
679
680
681 === 2.4.2 Uplink Payload, FPORT~=2 ===
682
683
684 There are different cases for uplink. See below
685
686 * SDI-12 Debug Command return: FPORT=100
687
688 * Periodically Uplink: FPORT=2
689
690 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
691 |(% style="width:93px" %)(((
692 **Size(bytes)**
693 )))|(% style="width:83px" %)**2**|(% style="width:70px" %)**1**|(% style="width:234px" %)**Length depends on the return from the commands**
694 |(% style="width:93px" %)**Value**|(% style="width:83px" %)(((
695 Battery(mV)
696 &
697 Interrupt_Flag
698 )))|(% style="width:70px" %)[[PAYLOAD_VER>>||anchor="H3.6Setthepayloadversion"]]|(% style="width:234px" %)(((
699 If the valid payload is too long and exceed the maximum support.
700 Payload length in server,server will show payload not provided in the LoRaWAN server.
701 )))
702
703 [[image:1675216282284-923.png]]
704
705
706 === 2.4.3 Battery Info ===
707
708
709 Check the battery voltage for SDI-12-LB.
710
711 Ex1: 0x0B45 = 2885mV
712
713 Ex2: 0x0B49 = 2889mV
714
715
716 === 2.4.4 Interrupt Pin ===
717
718
719 This data field shows if this packet is generated by (% style="color:#037691" %)**Interrupt Pin**(%%) or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.7PinMapping"]].
720
721 **Example:**
722
723 Ex1: 0x0B45:0x0B&0x80= 0x00    Normal uplink packet.
724
725 Ex2: 0x8B49:0x8B&0x80= 0x80    Interrupt Uplink Packet.
726
727
728 === 2.4.5 Payload version ===
729
730
731
732 === 2.4.6 ​Decode payload in The Things Network ===
733
734
735 While using TTN network, you can add the payload format to decode the payload.
736
737 [[image:1675216779406-595.png]]
738
739
740 There is no fix payload decoder in LoRaWAN server because the SDI-12 sensors returns are different. User need to write the decoder themselves for their case.
741
742 SDI-12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
743
744
745 == 2.5 Uplink Interval ==
746
747
748 The SDI-12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
749
750 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval]]]]
751
752
753
754
755 == 2.6 Frequency Plans ==
756
757
758 The SDI-12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
759
760 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
761
762
763 == 2.7 Firmware Change Log ==
764
765
766 **Firmware download link:**
767
768 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
769
770
771 = 3. Configure SDI-12-LB via AT Command or LoRaWAN Downlink =
772
773
774 Use can configure SDI-12-LB via AT Command or LoRaWAN Downlink.
775
776 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
777 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
778
779 There are two kinds of commands to configure SDI-12-LB, they are:
780
781 * (% style="color:blue" %)**General Commands**.
782
783 These commands are to configure:
784
785 * General system settings like: uplink interval.
786 * LoRaWAN protocol & radio related command.
787
788 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
789
790 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
791
792
793 * (% style="color:blue" %)**Commands special design for SDI-12-LB**
794
795 These commands only valid for SDI-12-LB, as below:
796
797
798 == ​​​​​​​3.1 Set Transmit Interval Time ==
799
800
801 Feature: Change LoRaWAN End Node Transmit Interval.
802
803 (% style="color:blue" %)**AT Command: AT+TDC**
804
805 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
806 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
807 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
808 30000
809 OK
810 the interval is 30000ms = 30s
811 )))
812 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
813 OK
814 Set transmit interval to 60000ms = 60 seconds
815 )))
816
817 (% style="color:blue" %)**Downlink Command: 0x01**
818
819
820 Format: Command Code (0x01) followed by 3 bytes time value.
821
822 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
823
824 * Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
825 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
826
827 == 3.2 Set Interrupt Mode ==
828
829
830 Feature, Set Interrupt mode for GPIO_EXIT.
831
832 (% style="color:blue" %)**AT Command: AT+INTMOD**
833
834 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
835 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 187px;" %)**Function**|=(% style="width: 165px;" %)**Response**
836 |(% style="width:156px" %)AT+INTMOD=?|(% style="width:187px" %)Show current interrupt mode|(% style="width:165px" %)(((
837 0
838 OK
839 the mode is 0 = No interruption
840 )))
841 |(% style="width:156px" %)AT+INTMOD=2|(% style="width:187px" %)(((
842 Set Transmit Interval
843 ~1. (Disable Interrupt),
844 2. (Trigger by rising and falling edge)
845 3. (Trigger by falling edge)
846 4. (Trigger by rising edge)
847 )))|(% style="width:165px" %)OK
848
849 (% style="color:blue" %)**Downlink Command: 0x06**
850
851 Format: Command Code (0x06) followed by 3 bytes.
852
853 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
854
855 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
856 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
857
858 == 3.3 Set the output time ==
859
860
861 Feature, Control the output 3V3 , 5V or 12V.
862
863 (% style="color:blue" %)**AT Command: AT+3V3T**
864
865 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
866 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
867 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
868 0
869 OK
870 )))
871 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
872 OK
873 default setting
874 )))
875 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
876 OK
877 )))
878 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
879 OK
880 )))
881
882 (% style="color:blue" %)**AT Command: AT+5VT**
883
884 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
885 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
886 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
887 0
888 OK
889 )))
890 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
891 OK
892 default setting
893 )))
894 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
895 OK
896 )))
897 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
898 OK
899 )))
900
901 (% style="color:blue" %)**AT Command: AT+12VT**
902
903 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
904 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
905 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
906 0
907 OK
908 )))
909 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
910 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
911 OK
912 )))
913
914 (% style="color:blue" %)**Downlink Command: 0x07**
915
916 Format: Command Code (0x07) followed by 3 bytes.
917
918 The first byte is which power, the second and third bytes are the time to turn on.
919
920 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
921 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
922 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
923 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
924 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
925 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
926
927 == 3.4 Set the all data mode ==
928
929
930 Feature, Set the all data mode.
931
932 (% style="color:blue" %)**AT Command: AT+ALLDATAMOD**
933
934 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
935 |=**Command Example**|=**Function**|=**Response**
936 |AT+ALLDATAMOD=?|Show current all data mode|(((
937 0
938 OK
939 )))
940 |AT+ALLDATAMOD=1|Set all data mode is 1.|OK
941
942 (% style="color:blue" %)**Downlink Command: 0xAB**
943
944 Format: Command Code (0xAB) followed by 1 bytes.
945
946 * Example 1: Downlink Payload: AB 00  ~/~/  AT+ALLDATAMOD=0
947 * Example 2: Downlink Payload: AB 01  ~/~/  AT+ALLDATAMOD=1
948
949 == 3.5 Set the splicing payload for uplink ==
950
951
952 Feature, splicing payload for uplink.
953
954 (% style="color:blue" %)**AT Command: AT+DATAUP**
955
956 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
957 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 266px;" %)**Function**|=**Response**
958 |(% style="width:154px" %)AT+DATAUP =?|(% style="width:266px" %)Show current splicing payload for uplink mode|(((
959 0
960 OK
961 )))
962 |(% style="width:154px" %)AT+DATAUP =0|(% style="width:266px" %)(((
963 Set splicing payload for uplink mode is 0.
964 )))|(((
965 OK
966 )))
967 |(% style="width:154px" %)AT+DATAUP =1|(% style="width:266px" %)Set splicing payload for uplink mode is 1 , and the each splice uplink is sent sequentially.|OK
968 |(% style="width:154px" %)AT+DATAUP =1,20000|(% style="width:266px" %)(((
969 Set splicing payload for uplink mode is 1, and the uplink interval of each splice to 20000 milliseconds.
970 )))|OK
971
972 (% style="color:blue" %)**Downlink Command: 0xAD**
973
974 Format: Command Code (0xAD) followed by 1 bytes or 5 bytes.
975
976 * Example 1: Downlink Payload: AD 00  ~/~/  AT+DATAUP=0
977 * Example 2: Downlink Payload: AD 01  ~/~/  AT+DATAUP =1
978 * Example 3: Downlink Payload: AD 01 00 00 14  ~/~/  AT+DATAUP =1,20000
979
980 This means that the interval is set to 0x000014=20S
981
982
983 == 3.6 Set the payload version ==
984
985 Feature, Set the payload version.
986
987 (% style="color:blue" %)**AT Command: AT+PAYVER**
988
989 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
990 |=(% style="width: 158px;" %)**Command Example**|=(% style="width: 192px;" %)**Function**|=**Response**
991 |(% style="width:158px" %)AT+PAYVER=?|(% style="width:192px" %)Show current payload version|(((
992 1
993 OK
994 )))
995 |(% style="width:158px" %)AT+PAYVER=5|(% style="width:192px" %)Set payload version is 5.|OK
996
997 (% style="color:blue" %)**Downlink Command: 0xAE**
998
999 Format: Command Code (0xAE) followed by 1 bytes.
1000
1001 * Example 1: Downlink Payload: AE 01  ~/~/  AT+PAYVER=1
1002 * Example 2: Downlink Payload: AE 05  ~/~/  AT+PAYVER=5
1003
1004 = 4. Battery & how to replace =
1005
1006 == 4.1 Battery Type ==
1007
1008
1009 SDI-12-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1010
1011
1012 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1013
1014 [[image:1675234124233-857.png]]
1015
1016
1017 Minimum Working Voltage for the SDI-12-LB:
1018
1019 SDI-12-LB:  2.45v ~~ 3.6v
1020
1021
1022 == 4.2 Replace Battery ==
1023
1024
1025 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1026
1027 And make sure the positive and negative pins match.
1028
1029
1030 == 4.3 Power Consumption Analyze ==
1031
1032
1033 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1034
1035 Instruction to use as below:
1036
1037 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
1038
1039 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
1040
1041 * Product Model
1042 * Uplink Interval
1043 * Working Mode
1044
1045 And the Life expectation in difference case will be shown on the right.
1046
1047
1048 [[image:1675234155374-163.png]]
1049
1050
1051 The battery related documents as below:
1052
1053 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
1054 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
1055 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
1056
1057 [[image:image-20230201145019-19.png]]
1058
1059
1060 === 4.3.1 ​Battery Note ===
1061
1062
1063 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1064
1065
1066 === 4.3.2 Replace the battery ===
1067
1068
1069 You can change the battery in the SDI-12-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1070
1071 The default battery pack of SDI-12-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1072
1073
1074 = 5. Remote Configure device =
1075
1076 == 5.1 Connect via BLE ==
1077
1078
1079 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
1080
1081
1082 == 5.2 AT Command Set ==
1083
1084
1085
1086 = 6. OTA firmware update =
1087
1088
1089 Please see this link for how to do OTA firmware update.
1090
1091 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1092
1093
1094 = 7. FAQ =
1095
1096 == 7.1 How to use AT Command to access device? ==
1097
1098
1099 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1100
1101
1102 == 7.2 How to update firmware via UART port? ==
1103
1104
1105 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1106
1107
1108 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1109
1110
1111 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
1112 When downloading the images, choose the required image file for download. ​
1113
1114
1115 = 8. ​Order Info =
1116
1117
1118 (% style="color:blue" %)**Part Number: SDI-12-LB-XXX**
1119
1120 XXX: The default frequency band
1121
1122 (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1123 (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1124 (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1125 (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1126 (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1127 (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1128 (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1129 (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1130
1131
1132
1133
1134
1135
1136
1137 = 9. Packing Info =
1138
1139
1140 (% style="color:#037691" %)**Package Includes**:
1141
1142 * SDI-12-LB SDI-12 to LoRaWAN Converter x 1
1143
1144 (% style="color:#037691" %)**Dimension and weight**:
1145
1146 * Device Size: cm
1147 * Device Weight: g
1148 * Package Size / pcs : cm
1149 * Weight / pcs : g
1150
1151 = 10. ​Support =
1152
1153
1154 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1155
1156 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1157
1158
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0