Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230131183542-1.jpeg||height="694" width="694"]]
3
4 **Table of Contents:**
5
6 {{toc/}}
7
8
9
10
11
12
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 ​What is SDI-12 to LoRaWAN Converter ==
23
24
25 The Dragino (% style="color:blue" %)**SDI-12-LB**(%%) is a (% style="color:blue" %)**SDI-12 to LoRaWAN Converter **(%%)designed for Smart Agriculture solution.
26
27 SDI-12 (Serial Digital Interface at 1200 baud) is an asynchronous [[serial communications>>url:https://en.wikipedia.org/wiki/Serial_communication]] protocol for intelligent sensors that monitor environment data. SDI-12 protocol is widely used in Agriculture sensor and Weather Station sensors.
28
29 SDI-12-LB has SDI-12 interface and support 12v output to power external SDI-12 sensor. It can get the environment data from SDI-12 sensor and sends out the data via LoRaWAN wireless protocol.
30
31 The LoRa wireless technology used in SDI-12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32
33 SDI-12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
34
35 Each SDI-12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36
37
38 [[image:image-20230201084414-1.png||height="464" width="1108"]]
39
40
41 == ​1.2 Features ==
42
43
44 * LoRaWAN 1.0.3 Class A
45 * Ultra-low power consumption
46 * Controllable 5v and 12v output to power external sensor
47 * SDI-12 Protocol to connect to SDI-12 Sensor
48 * Monitor Battery Level
49 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
50 * Support Bluetooth v5.1 and LoRaWAN remote configure.
51 * Support wireless OTA update firmware
52 * Uplink on periodically
53 * Downlink to change configure
54 * 8500mAh Battery for long term use
55
56 == 1.3 Specification ==
57
58
59 (% style="color:#037691" %)**Micro Controller:**
60
61 * MCU: 48Mhz ARM
62 * Flash: 256KB
63 * RAM: 64KB
64
65 (% style="color:#037691" %)**Common DC Characteristics:**
66
67 * Supply Voltage: 2.5v ~~ 3.6v
68 * Operating Temperature: -40 ~~ 85°C
69
70 (% style="color:#037691" %)**LoRa Spec:**
71
72 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
73 * Max +22 dBm constant RF output vs.
74 * RX sensitivity: down to -139 dBm.
75 * Excellent blocking immunity
76
77 (% style="color:#037691" %)**Current Input Measuring :**
78
79 * Range: 0 ~~ 20mA
80 * Accuracy: 0.02mA
81 * Resolution: 0.001mA
82
83 (% style="color:#037691" %)**Voltage Input Measuring:**
84
85 * Range: 0 ~~ 30v
86 * Accuracy: 0.02v
87 * Resolution: 0.001v
88
89 (% style="color:#037691" %)**Battery:**
90
91 * Li/SOCI2 un-chargeable battery
92 * Capacity: 8500mAh
93 * Self-Discharge: <1% / Year @ 25°C
94 * Max continuously current: 130mA
95 * Max boost current: 2A, 1 second
96
97 (% style="color:#037691" %)**Power Consumption**
98
99 * Sleep Mode: 5uA @ 3.3v
100 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
101
102 == 1.4 Connect to SDI-12 Sensor ==
103
104
105
106 [[image:1675212538524-889.png]]
107
108
109 == 1.5 Sleep mode and working mode ==
110
111
112 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
113
114 (% style="color:blue" %)**Working Mode: **(%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
115
116
117 == 1.6 Button & LEDs ==
118
119
120 [[image:1675212633011-651.png]]
121
122
123
124 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
125 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
126 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
127 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
128 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
129 )))
130 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
131 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
132 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
133 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
134 )))
135 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
136
137 == 1.7 Pin Mapping ==
138
139
140 [[image:1675213198663-754.png]]
141
142
143 == 1.8 BLE connection ==
144
145
146 SDI-12-LB support BLE remote configure.
147
148 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
149
150 * Press button to send an uplink
151 * Press button to active device.
152 * Device Power on or reset.
153
154 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
155
156
157 == 1.9 Mechanical ==
158
159
160 [[image:image-20230201090139-2.png]]
161
162 [[image:image-20230201090139-3.png]]
163
164 [[image:image-20230201090139-4.png]]
165
166
167 = 2. Configure SDI-12 to connect to LoRaWAN network =
168
169 == 2.1 How it works ==
170
171
172 The SDI-12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the SDI-12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
173
174
175 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) ==
176
177
178 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
179
180
181 [[image:image-20230201090528-5.png||height="465" width="1111"]]
182
183
184 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
185
186
187 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from SDI-12-LB.
188
189 Each SDI-12-LB is shipped with a sticker with the default device EUI as below:
190
191
192 [[image:image-20230201152430-20.jpeg]]
193
194
195 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
196
197
198 (% style="color:blue" %)**Register the device**
199
200 [[image:1675213652444-622.png]]
201
202
203 (% style="color:blue" %)**Add APP EUI and DEV EUI**
204
205
206 [[image:1675213661769-223.png]]
207
208
209 (% style="color:blue" %)**Add APP EUI in the application**
210
211
212 [[image:1675213675852-577.png]]
213
214
215 (% style="color:blue" %)**Add APP KEY**
216
217 [[image:1675213686734-883.png]]
218
219
220 (% style="color:blue" %)**Step 2**(%%): Activate on SDI-12-LB
221
222
223 Press the button for 5 seconds to activate the SDI-12-LB.
224
225 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode** (%%)for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
226
227
228 [[image:1675213704414-644.png]]
229
230
231 == ​2.3 SDI-12 Related Commands ==
232
233
234 User need to configure SDI-12-LB to communicate with SDI-12 sensors otherwise the uplink payload will only include a few bytes.
235
236
237 === 2.3.1 Basic SDI-12 debug command ===
238
239
240 User can run some basic SDI-12 command to debug the connection to the SDI-12 sensor. These commands can be sent via AT Command or LoRaWAN downlink command.
241
242 If SDI-12 sensor return value after get these commands, //SDI-12-LB// will uplink the return on FPORT=100, otherwise, if there is no response from SDI-12 sensor. //SDI-12-LB// will uplink NULL (0x 4E 55 4C 4C) to server.
243
244 The following is the display information on the serial port and the server.
245
246
247 [[image:image-20230201091027-6.png]]
248
249
250 [[image:image-20230201091027-7.png||height="261" width="1179"]]
251
252
253
254 ==== (% style="color:blue" %)**al!  ~-~- Get SDI-12 sensor Identification**(%%) ====
255
256
257 * AT Command: AT+ADDRI=aa
258 * LoRaWAN Downlink(prefix 0xAA00): AA 00 aa
259
260 (% style="color:#037691" %)**Parameter:  **(%%)aa: ASCII value of SDI-12 sensor address in downlink or HEX value in AT Command)
261
262 (% style="color:blue" %)**Example :   **(%%)AT+ADDRI=0 ( Equal to downlink: 0x AA 00 30)
263
264
265 The following is the display information on the serial port and the server.
266
267
268 [[image:image-20230201091257-8.png]]
269
270
271 [[image:image-20230201091257-9.png||height="225" width="1242"]]
272
273
274 ==== (% style="color:blue" %)**aM!,aMC!, aM1!- aM9!, aMC1!- aMC9!**(%%) ====
275
276
277 (% style="color:red" %)**aM! **(%%): Start Non-Concurrent Measurement
278
279 (% style="color:red" %)**aMC! **(%%): Start Non-Concurrent Measurement – Request CRC
280
281 (% style="color:red" %)**aM1!- aM9! **(%%): Additional Measurements
282
283 (% style="color:red" %)**aMC1!- aMC9!**(%%) : Additional Measurements – Request CRC
284
285
286 * AT Command : AT+ADDRM=0,1,0,1
287
288 * LoRaWAN Downlink(prefix 0xAA01): 0xAA 01 30 01 00 01
289
290 Downlink:AA 01 aa bb cc dd
291
292 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
293
294 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
295
296 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
297
298 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)__**aD0!**__(%%) to get return.
299
300
301 The following is the display information on the serial port and the server.
302
303
304 [[image:image-20230201091630-10.png]]
305
306
307 [[image:image-20230201091630-11.png||height="247" width="1165"]]
308
309
310
311 ==== (% style="color:blue" %)**aC!, aCC!,  aC1!- aC9!,  aCC1!- aCC9! **(%%) ====
312
313
314 (% style="color:red" %)**aC!**(%%) : Start Concurrent Measurement
315
316 (% style="color:red" %)**aCC!** (%%): Start Concurrent Measurement – Request CRC
317
318 (% style="color:red" %)**aC1!- aC9!**(%%) : Start Additional Concurrent Measurements
319
320 (% style="color:red" %)**aCC1!- aCC9!**(%%) : Start Additional Concurrent Measurements – Request CRC
321
322
323 * AT Command : AT+ADDRC=0,1,0,1 
324
325 * LoRaWAN Downlink(0xAA02): 0xAA 02 30 01 00 01
326
327 Downlink: AA 02 aa bb cc dd
328
329 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
330
331 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
332
333 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
334
335 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)__**aD0!**__(%%)__ __to get return.
336
337
338 The following is the display information on the serial port and the server.
339
340
341 [[image:image-20230201091954-12.png]]
342
343
344 [[image:image-20230201091954-13.png||height="203" width="1117"]]
345
346
347
348
349 ==== (% style="color:blue" %)**aR0!- aR9!,  aRC0!- aRC9!**(%%) ====
350
351
352 Start Continuous Measurement
353
354 Start Continuous Measurement – Request CRC
355
356
357 * AT Command : AT+ADDRR=0,1,0,1 
358 * LoRaWAN Downlink (0xAA 03): 0xAA 03 30 01 00 01
359
360 Downlink: AA 03 aa bb cc dd
361
362 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
363
364 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
365
366 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
367
368 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)__**aD0!**__(%%) to get return.
369
370
371 The following is the display information on the serial port and the server.
372
373
374 [[image:image-20230201092208-14.png]]
375
376
377 [[image:image-20230201092208-15.png||height="214" width="1140"]]
378
379
380 === 2.3.2 Advance SDI-12 Debug command ===
381
382
383 This command can be used to debug all SDI-12 command.
384
385
386 LoRaWAN Downlink: A8 aa xx xx xx xx bb cc
387
388 (% style="color:#037691" %)**aa **(%%): total SDI-12 command length
389
390 (% style="color:#037691" %)**xx **(%%): SDI-12 command
391
392 (% style="color:#037691" %)**bb **(%%): Delay to wait for return
393
394 (% style="color:#037691" %)**cc **(%%): 0: don't uplink return to LoRaWAN, 1: Uplink return to LoRaWAN on FPORT=100
395
396
397 (% style="color:blue" %)**Example: **(%%) AT+CFGDEV =0RC0!,1
398
399 (% style="color:#037691" %)**0RC0! **(%%): SDI-12 Command,
400
401 (% style="color:#037691" %)**1 **(%%): Delay 1 second.  ( 0: 810 mini-second)
402
403 Equal Downlink: 0xA8 05 30 52 43 30 21 01 01
404
405
406 The following is the display information on the serial port and the server.
407
408
409 [[image:image-20230201092355-16.png]]
410
411
412 [[image:image-20230201092355-17.png||height="426" width="1135"]]
413
414
415 === 2.3.3 Convert ASCII to String ===
416
417
418 This command is used to convert between ASCII and String format.
419
420 AT+CONVFORM ( Max length: 80 bytes)
421
422
423 (% style="color:blue" %)**Example:**
424
425 1) AT+CONVFORM=0, string Convert String from String to ASCII
426
427 [[image:1675214845056-885.png]]
428
429
430 2) AT+CONVFORM=1, ASCII Convert ASCII to String.
431
432 [[image:1675214856590-846.png]]
433
434
435 === 2.3.4 Define periodically SDI-12 commands and uplink. ===
436
437
438 AT+COMMANDx & AT+DATACUTx
439
440 User can define max 15 SDI-12 Commands (AT+COMMAND1 ~~ AT+COMMANDF). On each uplink period (TDC time, default 20 minutes), SDI-12-LB will send these SDI-12 commands and wait for return from SDI-12 sensors. SDI-12-LB will then combine these returns and uplink via LoRaWAN.
441
442
443 * (% style="color:blue" %)**AT Command:**
444
445 (% style="color:#037691" %)**AT+COMMANDx=var1,var2,var3,var4.**
446
447 (% style="color:red" %)**var1**(%%): SDI-12 command , for example: 0RC0!
448
449 (% style="color:red" %)**var2**(%%): Wait timeout for return. (unit: second)
450
451 (% style="color:red" %)**var3**(%%): Whether to send //addrD0!// to get return after var2 timeout. 0: Don't Send //addrD0! //; 1: Send //addrD0!//.
452
453 (% style="color:red" %)**var4**(%%): validation check for return. If return invalid, SDI-12-LB will resend this command. Max 2 retries.
454
455 (% style="color:red" %)**0 **(%%) No validation check;
456
457 (% style="color:red" %)**1** (%%) Check if return chars are printable char(0x20 ~~ 0x7E);
458
459 (% style="color:red" %)**2**(%%)  Check if there is return from SDI-12 sensor
460
461 (% style="color:red" %)**3** (%%) Check if return pass CRC check ( SDI-12 command var1 must include CRC request);
462
463
464 Each AT+COMMANDx is followed by a (% style="color:blue" %)**AT+DATACUT**(%%) command. AT+DATACUT command is used to take the useful string from the SDI-12 sensor so the final payload will have the minimum length to uplink.
465
466
467 (% style="color:blue" %)**AT+DATACUTx**(%%) : This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.
468
469 (% border="1" style="background-color:#f7faff; width:436px" %)
470 |(% style="width:433px" %)(((
471 **AT+DATACUTx=a,b,c**
472
473 **a**:  length for the return of AT+COMMAND
474
475 **b**: 1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.
476
477 **c**:  define the position for valid value. 
478 )))
479
480 For example, if return from AT+COMMAND1 is “013METER   TER12 112T12-00024895” , Below AT+DATACUT1 will get different result to combine payload:
481
482
483 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
484 |(% style="width:170px" %)**AT+DATACUT1 value**|(% style="width:338px" %)**Final Result to combine Payload**
485 |(% style="width:170px" %)34,1,1+2+3|(% style="width:338px" %)0D 00 01 30 31 33
486 |(% style="width:170px" %)34,2,1~~8+12~~16|(% style="width:338px" %)0D 00 01 30 31 33 4D 45 54 45 52 54 45 52 31 32
487 |(% style="width:170px" %)34,2,1~~34|(% style="width:338px" %)0D 00 01 30 31 33 4D 45 54 45 52 20 20 20 54 45 52 31 32 20 31 31 32 54 31 32 2D 30 30 30 32 34 38 39 35 0D 0A
488
489 * (% style="color:blue" %)** Downlink Payload:**
490
491 (% style="color:blue" %)**0xAF**(%%)  downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
492
493
494 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
495
496
497 Format: ** (% style="color:#037691" %)AF MM NN LL XX XX XX XX YY(%%)**
498
499 Where:
500
501 * (% style="color:#037691" %)**MM **(%%): the AT+COMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
502 * (% style="color:#037691" %)**NN **(%%):  1: set the AT+DATACUT value ; 2: set the AT+DATACUT value.
503 * (% style="color:#037691" %)**LL **(%%):  The length of AT+COMMAND or AT+DATACUT command
504 * (% style="color:#037691" %)**XX XX XX XX **(%%): AT+COMMAND or AT+DATACUT command
505 * (% style="color:#037691" %)**YY **(%%):  If YY=0, RS485-LN will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command. 
506
507 (% style="color:blue" %)**Example:**
508
509 [[image:image-20230201094129-18.png]]
510
511
512 (% style="color:blue" %)**Clear SDI12 Command**
513
514 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
515
516
517 * (% style="color:#037691" %)**AT Command:**
518
519 (% style="color:#4f81bd" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase
520
521
522 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
523
524
525 * (% style="color:#037691" %)** Downlink Payload:**
526
527 (% style="color:#4f81bd" %)**0x09 aa bb**(%%)  same as AT+CMDEAR=aa,bb
528
529
530
531 (% style="color:blue" %)**command combination**
532
533 Below shows a screen shot how the results combines together to a uplink payload.
534
535 [[image:1675215745275-920.png]]
536
537
538 If user don't want to use DATACUT for some command, he simply want to uplink all returns. AT+ALLDATAMOD can be set to 1.
539
540 (% style="color:blue" %)**AT+ALLDATAMOD**(%%) will simply get all return and don't do CRC check as result for SDI-12 command. AT+DATACUTx command has higher priority, if AT+DATACUTx has been set, AT+ALLDATAMOD will be ignore for this SDI-12 command.
541
542
543 (% style="color:#4f81bd" %)**For example: **(%%) as below photo, AT+ALLDATAMOD=1, but AT+DATACUT1 has been set, AT+DATACUT1 will be still effect the result.
544
545
546 [[image:1675215782925-448.png]]
547
548
549 If AT+ALLDATAMOD=1, (% style="color:#4f81bd" %)**FX,X**(%%) will be added in the payload, FX specify which command is used and X specify the length of return. for example in above screen, F1 05 means the return is from AT+COMMAND1 and the return is 5 bytes.
550
551
552
553 (% style="color:blue" %)**Compose Uplink**
554
555
556 (% style="color:#4f81bd" %)**AT+DATAUP=0**
557
558 Compose the uplink payload with value returns in sequence and send with **__A SIGNLE UPLINK__**.
559
560 Final Payload is **__Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx__**
561
562 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
563
564
565 [[image:1675215828102-844.png]]
566
567
568 (% style="color:#4f81bd" %)**AT+DATAUP=1**
569
570 Compose the uplink payload with value returns in sequence and send with **__Multiply UPLINKs__**.
571
572 Final Payload is __**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**__
573
574 1. Battery Info (2 bytes): Battery voltage
575 1. PAYVER (1 byte): Defined by AT+PAYVER
576 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
577 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
578 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
579
580 [[image:1675215848113-696.png]]
581
582
583 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
584
585 * For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
586 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
587 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
588 * For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
589
590 (% style="color:red" %)**When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
591
592 (% style="color:red" %)**When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value.**
593
594
595 == 2.4 Uplink Payload ==
596
597
598 Uplink payloads have two types:
599
600 * Distance Value: Use FPORT=2
601 * Other control commands: Use other FPORT fields.
602
603 The application server should parse the correct value based on FPORT settings.
604
605
606 === 2.4.1 Device Payload, FPORT~=5 ===
607
608
609 Include device configure status. Once SDI-12-LB Joined the network, it will uplink this message to the server.
610
611 Users can also use the downlink command(0x26 01) to ask SDI-12-LB to resend this uplink.
612
613 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
614 |(% colspan="6" style="width:434px" %)**Device Status (FPORT=5)**
615 |(% style="width:102px" %)**Size (bytes)**|(% style="width:67px" %)**1**|(% style="width:80px" %)**2**|(% style="width:89px" %)**1**|(% style="width:52px" %)**1**|(% style="width:44px" %)**2**
616 |(% style="width:102px" %)**Value**|(% style="width:67px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:89px" %)Frequency Band|(% style="width:52px" %)Sub-band|(% style="width:44px" %)BAT
617
618 Example parse in TTNv3
619
620 [[image:1675215946738-635.png]]
621
622
623 (% style="color:#037691" %)**Sensor Model**(%%): For SDI-12-LB, this value is 0x17
624
625 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
626
627 (% style="color:#037691" %)**Frequency Band**:
628
629 *0x01: EU868
630
631 *0x02: US915
632
633 *0x03: IN865
634
635 *0x04: AU915
636
637 *0x05: KZ865
638
639 *0x06: RU864
640
641 *0x07: AS923
642
643 *0x08: AS923-1
644
645 *0x09: AS923-2
646
647 *0x0a: AS923-3
648
649 *0x0b: CN470
650
651 *0x0c: EU433
652
653 *0x0d: KR920
654
655 *0x0e: MA869
656
657
658 (% style="color:#037691" %)**Sub-Band**:
659
660 AU915 and US915:value 0x00 ~~ 0x08
661
662 CN470: value 0x0B ~~ 0x0C
663
664 Other Bands: Always 0x00
665
666
667 (% style="color:#037691" %)**Battery Info**:
668
669 Check the battery voltage.
670
671 Ex1: 0x0B45 = 2885mV
672
673 Ex2: 0x0B49 = 2889mV
674
675
676 === 2.4.2 Uplink Payload, FPORT~=2 ===
677
678
679 There are different cases for uplink. See below
680
681 * SDI-12 Debug Command return: FPORT=100
682
683 * Periodically Uplink: FPORT=2
684
685 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
686 |(% style="width:93px" %)(((
687 **Size(bytes)**
688 )))|(% style="width:83px" %)**2**|(% style="width:70px" %)**1**|(% style="width:234px" %)**Length depends on the return from the commands**
689 |(% style="width:93px" %)**Value**|(% style="width:83px" %)(((
690 Battery(mV)
691 &
692 Interrupt_Flag
693 )))|(% style="width:70px" %)[[PAYLOAD_VER>>||anchor="H3.6Setthepayloadversion"]]|(% style="width:234px" %)(((
694 If the valid payload is too long and exceed the maximum support.
695 Payload length in server,server will show payload not provided in the LoRaWAN server.
696 )))
697
698 [[image:1675216282284-923.png]]
699
700
701 === 2.4.3 Battery Info ===
702
703
704 Check the battery voltage for SDI-12-LB.
705
706 Ex1: 0x0B45 = 2885mV
707
708 Ex2: 0x0B49 = 2889mV
709
710
711 === 2.4.4 Interrupt Pin ===
712
713
714 This data field shows if this packet is generated by (% style="color:#037691" %)**Interrupt Pin**(%%) or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.7PinMapping"]].
715
716 **Example:**
717
718 Ex1: 0x0B45:0x0B&0x80= 0x00    Normal uplink packet.
719
720 Ex2: 0x8B49:0x8B&0x80= 0x80    Interrupt Uplink Packet.
721
722
723 === 2.4.5 Payload version ===
724
725
726
727 === 2.4.6 ​Decode payload in The Things Network ===
728
729
730 While using TTN network, you can add the payload format to decode the payload.
731
732 [[image:1675216779406-595.png]]
733
734
735 There is no fix payload decoder in LoRaWAN server because the SDI-12 sensors returns are different. User need to write the decoder themselves for their case.
736
737 SDI-12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
738
739
740 == 2.5 Uplink Interval ==
741
742
743 The SDI-12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
744
745 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval]]]]
746
747
748 == 2.6 Frequency Plans ==
749
750
751 The SDI-12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
752
753 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
754
755
756 == 2.7 Firmware Change Log ==
757
758
759 **Firmware download link:**
760
761 [[https:~~/~~/www.dropbox.com/sh/qrbgbikb109lkiv/AACBR-v_ZhZAMengcY7Nsa1ja?dl=0>>https://www.dropbox.com/sh/qrbgbikb109lkiv/AACBR-v_ZhZAMengcY7Nsa1ja?dl=0]]
762
763
764
765 = 3. Configure SDI-12-LB via AT Command or LoRaWAN Downlink =
766
767
768 Use can configure SDI-12-LB via AT Command or LoRaWAN Downlink.
769
770 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
771 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
772
773 There are two kinds of commands to configure SDI-12-LB, they are:
774
775 * (% style="color:blue" %)**General Commands**.
776
777 These commands are to configure:
778
779 * General system settings like: uplink interval.
780 * LoRaWAN protocol & radio related command.
781
782 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
783
784 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
785
786
787 * (% style="color:blue" %)**Commands special design for SDI-12-LB**
788
789 These commands only valid for SDI-12-LB, as below:
790
791
792 == ​​​​​​​3.1 Set Transmit Interval Time ==
793
794
795 Feature: Change LoRaWAN End Node Transmit Interval.
796
797 (% style="color:blue" %)**AT Command: AT+TDC**
798
799 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
800 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
801 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
802 30000
803 OK
804 the interval is 30000ms = 30s
805 )))
806 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
807 OK
808 Set transmit interval to 60000ms = 60 seconds
809 )))
810
811 (% style="color:blue" %)**Downlink Command: 0x01**
812
813
814 Format: Command Code (0x01) followed by 3 bytes time value.
815
816 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
817
818 * Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
819 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
820
821 == 3.2 Set Interrupt Mode ==
822
823
824 Feature, Set Interrupt mode for GPIO_EXIT.
825
826 (% style="color:blue" %)**AT Command: AT+INTMOD**
827
828 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
829 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 187px;" %)**Function**|=(% style="width: 165px;" %)**Response**
830 |(% style="width:156px" %)AT+INTMOD=?|(% style="width:187px" %)Show current interrupt mode|(% style="width:165px" %)(((
831 0
832 OK
833 the mode is 0 = No interruption
834 )))
835 |(% style="width:156px" %)AT+INTMOD=2|(% style="width:187px" %)(((
836 Set Transmit Interval
837 ~1. (Disable Interrupt),
838 2. (Trigger by rising and falling edge)
839 3. (Trigger by falling edge)
840 4. (Trigger by rising edge)
841 )))|(% style="width:165px" %)OK
842
843 (% style="color:blue" %)**Downlink Command: 0x06**
844
845 Format: Command Code (0x06) followed by 3 bytes.
846
847 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
848
849 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
850 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
851
852 == 3.3 Set the output time ==
853
854
855 Feature, Control the output 3V3 , 5V or 12V.
856
857 (% style="color:blue" %)**AT Command: AT+3V3T**
858
859 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
860 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
861 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
862 0
863 OK
864 )))
865 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
866 OK
867 default setting
868 )))
869 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
870 OK
871 )))
872 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
873 OK
874 )))
875
876 (% style="color:blue" %)**AT Command: AT+5VT**
877
878 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
879 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
880 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
881 0
882 OK
883 )))
884 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
885 OK
886 default setting
887 )))
888 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
889 OK
890 )))
891 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
892 OK
893 )))
894
895 (% style="color:blue" %)**AT Command: AT+12VT**
896
897 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
898 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
899 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
900 0
901 OK
902 )))
903 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
904 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
905 OK
906 )))
907
908 (% style="color:blue" %)**Downlink Command: 0x07**
909
910 Format: Command Code (0x07) followed by 3 bytes.
911
912 The first byte is which power, the second and third bytes are the time to turn on.
913
914 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
915 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
916 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
917 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
918 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
919 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
920
921 == 3.4 Set the all data mode ==
922
923
924 Feature, Set the all data mode.
925
926 (% style="color:blue" %)**AT Command: AT+ALLDATAMOD**
927
928 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
929 |=**Command Example**|=**Function**|=**Response**
930 |AT+ALLDATAMOD=?|Show current all data mode|(((
931 0
932 OK
933 )))
934 |AT+ALLDATAMOD=1|Set all data mode is 1.|OK
935
936 (% style="color:blue" %)**Downlink Command: 0xAB**
937
938 Format: Command Code (0xAB) followed by 1 bytes.
939
940 * Example 1: Downlink Payload: AB 00  ~/~/  AT+ALLDATAMOD=0
941 * Example 2: Downlink Payload: AB 01  ~/~/  AT+ALLDATAMOD=1
942
943 == 3.5 Set the splicing payload for uplink ==
944
945
946 Feature, splicing payload for uplink.
947
948 (% style="color:blue" %)**AT Command: AT+DATAUP**
949
950 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
951 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 266px;" %)**Function**|=**Response**
952 |(% style="width:154px" %)AT+DATAUP =?|(% style="width:266px" %)Show current splicing payload for uplink mode|(((
953 0
954 OK
955 )))
956 |(% style="width:154px" %)AT+DATAUP =0|(% style="width:266px" %)(((
957 Set splicing payload for uplink mode is 0.
958 )))|(((
959 OK
960 )))
961 |(% style="width:154px" %)AT+DATAUP =1|(% style="width:266px" %)Set splicing payload for uplink mode is 1 , and the each splice uplink is sent sequentially.|OK
962 |(% style="width:154px" %)AT+DATAUP =1,20000|(% style="width:266px" %)(((
963 Set splicing payload for uplink mode is 1, and the uplink interval of each splice to 20000 milliseconds.
964 )))|OK
965
966 (% style="color:blue" %)**Downlink Command: 0xAD**
967
968 Format: Command Code (0xAD) followed by 1 bytes or 5 bytes.
969
970 * Example 1: Downlink Payload: AD 00  ~/~/  AT+DATAUP=0
971 * Example 2: Downlink Payload: AD 01  ~/~/  AT+DATAUP =1
972 * Example 3: Downlink Payload: AD 01 00 00 14  ~/~/  AT+DATAUP =1,20000
973
974 This means that the interval is set to 0x000014=20S
975
976
977 == 3.6 Set the payload version ==
978
979 Feature, Set the payload version.
980
981 (% style="color:blue" %)**AT Command: AT+PAYVER**
982
983 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
984 |=(% style="width: 158px;" %)**Command Example**|=(% style="width: 192px;" %)**Function**|=**Response**
985 |(% style="width:158px" %)AT+PAYVER=?|(% style="width:192px" %)Show current payload version|(((
986 1
987 OK
988 )))
989 |(% style="width:158px" %)AT+PAYVER=5|(% style="width:192px" %)Set payload version is 5.|OK
990
991 (% style="color:blue" %)**Downlink Command: 0xAE**
992
993 Format: Command Code (0xAE) followed by 1 bytes.
994
995 * Example 1: Downlink Payload: AE 01  ~/~/  AT+PAYVER=1
996 * Example 2: Downlink Payload: AE 05  ~/~/  AT+PAYVER=5
997
998 = 4. Battery & how to replace =
999
1000 == 4.1 Battery Type ==
1001
1002
1003 SDI-12-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1004
1005
1006 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1007
1008 [[image:1675234124233-857.png]]
1009
1010
1011 Minimum Working Voltage for the SDI-12-LB:
1012
1013 SDI-12-LB:  2.45v ~~ 3.6v
1014
1015
1016 == 4.2 Replace Battery ==
1017
1018
1019 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1020
1021 And make sure the positive and negative pins match.
1022
1023
1024 == 4.3 Power Consumption Analyze ==
1025
1026
1027 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1028
1029 Instruction to use as below:
1030
1031 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
1032
1033 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
1034
1035 * Product Model
1036 * Uplink Interval
1037 * Working Mode
1038
1039 And the Life expectation in difference case will be shown on the right.
1040
1041
1042 [[image:1675234155374-163.png]]
1043
1044
1045 The battery related documents as below:
1046
1047 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
1048 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
1049 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
1050
1051 [[image:image-20230201145019-19.png]]
1052
1053
1054 === 4.3.1 ​Battery Note ===
1055
1056
1057 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1058
1059
1060 === 4.3.2 Replace the battery ===
1061
1062
1063 You can change the battery in the SDI-12-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1064
1065 The default battery pack of SDI-12-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1066
1067
1068 = 5. Remote Configure device =
1069
1070 == 5.1 Connect via BLE ==
1071
1072
1073 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
1074
1075
1076 == 5.2 AT Command Set ==
1077
1078
1079
1080 = 6. OTA firmware update =
1081
1082
1083 Please see this link for how to do OTA firmware update.
1084
1085 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1086
1087
1088 = 7. FAQ =
1089
1090 == 7.1 How to use AT Command to access device? ==
1091
1092
1093 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1094
1095
1096 == 7.2 How to update firmware via UART port? ==
1097
1098
1099 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1100
1101
1102 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1103
1104
1105 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
1106 When downloading the images, choose the required image file for download. ​
1107
1108
1109 = 8. ​Order Info =
1110
1111
1112 (% style="color:blue" %)**Part Number: SDI-12-LB-XXX**
1113
1114 XXX: The default frequency band
1115
1116 (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1117 (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1118 (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1119 (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1120 (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1121 (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1122 (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1123 (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1124
1125
1126 = 9. Packing Info =
1127
1128
1129 (% style="color:#037691" %)**Package Includes**:
1130
1131 * SDI-12-LB SDI-12 to LoRaWAN Converter x 1
1132
1133 (% style="color:#037691" %)**Dimension and weight**:
1134
1135 * Device Size: cm
1136 * Device Weight: g
1137 * Package Size / pcs : cm
1138 * Weight / pcs : g
1139
1140 = 10. ​Support =
1141
1142
1143 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1144
1145 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1146
1147
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0