Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230131183542-1.jpeg||height="694" width="694"]]
3
4 **Table of Contents:**
5
6 {{toc/}}
7
8
9
10
11
12
13
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 ​What is SDI-12 to LoRaWAN Converter ==
23
24
25 The Dragino (% style="color:blue" %)**SDI-12-LB**(%%) is a (% style="color:blue" %)**SDI-12 to LoRaWAN Converter **(%%)designed for Smart Agriculture solution.
26
27 SDI-12 (Serial Digital Interface at 1200 baud) is an asynchronous [[serial communications>>url:https://en.wikipedia.org/wiki/Serial_communication]] protocol for intelligent sensors that monitor environment data. SDI-12 protocol is widely used in Agriculture sensor and Weather Station sensors.
28
29 SDI-12-LB has SDI-12 interface and support 12v output to power external SDI-12 sensor. It can get the environment data from SDI-12 sensor and sends out the data via LoRaWAN wireless protocol.
30
31 The LoRa wireless technology used in SDI-12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32
33 SDI-12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
34
35 Each SDI-12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36
37
38 [[image:image-20230201084414-1.png||height="464" width="1108"]]
39
40
41
42
43 == ​1.2 Features ==
44
45
46 * LoRaWAN 1.0.3 Class A
47 * Ultra-low power consumption
48 * Controllable 5v and 12v output to power external sensor
49 * SDI-12 Protocol to connect to SDI-12 Sensor
50 * Monitor Battery Level
51 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
52 * Support Bluetooth v5.1 and LoRaWAN remote configure.
53 * Support wireless OTA update firmware
54 * Uplink on periodically
55 * Downlink to change configure
56 * 8500mAh Battery for long term use
57
58 == 1.3 Specification ==
59
60
61 (% style="color:#037691" %)**Micro Controller:**
62
63 * MCU: 48Mhz ARM
64 * Flash: 256KB
65 * RAM: 64KB
66
67 (% style="color:#037691" %)**Common DC Characteristics:**
68
69 * Supply Voltage: 2.5v ~~ 3.6v
70 * Operating Temperature: -40 ~~ 85°C
71
72 (% style="color:#037691" %)**LoRa Spec:**
73
74 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
75 * Max +22 dBm constant RF output vs.
76 * RX sensitivity: down to -139 dBm.
77 * Excellent blocking immunity
78
79 (% style="color:#037691" %)**Current Input Measuring :**
80
81 * Range: 0 ~~ 20mA
82 * Accuracy: 0.02mA
83 * Resolution: 0.001mA
84
85 (% style="color:#037691" %)**Voltage Input Measuring:**
86
87 * Range: 0 ~~ 30v
88 * Accuracy: 0.02v
89 * Resolution: 0.001v
90
91 (% style="color:#037691" %)**Battery:**
92
93 * Li/SOCI2 un-chargeable battery
94 * Capacity: 8500mAh
95 * Self-Discharge: <1% / Year @ 25°C
96 * Max continuously current: 130mA
97 * Max boost current: 2A, 1 second
98
99 (% style="color:#037691" %)**Power Consumption**
100
101 * Sleep Mode: 5uA @ 3.3v
102 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
103
104 == 1.4 Connect to SDI-12 Sensor ==
105
106
107
108 [[image:1675212538524-889.png]]
109
110
111 == 1.5 Sleep mode and working mode ==
112
113
114 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
115
116 (% style="color:blue" %)**Working Mode: **(%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
117
118
119 == 1.6 Button & LEDs ==
120
121
122 [[image:1675212633011-651.png]]
123
124
125
126 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
127 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
128 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
129 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
130 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
131 )))
132 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
133 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
134 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
135 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
136 )))
137 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
138
139 == 1.7 Pin Mapping ==
140
141
142 [[image:1675213198663-754.png]]
143
144
145 == 1.8 BLE connection ==
146
147
148 SDI-12-LB support BLE remote configure.
149
150 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
151
152 * Press button to send an uplink
153 * Press button to active device.
154 * Device Power on or reset.
155
156 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
157
158
159 == 1.9 Mechanical ==
160
161
162 [[image:image-20230201090139-2.png]]
163
164 [[image:image-20230201090139-3.png]]
165
166 [[image:image-20230201090139-4.png]]
167
168
169 = 2. Configure SDI-12 to connect to LoRaWAN network =
170
171 == 2.1 How it works ==
172
173
174 The SDI-12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the SDI-12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
175
176
177 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) ==
178
179
180 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
181
182
183 [[image:image-20230201090528-5.png||height="465" width="1111"]]
184
185
186 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
187
188
189 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from SDI-12-LB.
190
191 Each SDI-12-LB is shipped with a sticker with the default device EUI as below:
192
193
194 [[image:image-20230131134744-2.jpeg]]
195
196
197
198
199
200 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
201
202
203 (% style="color:blue" %)**Register the device**
204
205 [[image:1675213652444-622.png]]
206
207
208 (% style="color:blue" %)**Add APP EUI and DEV EUI**
209
210
211 [[image:1675213661769-223.png]]
212
213
214 (% style="color:blue" %)**Add APP EUI in the application**
215
216
217 [[image:1675213675852-577.png]]
218
219
220 (% style="color:blue" %)**Add APP KEY**
221
222 [[image:1675213686734-883.png]]
223
224
225 (% style="color:blue" %)**Step 2**(%%): Activate on SDI-12-LB
226
227
228 Press the button for 5 seconds to activate the SDI-12-LB.
229
230
231 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode** (%%)for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
232
233
234 [[image:1675213704414-644.png]]
235
236
237 == ​2.3 SDI-12 Related Commands ==
238
239
240 User need to configure SDI-12-LB to communicate with SDI-12 sensors otherwise the uplink payload will only include a few bytes.
241
242
243 === 2.3.1 Basic SDI-12 debug command ===
244
245
246 User can run some basic SDI-12 command to debug the connection to the SDI-12 sensor. These commands can be sent via AT Command or LoRaWAN downlink command.
247
248 If SDI-12 sensor return value after get these commands, //SDI-12-LB// will uplink the return on FPORT=100, otherwise, if there is no response from SDI-12 sensor. //SDI-12-LB// will uplink NULL (0x 4E 55 4C 4C) to server.
249
250 The following is the display information on the serial port and the server.
251
252
253
254 [[image:image-20230201091027-6.png]]
255
256
257 [[image:image-20230201091027-7.png||height="261" width="1179"]]
258
259
260 ==== (% style="color:blue" %)**al!  ~-~- Get SDI-12 sensor Identification**(%%) ====
261
262
263 * AT Command: AT+ADDRI=aa
264 * LoRaWAN Downlink(prefix 0xAA00): AA 00 aa
265
266 (% style="color:#037691" %)**Parameter:  **(%%)aa: ASCII value of SDI-12 sensor address in downlink or HEX value in AT Command)
267
268 (% style="color:blue" %)**Example :   **AT+ADDRI=0 ( Equal to downlink: 0x AA 00 30)
269
270
271 The following is the display information on the serial port and the server.
272
273
274 [[image:image-20230201091257-8.png]]
275
276
277 [[image:image-20230201091257-9.png||height="225" width="1242"]]
278
279
280 ==== (% style="color:blue" %)**aM!,aMC!, aM1!- aM9!, aMC1!- aMC9!**(%%) ====
281
282
283 (% style="color:red" %)**aM! **(%%): Start Non-Concurrent Measurement
284
285 (% style="color:red" %)**aMC! **(%%): Start Non-Concurrent Measurement – Request CRC
286
287 (% style="color:red" %)**aM1!- aM9! **(%%): Additional Measurements
288
289 (% style="color:red" %)**aMC1!- aMC9!**(%%) : Additional Measurements – Request CRC
290
291
292 * AT Command : AT+ADDRM=0,1,0,1
293
294 * LoRaWAN Downlink(prefix 0xAA01): 0xAA 01 30 01 00 01
295
296 Downlink:AA 01 aa bb cc dd
297
298 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
299
300 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
301
302 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
303
304 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)**aD0!**(%%) to get return.
305
306
307 The following is the display information on the serial port and the server.
308
309
310 [[image:image-20230201091630-10.png]]
311
312
313 [[image:image-20230201091630-11.png||height="247" width="1165"]]
314
315
316
317 ==== (% style="color:blue" %)**aC!, aCC!,  aC1!- aC9!,  aCC1!- aCC9! **(%%) ====
318
319
320 (% style="color:red" %)**aC!**(%%) : Start Concurrent Measurement
321
322 (% style="color:red" %)**aCC!** (%%): Start Concurrent Measurement – Request CRC
323
324 (% style="color:red" %)**aC1!- aC9!**(%%) : Start Additional Concurrent Measurements
325
326 (% style="color:red" %)**aCC1!- aCC9!**(%%) : Start Additional Concurrent Measurements – Request CRC
327
328
329 * AT Command : AT+ADDRC=0,1,0,1 
330
331 * LoRaWAN Downlink(0xAA02): 0xAA 02 30 01 00 01
332
333 Downlink: AA 02 aa bb cc dd
334
335 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
336
337 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
338
339 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
340
341 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)**aD0!**(%%) to get return.
342
343
344 The following is the display information on the serial port and the server.
345
346
347 [[image:image-20230201091954-12.png]]
348
349
350 [[image:image-20230201091954-13.png||height="203" width="1117"]]
351
352
353
354
355 ==== (% style="color:blue" %)**aR0!- aR9!,  aRC0!- aRC9!**(%%) ====
356
357
358 Start Continuous Measurement
359
360 Start Continuous Measurement – Request CRC
361
362
363 * AT Command : AT+ADDRR=0,1,0,1 
364 * LoRaWAN Downlink (0xAA 03): 0xAA 03 30 01 00 01
365
366 Downlink: AA 03 aa bb cc dd
367
368 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
369
370 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
371
372 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
373
374 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)**aD0!**(%%) to get return.
375
376
377 The following is the display information on the serial port and the server.
378
379
380
381 [[image:image-20230201092208-14.png]]
382
383
384 [[image:image-20230201092208-15.png||height="214" width="1140"]]
385
386
387 === 2.3.2 Advance SDI-12 Debug command ===
388
389
390 This command can be used to debug all SDI-12 command.
391
392
393 LoRaWAN Downlink: A8 aa xx xx xx xx bb cc
394
395 (% style="color:#037691" %)**aa **(%%): total SDI-12 command length
396
397 (% style="color:#037691" %)**xx **(%%): SDI-12 command
398
399 (% style="color:#037691" %)**bb **(%%): Delay to wait for return
400
401 (% style="color:#037691" %)**cc **(%%): 0: don't uplink return to LoRaWAN, 1: Uplink return to LoRaWAN on FPORT=100
402
403
404 (% style="color:blue" %)**Example: **(%%) AT+CFGDEV =0RC0!,1
405
406 (% style="color:#037691" %)**0RC0! **(%%): SDI-12 Command,
407
408 (% style="color:#037691" %)**1 **(%%): Delay 1 second.  ( 0: 810 mini-second)
409
410 Equal Downlink: 0xA8 05 30 52 43 30 21 01 01
411
412
413 The following is the display information on the serial port and the server.
414
415
416 [[image:image-20230201092355-16.png]]
417
418
419 [[image:image-20230201092355-17.png||height="426" width="1135"]]
420
421
422 === 2.3.3 Convert ASCII to String ===
423
424
425 This command is used to convert between ASCII and String format.
426
427 AT+CONVFORM ( Max length: 80 bytes)
428
429
430 (% style="color:blue" %)**Example:**
431
432 1) AT+CONVFORM=0, string Convert String from String to ASCII
433
434 [[image:1675214845056-885.png]]
435
436
437 2) AT+CONVFORM=1, ASCII Convert ASCII to String.
438
439 [[image:1675214856590-846.png]]
440
441
442 === 2.3.4 Define periodically SDI-12 commands and uplink. ===
443
444
445 AT+COMMANDx & AT+DATACUTx
446
447 User can define max 15 SDI-12 Commands (AT+COMMAND1 ~~ AT+COMMANDF). On each uplink period (TDC time, default 20 minutes), SDI-12-LB will send these SDI-12 commands and wait for return from SDI-12 sensors. SDI-12-LB will then combine these returns and uplink via LoRaWAN.
448
449
450 * (% style="color:blue" %)**AT Command:**
451
452 (% style="color:#037691" %)**AT+COMMANDx=var1,var2,var3,var4.**
453
454 (% style="color:red" %)**var1**(%%): SDI-12 command , for example: 0RC0!
455
456 (% style="color:red" %)**var2**(%%): Wait timeout for return. (unit: second)
457
458 (% style="color:red" %)**var3**(%%): Whether to send //addrD0!// to get return after var2 timeout. 0: Don't Send //addrD0! //; 1: Send //addrD0!//.
459
460 (% style="color:red" %)**var4**(%%): validation check for return. If return invalid, SDI-12-LB will resend this command. Max 2 retries.
461
462 (% style="color:red" %)**0 **(%%) No validation check;
463
464 (% style="color:red" %)**1** (%%) Check if return chars are printable char(0x20 ~~ 0x7E);
465
466 (% style="color:#red" %)**2**(%%)  Check if there is return from SDI-12 sensor
467
468 (% style="color:red" %)**3** (%%) Check if return pass CRC check ( SDI-12 command var1 must include CRC request);
469
470
471 Each AT+COMMANDx is followed by a (% style="color:blue" %)**AT+DATACUT**(%%) command. AT+DATACUT command is used to take the useful string from the SDI-12 sensor so the final payload will have the minimum length to uplink.
472
473
474 (% style="color:blue" %)**AT+DATACUTx**(%%) : This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.
475
476 (% border="1" style="background-color:#f7faff; width:436px" %)
477 |(% style="width:433px" %)(((
478 **AT+DATACUTx=a,b,c**
479
480 **a**:  length for the return of AT+COMMAND
481
482 **b**: 1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.
483
484 **c**:  define the position for valid value. 
485 )))
486
487 For example, if return from AT+COMMAND1 is “013METER   TER12 112T12-00024895” , Below AT+DATACUT1 will get different result to combine payload:
488
489
490 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
491 |(% style="width:170px" %)**AT+DATACUT1 value**|(% style="width:338px" %)**Final Result to combine Payload**
492 |(% style="width:170px" %)34,1,1+2+3|(% style="width:338px" %)0D 00 01 30 31 33
493 |(% style="width:170px" %)34,2,1~~8+12~~16|(% style="width:338px" %)0D 00 01 30 31 33 4D 45 54 45 52 54 45 52 31 32
494 |(% style="width:170px" %)34,2,1~~34|(% style="width:338px" %)0D 00 01 30 31 33 4D 45 54 45 52 20 20 20 54 45 52 31 32 20 31 31 32 54 31 32 2D 30 30 30 32 34 38 39 35 0D 0A
495
496 * (% style="color:blue" %)** Downlink Payload:**
497
498 (% style="color:blue" %)**0xAF**(%%)  downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
499
500
501 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
502
503
504 Format: ** (% style="color:#037691" %)AF MM NN LL XX XX XX XX YY(%%)**
505
506 Where:
507
508 * (% style="color:#037691" %)**MM **(%%): the AT+COMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
509 * (% style="color:#037691" %)**NN **(%%):  1: set the AT+DATACUT value ; 2: set the AT+DATACUT value.
510 * (% style="color:#037691" %)**LL **(%%):  The length of AT+COMMAND or AT+DATACUT command
511 * (% style="color:#037691" %)**XX XX XX XX **(%%): AT+COMMAND or AT+DATACUT command
512 * (% style="color:#037691" %)**YY **(%%):  If YY=0, RS485-LN will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command. 
513
514 (% style="color:blue" %)**Example:**
515
516 [[image:image-20230201094129-18.png]]
517
518
519 (% style="color:blue" %)**Clear SDI12 Command**
520
521 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
522
523
524 * (% style="color:#037691" %)**AT Command:**
525
526 (% style="color:#4f81bd" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase
527
528
529 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
530
531
532 * (% style="color:#037691" %)** Downlink Payload:**
533
534 (% style="color:#4f81bd" %)**0x09 aa bb**(%%)  same as AT+CMDEAR=aa,bb
535
536
537
538 (% style="color:blue" %)**command combination**
539
540 Below shows a screen shot how the results combines together to a uplink payload.
541
542 [[image:1675215745275-920.png]]
543
544
545 If user don't want to use DATACUT for some command, he simply want to uplink all returns. AT+ALLDATAMOD can be set to 1.
546
547 (% style="color:blue" %)**AT+ALLDATAMOD**(%%) will simply get all return and don't do CRC check as result for SDI-12 command. AT+DATACUTx command has higher priority, if AT+DATACUTx has been set, AT+ALLDATAMOD will be ignore for this SDI-12 command.
548
549
550 (% style="color:#4f81bd" %)**For example: ** as below photo, AT+ALLDATAMOD=1, but AT+DATACUT1 has been set, AT+DATACUT1 will be still effect the result.
551
552
553 [[image:1675215782925-448.png]]
554
555
556 If AT+ALLDATAMOD=1, (% style="color:#4f81bd" %)**FX,X**(%%) will be added in the payload, FX specify which command is used and X specify the length of return. for example in above screen, F1 05 means the return is from AT+COMMAND1 and the return is 5 bytes.
557
558
559
560 (% style="color:blue" %)**Compose Uplink**
561
562
563 (% style="color:#4f81bd" %)**AT+DATAUP=0**
564
565 Compose the uplink payload with value returns in sequence and send with A SIGNLE UPLINK.
566
567 Final Payload is Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
568
569 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
570
571
572 [[image:1675215828102-844.png]]
573
574
575 (% style="color:#4f81bd" %)**AT+DATAUP=1**
576
577 Compose the uplink payload with value returns in sequence and send with Multiply UPLINKs.
578
579 Final Payload is
580
581 __**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**__
582
583 1. Battery Info (2 bytes): Battery voltage
584 1. PAYVER (1 byte): Defined by AT+PAYVER
585 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
586 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
587 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
588
589 [[image:1675215848113-696.png]]
590
591
592 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
593
594 * For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
595 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
596 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
597 * For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
598
599 (% style="color:red" %)**When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
600
601 (% style="color:red" %)**When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value.**
602
603
604 == 2.4 Uplink Payload ==
605
606
607 Uplink payloads have two types:
608
609 * Distance Value: Use FPORT=2
610 * Other control commands: Use other FPORT fields.
611
612 The application server should parse the correct value based on FPORT settings.
613
614
615 === 2.4.1 Device Payload, FPORT~=5 ===
616
617
618 Include device configure status. Once SDI-12-LB Joined the network, it will uplink this message to the server.
619
620 Users can also use the downlink command(0x26 01) to ask SDI-12-LB to resend this uplink.
621
622 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
623 |(% colspan="6" style="width:434px" %)**Device Status (FPORT=5)**
624 |(% style="width:102px" %)**Size (bytes)**|(% style="width:67px" %)**1**|(% style="width:80px" %)**2**|(% style="width:89px" %)**1**|(% style="width:52px" %)**1**|(% style="width:44px" %)**2**
625 |(% style="width:102px" %)**Value**|(% style="width:67px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:89px" %)Frequency Band|(% style="width:52px" %)Sub-band|(% style="width:44px" %)BAT
626
627 Example parse in TTNv3
628
629 [[image:1675215946738-635.png]]
630
631
632 (% style="color:#037691" %)**Sensor Model**(%%): For SDI-12-LB, this value is 0x17
633
634 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
635
636 (% style="color:#037691" %)**Frequency Band**:
637
638 *0x01: EU868
639
640 *0x02: US915
641
642 *0x03: IN865
643
644 *0x04: AU915
645
646 *0x05: KZ865
647
648 *0x06: RU864
649
650 *0x07: AS923
651
652 *0x08: AS923-1
653
654 *0x09: AS923-2
655
656 *0x0a: AS923-3
657
658 *0x0b: CN470
659
660 *0x0c: EU433
661
662 *0x0d: KR920
663
664 *0x0e: MA869
665
666
667 (% style="color:#037691" %)**Sub-Band**:
668
669 AU915 and US915:value 0x00 ~~ 0x08
670
671 CN470: value 0x0B ~~ 0x0C
672
673 Other Bands: Always 0x00
674
675
676 (% style="color:#037691" %)**Battery Info**:
677
678 Check the battery voltage.
679
680 Ex1: 0x0B45 = 2885mV
681
682 Ex2: 0x0B49 = 2889mV
683
684
685 === 2.4.2 Uplink Payload, FPORT~=2 ===
686
687
688 There are different cases for uplink. See below
689
690 * SDI-12 Debug Command return: FPORT=100
691
692 * Periodically Uplink: FPORT=2
693
694 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
695 |(% style="width:93px" %)(((
696 **Size(bytes)**
697 )))|(% style="width:83px" %)**2**|(% style="width:70px" %)**1**|(% style="width:234px" %)**Length depends on the return from the commands**
698 |(% style="width:93px" %)**Value**|(% style="width:83px" %)(((
699 Battery(mV)
700 &
701 Interrupt_Flag
702 )))|(% style="width:70px" %)[[PAYLOAD_VER>>||anchor="H3.6Setthepayloadversion"]]|(% style="width:234px" %)(((
703 If the valid payload is too long and exceed the maximum support.
704 Payload length in server,server will show payload not provided in the LoRaWAN server.
705 )))
706
707 [[image:1675216282284-923.png]]
708
709
710 === 2.4.3 Battery Info ===
711
712
713 Check the battery voltage for SDI-12-LB.
714
715 Ex1: 0x0B45 = 2885mV
716
717 Ex2: 0x0B49 = 2889mV
718
719
720 === 2.4.4 Interrupt Pin ===
721
722
723 This data field shows if this packet is generated by (% style="color:#037691" %)**Interrupt Pin**(%%) or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.7PinMapping"]].
724
725 **Example:**
726
727 Ex1: 0x0B45:0x0B&0x80= 0x00    Normal uplink packet.
728
729 Ex2: 0x8B49:0x8B&0x80= 0x80    Interrupt Uplink Packet.
730
731
732 === 2.4.5 Payload version ===
733
734
735
736 === 2.4.6 ​Decode payload in The Things Network ===
737
738
739 While using TTN network, you can add the payload format to decode the payload.
740
741 [[image:1675216779406-595.png]]
742
743
744 There is no fix payload decoder in LoRaWAN server because the SDI-12 sensors returns are different. User need to write the decoder themselves for their case.
745
746 SDI-12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
747
748
749 == 2.5 Uplink Interval ==
750
751
752 The SDI-12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
753
754 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval]]]]
755
756
757
758
759 == 2.6 Frequency Plans ==
760
761
762 The SDI-12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
763
764 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
765
766
767 == 2.7 Firmware Change Log ==
768
769
770 **Firmware download link:**
771
772 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
773
774
775 = 3. Configure SDI-12-LB via AT Command or LoRaWAN Downlink =
776
777
778 Use can configure SDI-12-LB via AT Command or LoRaWAN Downlink.
779
780 * AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
781 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
782
783 There are two kinds of commands to configure SDI-12-LB, they are:
784
785 * (% style="color:blue" %)**General Commands**.
786
787 These commands are to configure:
788
789 * General system settings like: uplink interval.
790 * LoRaWAN protocol & radio related command.
791
792 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
793
794 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
795
796
797 * (% style="color:blue" %)**Commands special design for SDI-12-LB**
798
799 These commands only valid for SDI-12-LB, as below:
800
801
802 == ​​​​​​​3.1 Set Transmit Interval Time ==
803
804
805 Feature: Change LoRaWAN End Node Transmit Interval.
806
807 (% style="color:blue" %)**AT Command: AT+TDC**
808
809 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
810 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
811 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
812 30000
813 OK
814 the interval is 30000ms = 30s
815 )))
816 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
817 OK
818 Set transmit interval to 60000ms = 60 seconds
819 )))
820
821 (% style="color:blue" %)**Downlink Command: 0x01**
822
823
824 Format: Command Code (0x01) followed by 3 bytes time value.
825
826 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
827
828 * Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
829 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
830
831
832
833 == 3.2 Set Interrupt Mode ==
834
835
836 Feature, Set Interrupt mode for GPIO_EXIT.
837
838 (% style="color:blue" %)**AT Command: AT+INTMOD**
839
840 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
841 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 187px;" %)**Function**|=(% style="width: 165px;" %)**Response**
842 |(% style="width:156px" %)AT+INTMOD=?|(% style="width:187px" %)Show current interrupt mode|(% style="width:165px" %)(((
843 0
844 OK
845 the mode is 0 = No interruption
846 )))
847 |(% style="width:156px" %)AT+INTMOD=2|(% style="width:187px" %)(((
848 Set Transmit Interval
849 ~1. (Disable Interrupt),
850 2. (Trigger by rising and falling edge)
851 3. (Trigger by falling edge)
852 4. (Trigger by rising edge)
853 )))|(% style="width:165px" %)OK
854
855 (% style="color:blue" %)**Downlink Command: 0x06**
856
857 Format: Command Code (0x06) followed by 3 bytes.
858
859 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
860
861 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
862 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
863
864
865
866 == 3.3 Set the output time ==
867
868
869 Feature, Control the output 3V3 , 5V or 12V.
870
871 (% style="color:blue" %)**AT Command: AT+3V3T**
872
873 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
874 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
875 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
876 0
877 OK
878 )))
879 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
880 OK
881 default setting
882 )))
883 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
884 OK
885 )))
886 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
887 OK
888 )))
889
890 (% style="color:blue" %)**AT Command: AT+5VT**
891
892 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
893 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
894 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
895 0
896 OK
897 )))
898 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
899 OK
900 default setting
901 )))
902 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
903 OK
904 )))
905 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
906 OK
907 )))
908
909 (% style="color:blue" %)**AT Command: AT+12VT**
910
911 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
912 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
913 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
914 0
915 OK
916 )))
917 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
918 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
919 OK
920 )))
921
922 (% style="color:blue" %)**Downlink Command: 0x07**
923
924 Format: Command Code (0x07) followed by 3 bytes.
925
926 The first byte is which power, the second and third bytes are the time to turn on.
927
928 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
929 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
930 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
931 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
932 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
933 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
934
935
936
937 == 3.4 Set the all data mode ==
938
939
940 Feature, Set the all data mode.
941
942 (% style="color:blue" %)**AT Command: AT+ALLDATAMOD**
943
944 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
945 |=**Command Example**|=**Function**|=**Response**
946 |AT+ALLDATAMOD=?|Show current all data mode|(((
947 0
948 OK
949 )))
950 |AT+ALLDATAMOD=1|Set all data mode is 1.|OK
951
952 (% style="color:blue" %)**Downlink Command: 0xAB**
953
954 Format: Command Code (0xAB) followed by 1 bytes.
955
956 * Example 1: Downlink Payload: AB 00  ~/~/  AT+ALLDATAMOD=0
957 * Example 2: Downlink Payload: AB 01  ~/~/  AT+ALLDATAMOD=1
958
959
960
961 == 3.5 Set the splicing payload for uplink ==
962
963
964 Feature, splicing payload for uplink.
965
966 (% style="color:blue" %)**AT Command: AT+DATAUP**
967
968 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
969 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 266px;" %)**Function**|=**Response**
970 |(% style="width:154px" %)AT+DATAUP =?|(% style="width:266px" %)Show current splicing payload for uplink mode|(((
971 0
972 OK
973 )))
974 |(% style="width:154px" %)AT+DATAUP =0|(% style="width:266px" %)(((
975 Set splicing payload for uplink mode is 0.
976 )))|(((
977 OK
978 )))
979 |(% style="width:154px" %)AT+DATAUP =1|(% style="width:266px" %)Set splicing payload for uplink mode is 1 , and the each splice uplink is sent sequentially.|OK
980 |(% style="width:154px" %)AT+DATAUP =1,20000|(% style="width:266px" %)(((
981 Set splicing payload for uplink mode is 1, and the uplink interval of each splice to 20000 milliseconds.
982 )))|OK
983
984 (% style="color:blue" %)**Downlink Command: 0xAD**
985
986 Format: Command Code (0xAD) followed by 1 bytes or 5 bytes.
987
988 * Example 1: Downlink Payload: AD 00  ~/~/  AT+DATAUP=0
989 * Example 2: Downlink Payload: AD 01  ~/~/  AT+DATAUP =1
990 * Example 3: Downlink Payload: AD 01 00 00 14  ~/~/  AT+DATAUP =1,20000
991
992 This means that the interval is set to 0x000014=20S
993
994
995 == 3.6 Set the payload version ==
996
997 Feature, Set the payload version.
998
999 (% style="color:blue" %)**AT Command: AT+PAYVER**
1000
1001 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
1002 |=(% style="width: 158px;" %)**Command Example**|=(% style="width: 192px;" %)**Function**|=**Response**
1003 |(% style="width:158px" %)AT+PAYVER=?|(% style="width:192px" %)Show current payload version|(((
1004 1
1005 OK
1006 )))
1007 |(% style="width:158px" %)AT+PAYVER=5|(% style="width:192px" %)Set payload version is 5.|OK
1008
1009 (% style="color:blue" %)**Downlink Command: 0xAE**
1010
1011 Format: Command Code (0xAE) followed by 1 bytes.
1012
1013 * Example 1: Downlink Payload: AE 01  ~/~/  AT+PAYVER=1
1014 * Example 2: Downlink Payload: AE 05  ~/~/  AT+PAYVER=5
1015
1016
1017
1018 = 4. Battery & how to replace =
1019
1020 == 4.1 Battery Type ==
1021
1022
1023 SDI-12-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1024
1025
1026 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1027
1028 [[image:1675234124233-857.png]]
1029
1030
1031 Minimum Working Voltage for the SDI-12-LB:
1032
1033 SDI-12-LB:  2.45v ~~ 3.6v
1034
1035
1036 == 4.2 Replace Battery ==
1037
1038
1039 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1040
1041 And make sure the positive and negative pins match.
1042
1043
1044 == 4.3 Power Consumption Analyze ==
1045
1046
1047 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1048
1049 Instruction to use as below:
1050
1051 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
1052
1053 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
1054
1055 * Product Model
1056 * Uplink Interval
1057 * Working Mode
1058
1059 And the Life expectation in difference case will be shown on the right.
1060
1061
1062 [[image:1675234155374-163.png]]
1063
1064
1065 The battery related documents as below:
1066
1067 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
1068 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
1069 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
1070
1071 [[image:image-20230201145019-19.png]]
1072
1073
1074 === 4.3.1 ​Battery Note ===
1075
1076
1077 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1078
1079
1080 === 4.3.2 Replace the battery ===
1081
1082
1083 You can change the battery in the SDI-12-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1084
1085 The default battery pack of SDI-12-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1086
1087
1088 = 5. Remote Configure device =
1089
1090 == 5.1 Connect via BLE ==
1091
1092
1093 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
1094
1095
1096 == 5.2 AT Command Set ==
1097
1098
1099
1100 = 6. OTA firmware update =
1101
1102
1103 Please see this link for how to do OTA firmware update.
1104
1105 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1106
1107
1108 = 7. FAQ =
1109
1110 == 7.1 How to use AT Command to access device? ==
1111
1112
1113 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1114
1115
1116 == 7.2 How to update firmware via UART port? ==
1117
1118
1119 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1120
1121
1122 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1123
1124
1125 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
1126 When downloading the images, choose the required image file for download. ​
1127
1128
1129 = 8. ​Order Info =
1130
1131
1132 (% style="color:blue" %)**Part Number: SDI-12-LB-XXX**
1133
1134 XXX: The default frequency band
1135
1136 (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1137 (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1138 (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1139 (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1140 (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1141 (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1142 (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1143 (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1144
1145
1146
1147
1148
1149
1150
1151 = 9. Packing Info =
1152
1153
1154 (% style="color:#037691" %)**Package Includes**:
1155
1156 * SDI-12-LB SDI-12 to LoRaWAN Converter x 1
1157
1158 (% style="color:#037691" %)**Dimension and weight**:
1159
1160 * Device Size: cm
1161 * Device Weight: g
1162 * Package Size / pcs : cm
1163 * Weight / pcs : g
1164
1165
1166
1167 = 10. ​Support =
1168
1169
1170 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1171
1172 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0