Version 41.2 by Xiaoling on 2023/02/01 15:24

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230131183542-1.jpeg||height="694" width="694"]]
3
4 **Table of Contents:**
5
6 {{toc/}}
7
8
9
10
11
12
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 ​What is SDI-12 to LoRaWAN Converter ==
23
24
25 The Dragino (% style="color:blue" %)**SDI-12-LB**(%%) is a (% style="color:blue" %)**SDI-12 to LoRaWAN Converter **(%%)designed for Smart Agriculture solution.
26
27 SDI-12 (Serial Digital Interface at 1200 baud) is an asynchronous [[serial communications>>url:https://en.wikipedia.org/wiki/Serial_communication]] protocol for intelligent sensors that monitor environment data. SDI-12 protocol is widely used in Agriculture sensor and Weather Station sensors.
28
29 SDI-12-LB has SDI-12 interface and support 12v output to power external SDI-12 sensor. It can get the environment data from SDI-12 sensor and sends out the data via LoRaWAN wireless protocol.
30
31 The LoRa wireless technology used in SDI-12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32
33 SDI-12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
34
35 Each SDI-12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36
37
38 [[image:image-20230201084414-1.png||height="464" width="1108"]]
39
40
41
42
43 == ​1.2 Features ==
44
45
46 * LoRaWAN 1.0.3 Class A
47 * Ultra-low power consumption
48 * Controllable 5v and 12v output to power external sensor
49 * SDI-12 Protocol to connect to SDI-12 Sensor
50 * Monitor Battery Level
51 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
52 * Support Bluetooth v5.1 and LoRaWAN remote configure.
53 * Support wireless OTA update firmware
54 * Uplink on periodically
55 * Downlink to change configure
56 * 8500mAh Battery for long term use
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Micro Controller:**
62
63 * MCU: 48Mhz ARM
64 * Flash: 256KB
65 * RAM: 64KB
66
67 (% style="color:#037691" %)**Common DC Characteristics:**
68
69 * Supply Voltage: 2.5v ~~ 3.6v
70 * Operating Temperature: -40 ~~ 85°C
71
72 (% style="color:#037691" %)**LoRa Spec:**
73
74 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
75 * Max +22 dBm constant RF output vs.
76 * RX sensitivity: down to -139 dBm.
77 * Excellent blocking immunity
78
79 (% style="color:#037691" %)**Current Input Measuring :**
80
81 * Range: 0 ~~ 20mA
82 * Accuracy: 0.02mA
83 * Resolution: 0.001mA
84
85 (% style="color:#037691" %)**Voltage Input Measuring:**
86
87 * Range: 0 ~~ 30v
88 * Accuracy: 0.02v
89 * Resolution: 0.001v
90
91 (% style="color:#037691" %)**Battery:**
92
93 * Li/SOCI2 un-chargeable battery
94 * Capacity: 8500mAh
95 * Self-Discharge: <1% / Year @ 25°C
96 * Max continuously current: 130mA
97 * Max boost current: 2A, 1 second
98
99 (% style="color:#037691" %)**Power Consumption**
100
101 * Sleep Mode: 5uA @ 3.3v
102 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
103
104 == 1.4 Connect to SDI-12 Sensor ==
105
106
107
108 [[image:1675212538524-889.png]]
109
110
111 == 1.5 Sleep mode and working mode ==
112
113
114 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
115
116 (% style="color:blue" %)**Working Mode: **(%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
117
118
119 == 1.6 Button & LEDs ==
120
121
122 [[image:1675212633011-651.png]]
123
124
125
126 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
127 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
128 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
129 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
130 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
131 )))
132 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
133 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
134 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
135 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
136 )))
137 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
138
139 == 1.7 Pin Mapping ==
140
141
142 [[image:1675213198663-754.png]]
143
144
145 == 1.8 BLE connection ==
146
147
148 SDI-12-LB support BLE remote configure.
149
150 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
151
152 * Press button to send an uplink
153 * Press button to active device.
154 * Device Power on or reset.
155
156 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
157
158
159 == 1.9 Mechanical ==
160
161
162 [[image:image-20230201090139-2.png]]
163
164 [[image:image-20230201090139-3.png]]
165
166 [[image:image-20230201090139-4.png]]
167
168
169 = 2. Configure SDI-12 to connect to LoRaWAN network =
170
171 == 2.1 How it works ==
172
173
174 The SDI-12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the SDI-12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
175
176
177 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) ==
178
179
180 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
181
182
183 [[image:image-20230201090528-5.png||height="465" width="1111"]]
184
185
186 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
187
188
189 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from SDI-12-LB.
190
191 Each SDI-12-LB is shipped with a sticker with the default device EUI as below:
192
193
194 [[image:image-20230201152430-20.jpeg]]
195
196
197 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
198
199
200 (% style="color:blue" %)**Register the device**
201
202 [[image:1675213652444-622.png]]
203
204
205 (% style="color:blue" %)**Add APP EUI and DEV EUI**
206
207
208 [[image:1675213661769-223.png]]
209
210
211 (% style="color:blue" %)**Add APP EUI in the application**
212
213
214 [[image:1675213675852-577.png]]
215
216
217 (% style="color:blue" %)**Add APP KEY**
218
219 [[image:1675213686734-883.png]]
220
221
222 (% style="color:blue" %)**Step 2**(%%): Activate on SDI-12-LB
223
224
225 Press the button for 5 seconds to activate the SDI-12-LB.
226
227
228 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode** (%%)for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
229
230
231 [[image:1675213704414-644.png]]
232
233
234 == ​2.3 SDI-12 Related Commands ==
235
236
237 User need to configure SDI-12-LB to communicate with SDI-12 sensors otherwise the uplink payload will only include a few bytes.
238
239
240 === 2.3.1 Basic SDI-12 debug command ===
241
242
243 User can run some basic SDI-12 command to debug the connection to the SDI-12 sensor. These commands can be sent via AT Command or LoRaWAN downlink command.
244
245 If SDI-12 sensor return value after get these commands, //SDI-12-LB// will uplink the return on FPORT=100, otherwise, if there is no response from SDI-12 sensor. //SDI-12-LB// will uplink NULL (0x 4E 55 4C 4C) to server.
246
247 The following is the display information on the serial port and the server.
248
249
250
251 [[image:image-20230201091027-6.png]]
252
253
254 [[image:image-20230201091027-7.png||height="261" width="1179"]]
255
256
257 ==== (% style="color:blue" %)**al!  ~-~- Get SDI-12 sensor Identification**(%%) ====
258
259
260 * AT Command: AT+ADDRI=aa
261 * LoRaWAN Downlink(prefix 0xAA00): AA 00 aa
262
263 (% style="color:#037691" %)**Parameter:  **(%%)aa: ASCII value of SDI-12 sensor address in downlink or HEX value in AT Command)
264
265 (% style="color:blue" %)**Example :   **AT+ADDRI=0 ( Equal to downlink: 0x AA 00 30)
266
267
268 The following is the display information on the serial port and the server.
269
270
271 [[image:image-20230201091257-8.png]]
272
273
274 [[image:image-20230201091257-9.png||height="225" width="1242"]]
275
276
277 ==== (% style="color:blue" %)**aM!,aMC!, aM1!- aM9!, aMC1!- aMC9!**(%%) ====
278
279
280 (% style="color:red" %)**aM! **(%%): Start Non-Concurrent Measurement
281
282 (% style="color:red" %)**aMC! **(%%): Start Non-Concurrent Measurement – Request CRC
283
284 (% style="color:red" %)**aM1!- aM9! **(%%): Additional Measurements
285
286 (% style="color:red" %)**aMC1!- aMC9!**(%%) : Additional Measurements – Request CRC
287
288
289 * AT Command : AT+ADDRM=0,1,0,1
290
291 * LoRaWAN Downlink(prefix 0xAA01): 0xAA 01 30 01 00 01
292
293 Downlink:AA 01 aa bb cc dd
294
295 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
296
297 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
298
299 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
300
301 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)**aD0!**(%%) to get return.
302
303
304 The following is the display information on the serial port and the server.
305
306
307 [[image:image-20230201091630-10.png]]
308
309
310 [[image:image-20230201091630-11.png||height="247" width="1165"]]
311
312
313
314 ==== (% style="color:blue" %)**aC!, aCC!,  aC1!- aC9!,  aCC1!- aCC9! **(%%) ====
315
316
317 (% style="color:red" %)**aC!**(%%) : Start Concurrent Measurement
318
319 (% style="color:red" %)**aCC!** (%%): Start Concurrent Measurement – Request CRC
320
321 (% style="color:red" %)**aC1!- aC9!**(%%) : Start Additional Concurrent Measurements
322
323 (% style="color:red" %)**aCC1!- aCC9!**(%%) : Start Additional Concurrent Measurements – Request CRC
324
325
326 * AT Command : AT+ADDRC=0,1,0,1 
327
328 * LoRaWAN Downlink(0xAA02): 0xAA 02 30 01 00 01
329
330 Downlink: AA 02 aa bb cc dd
331
332 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
333
334 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
335
336 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
337
338 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)**aD0!**(%%) to get return.
339
340
341 The following is the display information on the serial port and the server.
342
343
344 [[image:image-20230201091954-12.png]]
345
346
347 [[image:image-20230201091954-13.png||height="203" width="1117"]]
348
349
350
351
352 ==== (% style="color:blue" %)**aR0!- aR9!,  aRC0!- aRC9!**(%%) ====
353
354
355 Start Continuous Measurement
356
357 Start Continuous Measurement – Request CRC
358
359
360 * AT Command : AT+ADDRR=0,1,0,1 
361 * LoRaWAN Downlink (0xAA 03): 0xAA 03 30 01 00 01
362
363 Downlink: AA 03 aa bb cc dd
364
365 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
366
367 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
368
369 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
370
371 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)**aD0!**(%%) to get return.
372
373
374 The following is the display information on the serial port and the server.
375
376
377
378 [[image:image-20230201092208-14.png]]
379
380
381 [[image:image-20230201092208-15.png||height="214" width="1140"]]
382
383
384 === 2.3.2 Advance SDI-12 Debug command ===
385
386
387 This command can be used to debug all SDI-12 command.
388
389
390 LoRaWAN Downlink: A8 aa xx xx xx xx bb cc
391
392 (% style="color:#037691" %)**aa **(%%): total SDI-12 command length
393
394 (% style="color:#037691" %)**xx **(%%): SDI-12 command
395
396 (% style="color:#037691" %)**bb **(%%): Delay to wait for return
397
398 (% style="color:#037691" %)**cc **(%%): 0: don't uplink return to LoRaWAN, 1: Uplink return to LoRaWAN on FPORT=100
399
400
401 (% style="color:blue" %)**Example: **(%%) AT+CFGDEV =0RC0!,1
402
403 (% style="color:#037691" %)**0RC0! **(%%): SDI-12 Command,
404
405 (% style="color:#037691" %)**1 **(%%): Delay 1 second.  ( 0: 810 mini-second)
406
407 Equal Downlink: 0xA8 05 30 52 43 30 21 01 01
408
409
410 The following is the display information on the serial port and the server.
411
412
413 [[image:image-20230201092355-16.png]]
414
415
416 [[image:image-20230201092355-17.png||height="426" width="1135"]]
417
418
419 === 2.3.3 Convert ASCII to String ===
420
421
422 This command is used to convert between ASCII and String format.
423
424 AT+CONVFORM ( Max length: 80 bytes)
425
426
427 (% style="color:blue" %)**Example:**
428
429 1) AT+CONVFORM=0, string Convert String from String to ASCII
430
431 [[image:1675214845056-885.png]]
432
433
434 2) AT+CONVFORM=1, ASCII Convert ASCII to String.
435
436 [[image:1675214856590-846.png]]
437
438
439 === 2.3.4 Define periodically SDI-12 commands and uplink. ===
440
441
442 AT+COMMANDx & AT+DATACUTx
443
444 User can define max 15 SDI-12 Commands (AT+COMMAND1 ~~ AT+COMMANDF). On each uplink period (TDC time, default 20 minutes), SDI-12-LB will send these SDI-12 commands and wait for return from SDI-12 sensors. SDI-12-LB will then combine these returns and uplink via LoRaWAN.
445
446
447 * (% style="color:blue" %)**AT Command:**
448
449 (% style="color:#037691" %)**AT+COMMANDx=var1,var2,var3,var4.**
450
451 (% style="color:red" %)**var1**(%%): SDI-12 command , for example: 0RC0!
452
453 (% style="color:red" %)**var2**(%%): Wait timeout for return. (unit: second)
454
455 (% style="color:red" %)**var3**(%%): Whether to send //addrD0!// to get return after var2 timeout. 0: Don't Send //addrD0! //; 1: Send //addrD0!//.
456
457 (% style="color:red" %)**var4**(%%): validation check for return. If return invalid, SDI-12-LB will resend this command. Max 2 retries.
458
459 (% style="color:red" %)**0 **(%%) No validation check;
460
461 (% style="color:red" %)**1** (%%) Check if return chars are printable char(0x20 ~~ 0x7E);
462
463 (% style="color:#red" %)**2**(%%)  Check if there is return from SDI-12 sensor
464
465 (% style="color:red" %)**3** (%%) Check if return pass CRC check ( SDI-12 command var1 must include CRC request);
466
467
468 Each AT+COMMANDx is followed by a (% style="color:blue" %)**AT+DATACUT**(%%) command. AT+DATACUT command is used to take the useful string from the SDI-12 sensor so the final payload will have the minimum length to uplink.
469
470
471 (% style="color:blue" %)**AT+DATACUTx**(%%) : This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.
472
473 (% border="1" style="background-color:#f7faff; width:436px" %)
474 |(% style="width:433px" %)(((
475 **AT+DATACUTx=a,b,c**
476
477 **a**:  length for the return of AT+COMMAND
478
479 **b**: 1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.
480
481 **c**:  define the position for valid value. 
482 )))
483
484 For example, if return from AT+COMMAND1 is “013METER   TER12 112T12-00024895” , Below AT+DATACUT1 will get different result to combine payload:
485
486
487 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
488 |(% style="width:170px" %)**AT+DATACUT1 value**|(% style="width:338px" %)**Final Result to combine Payload**
489 |(% style="width:170px" %)34,1,1+2+3|(% style="width:338px" %)0D 00 01 30 31 33
490 |(% style="width:170px" %)34,2,1~~8+12~~16|(% style="width:338px" %)0D 00 01 30 31 33 4D 45 54 45 52 54 45 52 31 32
491 |(% style="width:170px" %)34,2,1~~34|(% style="width:338px" %)0D 00 01 30 31 33 4D 45 54 45 52 20 20 20 54 45 52 31 32 20 31 31 32 54 31 32 2D 30 30 30 32 34 38 39 35 0D 0A
492
493 * (% style="color:blue" %)** Downlink Payload:**
494
495 (% style="color:blue" %)**0xAF**(%%)  downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
496
497
498 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
499
500
501 Format: ** (% style="color:#037691" %)AF MM NN LL XX XX XX XX YY(%%)**
502
503 Where:
504
505 * (% style="color:#037691" %)**MM **(%%): the AT+COMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
506 * (% style="color:#037691" %)**NN **(%%):  1: set the AT+DATACUT value ; 2: set the AT+DATACUT value.
507 * (% style="color:#037691" %)**LL **(%%):  The length of AT+COMMAND or AT+DATACUT command
508 * (% style="color:#037691" %)**XX XX XX XX **(%%): AT+COMMAND or AT+DATACUT command
509 * (% style="color:#037691" %)**YY **(%%):  If YY=0, RS485-LN will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command. 
510
511 (% style="color:blue" %)**Example:**
512
513 [[image:image-20230201094129-18.png]]
514
515
516 (% style="color:blue" %)**Clear SDI12 Command**
517
518 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
519
520
521 * (% style="color:#037691" %)**AT Command:**
522
523 (% style="color:#4f81bd" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase
524
525
526 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
527
528
529 * (% style="color:#037691" %)** Downlink Payload:**
530
531 (% style="color:#4f81bd" %)**0x09 aa bb**(%%)  same as AT+CMDEAR=aa,bb
532
533
534
535 (% style="color:blue" %)**command combination**
536
537 Below shows a screen shot how the results combines together to a uplink payload.
538
539 [[image:1675215745275-920.png]]
540
541
542 If user don't want to use DATACUT for some command, he simply want to uplink all returns. AT+ALLDATAMOD can be set to 1.
543
544 (% style="color:blue" %)**AT+ALLDATAMOD**(%%) will simply get all return and don't do CRC check as result for SDI-12 command. AT+DATACUTx command has higher priority, if AT+DATACUTx has been set, AT+ALLDATAMOD will be ignore for this SDI-12 command.
545
546
547 (% style="color:#4f81bd" %)**For example: ** as below photo, AT+ALLDATAMOD=1, but AT+DATACUT1 has been set, AT+DATACUT1 will be still effect the result.
548
549
550 [[image:1675215782925-448.png]]
551
552
553 If AT+ALLDATAMOD=1, (% style="color:#4f81bd" %)**FX,X**(%%) will be added in the payload, FX specify which command is used and X specify the length of return. for example in above screen, F1 05 means the return is from AT+COMMAND1 and the return is 5 bytes.
554
555
556
557 (% style="color:blue" %)**Compose Uplink**
558
559
560 (% style="color:#4f81bd" %)**AT+DATAUP=0**
561
562 Compose the uplink payload with value returns in sequence and send with A SIGNLE UPLINK.
563
564 Final Payload is Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
565
566 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
567
568
569 [[image:1675215828102-844.png]]
570
571
572 (% style="color:#4f81bd" %)**AT+DATAUP=1**
573
574 Compose the uplink payload with value returns in sequence and send with Multiply UPLINKs.
575
576 Final Payload is
577
578 __**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**__
579
580 1. Battery Info (2 bytes): Battery voltage
581 1. PAYVER (1 byte): Defined by AT+PAYVER
582 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
583 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
584 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
585
586 [[image:1675215848113-696.png]]
587
588
589 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
590
591 * For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
592 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
593 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
594 * For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
595
596 (% style="color:red" %)**When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
597
598 (% style="color:red" %)**When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value.**
599
600
601 == 2.4 Uplink Payload ==
602
603
604 Uplink payloads have two types:
605
606 * Distance Value: Use FPORT=2
607 * Other control commands: Use other FPORT fields.
608
609 The application server should parse the correct value based on FPORT settings.
610
611
612 === 2.4.1 Device Payload, FPORT~=5 ===
613
614
615 Include device configure status. Once SDI-12-LB Joined the network, it will uplink this message to the server.
616
617 Users can also use the downlink command(0x26 01) to ask SDI-12-LB to resend this uplink.
618
619 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
620 |(% colspan="6" style="width:434px" %)**Device Status (FPORT=5)**
621 |(% style="width:102px" %)**Size (bytes)**|(% style="width:67px" %)**1**|(% style="width:80px" %)**2**|(% style="width:89px" %)**1**|(% style="width:52px" %)**1**|(% style="width:44px" %)**2**
622 |(% style="width:102px" %)**Value**|(% style="width:67px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:89px" %)Frequency Band|(% style="width:52px" %)Sub-band|(% style="width:44px" %)BAT
623
624 Example parse in TTNv3
625
626 [[image:1675215946738-635.png]]
627
628
629 (% style="color:#037691" %)**Sensor Model**(%%): For SDI-12-LB, this value is 0x17
630
631 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
632
633 (% style="color:#037691" %)**Frequency Band**:
634
635 *0x01: EU868
636
637 *0x02: US915
638
639 *0x03: IN865
640
641 *0x04: AU915
642
643 *0x05: KZ865
644
645 *0x06: RU864
646
647 *0x07: AS923
648
649 *0x08: AS923-1
650
651 *0x09: AS923-2
652
653 *0x0a: AS923-3
654
655 *0x0b: CN470
656
657 *0x0c: EU433
658
659 *0x0d: KR920
660
661 *0x0e: MA869
662
663
664 (% style="color:#037691" %)**Sub-Band**:
665
666 AU915 and US915:value 0x00 ~~ 0x08
667
668 CN470: value 0x0B ~~ 0x0C
669
670 Other Bands: Always 0x00
671
672
673 (% style="color:#037691" %)**Battery Info**:
674
675 Check the battery voltage.
676
677 Ex1: 0x0B45 = 2885mV
678
679 Ex2: 0x0B49 = 2889mV
680
681
682 === 2.4.2 Uplink Payload, FPORT~=2 ===
683
684
685 There are different cases for uplink. See below
686
687 * SDI-12 Debug Command return: FPORT=100
688
689 * Periodically Uplink: FPORT=2
690
691 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
692 |(% style="width:93px" %)(((
693 **Size(bytes)**
694 )))|(% style="width:83px" %)**2**|(% style="width:70px" %)**1**|(% style="width:234px" %)**Length depends on the return from the commands**
695 |(% style="width:93px" %)**Value**|(% style="width:83px" %)(((
696 Battery(mV)
697 &
698 Interrupt_Flag
699 )))|(% style="width:70px" %)[[PAYLOAD_VER>>||anchor="H3.6Setthepayloadversion"]]|(% style="width:234px" %)(((
700 If the valid payload is too long and exceed the maximum support.
701 Payload length in server,server will show payload not provided in the LoRaWAN server.
702 )))
703
704 [[image:1675216282284-923.png]]
705
706
707 === 2.4.3 Battery Info ===
708
709
710 Check the battery voltage for SDI-12-LB.
711
712 Ex1: 0x0B45 = 2885mV
713
714 Ex2: 0x0B49 = 2889mV
715
716
717 === 2.4.4 Interrupt Pin ===
718
719
720 This data field shows if this packet is generated by (% style="color:#037691" %)**Interrupt Pin**(%%) or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.7PinMapping"]].
721
722 **Example:**
723
724 Ex1: 0x0B45:0x0B&0x80= 0x00    Normal uplink packet.
725
726 Ex2: 0x8B49:0x8B&0x80= 0x80    Interrupt Uplink Packet.
727
728
729 === 2.4.5 Payload version ===
730
731
732
733 === 2.4.6 ​Decode payload in The Things Network ===
734
735
736 While using TTN network, you can add the payload format to decode the payload.
737
738 [[image:1675216779406-595.png]]
739
740
741 There is no fix payload decoder in LoRaWAN server because the SDI-12 sensors returns are different. User need to write the decoder themselves for their case.
742
743 SDI-12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
744
745
746 == 2.5 Uplink Interval ==
747
748
749 The SDI-12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
750
751 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval]]]]
752
753
754
755
756 == 2.6 Frequency Plans ==
757
758
759 The SDI-12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
760
761 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
762
763
764 == 2.7 Firmware Change Log ==
765
766
767 **Firmware download link:**
768
769 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
770
771
772 = 3. Configure SDI-12-LB via AT Command or LoRaWAN Downlink =
773
774
775 Use can configure SDI-12-LB via AT Command or LoRaWAN Downlink.
776
777 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
778 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
779
780 There are two kinds of commands to configure SDI-12-LB, they are:
781
782 * (% style="color:blue" %)**General Commands**.
783
784 These commands are to configure:
785
786 * General system settings like: uplink interval.
787 * LoRaWAN protocol & radio related command.
788
789 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
790
791 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
792
793
794 * (% style="color:blue" %)**Commands special design for SDI-12-LB**
795
796 These commands only valid for SDI-12-LB, as below:
797
798
799 == ​​​​​​​3.1 Set Transmit Interval Time ==
800
801
802 Feature: Change LoRaWAN End Node Transmit Interval.
803
804 (% style="color:blue" %)**AT Command: AT+TDC**
805
806 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
807 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
808 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
809 30000
810 OK
811 the interval is 30000ms = 30s
812 )))
813 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
814 OK
815 Set transmit interval to 60000ms = 60 seconds
816 )))
817
818 (% style="color:blue" %)**Downlink Command: 0x01**
819
820
821 Format: Command Code (0x01) followed by 3 bytes time value.
822
823 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
824
825 * Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
826 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
827
828
829 == 3.2 Set Interrupt Mode ==
830
831
832 Feature, Set Interrupt mode for GPIO_EXIT.
833
834 (% style="color:blue" %)**AT Command: AT+INTMOD**
835
836 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
837 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 187px;" %)**Function**|=(% style="width: 165px;" %)**Response**
838 |(% style="width:156px" %)AT+INTMOD=?|(% style="width:187px" %)Show current interrupt mode|(% style="width:165px" %)(((
839 0
840 OK
841 the mode is 0 = No interruption
842 )))
843 |(% style="width:156px" %)AT+INTMOD=2|(% style="width:187px" %)(((
844 Set Transmit Interval
845 ~1. (Disable Interrupt),
846 2. (Trigger by rising and falling edge)
847 3. (Trigger by falling edge)
848 4. (Trigger by rising edge)
849 )))|(% style="width:165px" %)OK
850
851 (% style="color:blue" %)**Downlink Command: 0x06**
852
853 Format: Command Code (0x06) followed by 3 bytes.
854
855 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
856
857 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
858 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
859
860
861 == 3.3 Set the output time ==
862
863
864 Feature, Control the output 3V3 , 5V or 12V.
865
866 (% style="color:blue" %)**AT Command: AT+3V3T**
867
868 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
869 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
870 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
871 0
872 OK
873 )))
874 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
875 OK
876 default setting
877 )))
878 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
879 OK
880 )))
881 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
882 OK
883 )))
884
885 (% style="color:blue" %)**AT Command: AT+5VT**
886
887 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
888 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
889 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
890 0
891 OK
892 )))
893 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
894 OK
895 default setting
896 )))
897 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
898 OK
899 )))
900 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
901 OK
902 )))
903
904 (% style="color:blue" %)**AT Command: AT+12VT**
905
906 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
907 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
908 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
909 0
910 OK
911 )))
912 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
913 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
914 OK
915 )))
916
917 (% style="color:blue" %)**Downlink Command: 0x07**
918
919 Format: Command Code (0x07) followed by 3 bytes.
920
921 The first byte is which power, the second and third bytes are the time to turn on.
922
923 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
924 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
925 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
926 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
927 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
928 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
929
930
931 == 3.4 Set the all data mode ==
932
933
934 Feature, Set the all data mode.
935
936 (% style="color:blue" %)**AT Command: AT+ALLDATAMOD**
937
938 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
939 |=**Command Example**|=**Function**|=**Response**
940 |AT+ALLDATAMOD=?|Show current all data mode|(((
941 0
942 OK
943 )))
944 |AT+ALLDATAMOD=1|Set all data mode is 1.|OK
945
946 (% style="color:blue" %)**Downlink Command: 0xAB**
947
948 Format: Command Code (0xAB) followed by 1 bytes.
949
950 * Example 1: Downlink Payload: AB 00  ~/~/  AT+ALLDATAMOD=0
951 * Example 2: Downlink Payload: AB 01  ~/~/  AT+ALLDATAMOD=1
952
953
954 == 3.5 Set the splicing payload for uplink ==
955
956
957 Feature, splicing payload for uplink.
958
959 (% style="color:blue" %)**AT Command: AT+DATAUP**
960
961 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
962 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 266px;" %)**Function**|=**Response**
963 |(% style="width:154px" %)AT+DATAUP =?|(% style="width:266px" %)Show current splicing payload for uplink mode|(((
964 0
965 OK
966 )))
967 |(% style="width:154px" %)AT+DATAUP =0|(% style="width:266px" %)(((
968 Set splicing payload for uplink mode is 0.
969 )))|(((
970 OK
971 )))
972 |(% style="width:154px" %)AT+DATAUP =1|(% style="width:266px" %)Set splicing payload for uplink mode is 1 , and the each splice uplink is sent sequentially.|OK
973 |(% style="width:154px" %)AT+DATAUP =1,20000|(% style="width:266px" %)(((
974 Set splicing payload for uplink mode is 1, and the uplink interval of each splice to 20000 milliseconds.
975 )))|OK
976
977 (% style="color:blue" %)**Downlink Command: 0xAD**
978
979 Format: Command Code (0xAD) followed by 1 bytes or 5 bytes.
980
981 * Example 1: Downlink Payload: AD 00  ~/~/  AT+DATAUP=0
982 * Example 2: Downlink Payload: AD 01  ~/~/  AT+DATAUP =1
983 * Example 3: Downlink Payload: AD 01 00 00 14  ~/~/  AT+DATAUP =1,20000
984
985 This means that the interval is set to 0x000014=20S
986
987
988 == 3.6 Set the payload version ==
989
990 Feature, Set the payload version.
991
992 (% style="color:blue" %)**AT Command: AT+PAYVER**
993
994 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
995 |=(% style="width: 158px;" %)**Command Example**|=(% style="width: 192px;" %)**Function**|=**Response**
996 |(% style="width:158px" %)AT+PAYVER=?|(% style="width:192px" %)Show current payload version|(((
997 1
998 OK
999 )))
1000 |(% style="width:158px" %)AT+PAYVER=5|(% style="width:192px" %)Set payload version is 5.|OK
1001
1002 (% style="color:blue" %)**Downlink Command: 0xAE**
1003
1004 Format: Command Code (0xAE) followed by 1 bytes.
1005
1006 * Example 1: Downlink Payload: AE 01  ~/~/  AT+PAYVER=1
1007 * Example 2: Downlink Payload: AE 05  ~/~/  AT+PAYVER=5
1008
1009
1010 = 4. Battery & how to replace =
1011
1012 == 4.1 Battery Type ==
1013
1014
1015 SDI-12-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1016
1017
1018 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1019
1020 [[image:1675234124233-857.png]]
1021
1022
1023 Minimum Working Voltage for the SDI-12-LB:
1024
1025 SDI-12-LB:  2.45v ~~ 3.6v
1026
1027
1028 == 4.2 Replace Battery ==
1029
1030
1031 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1032
1033 And make sure the positive and negative pins match.
1034
1035
1036 == 4.3 Power Consumption Analyze ==
1037
1038
1039 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1040
1041 Instruction to use as below:
1042
1043 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
1044
1045 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
1046
1047 * Product Model
1048 * Uplink Interval
1049 * Working Mode
1050
1051 And the Life expectation in difference case will be shown on the right.
1052
1053
1054 [[image:1675234155374-163.png]]
1055
1056
1057 The battery related documents as below:
1058
1059 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
1060 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
1061 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
1062
1063 [[image:image-20230201145019-19.png]]
1064
1065
1066 === 4.3.1 ​Battery Note ===
1067
1068
1069 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1070
1071
1072 === 4.3.2 Replace the battery ===
1073
1074
1075 You can change the battery in the SDI-12-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1076
1077 The default battery pack of SDI-12-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1078
1079
1080 = 5. Remote Configure device =
1081
1082 == 5.1 Connect via BLE ==
1083
1084
1085 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
1086
1087
1088 == 5.2 AT Command Set ==
1089
1090
1091
1092 = 6. OTA firmware update =
1093
1094
1095 Please see this link for how to do OTA firmware update.
1096
1097 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1098
1099
1100 = 7. FAQ =
1101
1102 == 7.1 How to use AT Command to access device? ==
1103
1104
1105 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1106
1107
1108 == 7.2 How to update firmware via UART port? ==
1109
1110
1111 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1112
1113
1114 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1115
1116
1117 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
1118 When downloading the images, choose the required image file for download. ​
1119
1120
1121 = 8. ​Order Info =
1122
1123
1124 (% style="color:blue" %)**Part Number: SDI-12-LB-XXX**
1125
1126 XXX: The default frequency band
1127
1128 (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1129 (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1130 (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1131 (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1132 (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1133 (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1134 (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1135 (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1136
1137
1138
1139
1140
1141
1142
1143 = 9. Packing Info =
1144
1145
1146 (% style="color:#037691" %)**Package Includes**:
1147
1148 * SDI-12-LB SDI-12 to LoRaWAN Converter x 1
1149
1150 (% style="color:#037691" %)**Dimension and weight**:
1151
1152 * Device Size: cm
1153 * Device Weight: g
1154 * Package Size / pcs : cm
1155 * Weight / pcs : g
1156
1157
1158 = 10. ​Support =
1159
1160
1161 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1162
1163 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1164
1165
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0