Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230131183542-1.jpeg||height="694" width="694"]]
3
4 **Table of Contents:**
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 = 1. Introduction =
20
21 == 1.1 ​What is SDI-12 to LoRaWAN Converter ==
22
23
24 The Dragino **SDI-12-LB** is a **SDI-12 to LoRaWAN Converter **designed for Smart Agriculture solution.
25
26 SDI-12 (Serial Digital Interface at 1200 baud) is an asynchronous [[serial communications>>url:https://en.wikipedia.org/wiki/Serial_communication]] protocol for intelligent sensors that monitor environment data. SDI-12 protocol is widely used in Agriculture sensor and Weather Station sensors.
27
28 **SDI-12-LB** has SDI-12 interface and support 12v output to power external SDI-12 sensor. It can get the environment data from SDI-12 sensor and sends out the data via LoRaWAN wireless protocol.
29
30 The LoRa wireless technology used in **SDI-12-LB** allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31
32 **SDI-12-LB** is powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use up to 5 years.
33
34 Each **SDI-12-LB** is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
35
36
37 [[image:image-20230201084414-1.png||height="464" width="1108"]]
38
39
40
41
42
43
44 == ​1.2 Features ==
45
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra-low power consumption
49 * Controllable 5v and 12v output to power external sensor
50 * SDI-12 Protocol to connect to SDI-12 Sensor
51 * Monitor Battery Level
52 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
53 * Support Bluetooth v5.1 and LoRaWAN remote configure.
54 * Support wireless OTA update firmware
55 * Uplink on periodically
56 * Downlink to change configure
57 * 8500mAh Battery for long term use
58
59 == 1.3 Specification ==
60
61
62 **Micro Controller:**
63
64 * MCU: 48Mhz ARM
65 * Flash: 256KB
66 * RAM: 64KB
67
68 **Common DC Characteristics:**
69
70 * Supply Voltage: 2.5v ~~ 3.6v
71 * Operating Temperature: -40 ~~ 85°C
72
73 **LoRa Spec:**
74
75 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
76 * Max +22 dBm constant RF output vs.
77 * RX sensitivity: down to -139 dBm.
78 * Excellent blocking immunity
79
80 **Current Input Measuring :**
81
82 * Range: 0 ~~ 20mA
83 * Accuracy: 0.02mA
84 * Resolution: 0.001mA
85
86 **Voltage Input Measuring:**
87
88 * Range: 0 ~~ 30v
89 * Accuracy: 0.02v
90 * Resolution: 0.001v
91
92 **Battery:**
93
94 * Li/SOCI2 un-chargeable battery
95 * Capacity: 8500mAh
96 * Self-Discharge: <1% / Year @ 25°C
97 * Max continuously current: 130mA
98 * Max boost current: 2A, 1 second
99
100 **Power Consumption**
101
102 * Sleep Mode: 5uA @ 3.3v
103 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
104
105 == 1.4 Connect to SDI-12 Sensor ==
106
107
108
109 [[image:1675212538524-889.png]]
110
111
112 == 1.5 Sleep mode and working mode ==
113
114
115 **Deep Sleep Mode: **Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
116
117 **Working Mode: **In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
118
119
120 == 1.6 Button & LEDs ==
121
122
123 [[image:1675212633011-651.png]]
124
125
126
127 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
128 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
129 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
130 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
131 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
132 )))
133 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
134 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
135 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
136 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
137 )))
138 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
139
140 == 1.7 Pin Mapping ==
141
142
143 [[image:1675213198663-754.png]]
144
145
146 == 1.8 BLE connection ==
147
148
149 SDI-12-LB support BLE remote configure.
150
151 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
152
153 * Press button to send an uplink
154 * Press button to active device.
155 * Device Power on or reset.
156
157 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
158
159
160 == 1.9 Mechanical ==
161
162
163
164
165
166 [[image:image-20230201090139-2.png]]
167
168 [[image:image-20230201090139-3.png]]
169
170 [[image:image-20230201090139-4.png]]
171
172
173 = 2. Configure SDI-12 to connect to LoRaWAN network =
174
175 == 2.1 How it works ==
176
177
178 The SDI-12-LB is configured as **LoRaWAN OTAA Class A** mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the SDI-12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
179
180
181 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) ==
182
183
184 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
185
186
187 [[image:image-20230201090528-5.png||height="465" width="1111"]]
188
189
190 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
191
192
193 **Step 1**: Create a device in TTN with the OTAA keys from SDI-12-LB.
194
195 Each SDI-12-LB is shipped with a sticker with the default device EUI as below:
196
197
198 [[image:image-20230131134744-2.jpeg]]
199
200
201
202
203
204 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
205
206
207 **Register the device**
208
209 [[image:1675213652444-622.png]]
210
211
212 **Add APP EUI and DEV EUI**
213
214
215 [[image:1675213661769-223.png]]
216
217
218 **Add APP EUI in the application**
219
220
221 [[image:1675213675852-577.png]]
222
223
224 **Add APP KEY**
225
226 [[image:1675213686734-883.png]]
227
228
229 **Step 2**: Activate on SDI-12-LB
230
231
232 Press the button for 5 seconds to activate the SDI-12-LB.
233
234
235 **Green led** will fast blink 5 times, device will enter **OTA mode** for 3 seconds. And then start to JOIN LoRaWAN network. **Green led** will solidly turn on for 5 seconds after joined in network.
236
237
238 [[image:1675213704414-644.png]]
239
240
241 == ​2.3 SDI-12 Related Commands ==
242
243
244 User need to configure SDI-12-LB to communicate with SDI-12 sensors otherwise the uplink payload will only include a few bytes.
245
246
247 === 2.3.1 Basic SDI-12 debug command ===
248
249
250 User can run some basic SDI-12 command to debug the connection to the SDI-12 sensor. These commands can be sent via AT Command or LoRaWAN downlink command.
251
252 If SDI-12 sensor return value after get these commands, //SDI-12-LB// will uplink the return on FPORT=100, otherwise, if there is no response from SDI-12 sensor. //SDI-12-LB// will uplink NULL (0x 4E 55 4C 4C) to server.
253
254 The following is the display information on the serial port and the server.
255
256
257
258 [[image:image-20230201091027-6.png]]
259
260
261 [[image:image-20230201091027-7.png||height="261" width="1179"]]
262
263
264 ==== **al!  ~-~- Get SDI-12 sensor Identification** ====
265
266
267 * AT Command: AT+ADDRI=aa
268 * LoRaWAN Downlink(prefix 0xAA00): AA 00 aa
269
270 **Parameter:  **aa: ASCII value of SDI-12 sensor address in downlink or HEX value in AT Command)
271
272 **Example :   **AT+ADDRI=0 ( Equal to downlink: 0x AA 00 30)
273
274
275 The following is the display information on the serial port and the server.
276
277
278 [[image:image-20230201091257-8.png]]
279
280
281 [[image:image-20230201091257-9.png||height="225" width="1242"]]
282
283
284 ==== **aM!,aMC!, aM1!- aM9!, aMC1!- aMC9!** ====
285
286
287 **aM! **: Start Non-Concurrent Measurement
288
289 **aMC! **: Start Non-Concurrent Measurement – Request CRC
290
291 **aM1!- aM9! **: Additional Measurements
292
293 **aMC1!- aMC9!** : Additional Measurements – Request CRC
294
295
296 * AT Command : AT+ADDRM=0,1,0,1
297 * LoRaWAN Downlink(prefix 0xAA01): 0xAA 01 30 01 00 01
298
299 Downlink:AA 01 aa bb cc dd
300
301 **aa**: SDI-12 sensor address.
302
303 **bb**: 0: no CRC, 1: request CRC
304
305 **cc**: 1-9: Additional Measurement, 0: no additional measurement
306
307 **dd**: delay (in second) to send **aD0!** to get return.
308
309
310 The following is the display information on the serial port and the server.
311
312
313 [[image:image-20230201091630-10.png]]
314
315
316 [[image:image-20230201091630-11.png||height="247" width="1165"]]
317
318
319
320 ==== **aC!, aCC!,  aC1!- aC9!,  aCC1!- aCC9! ** ====
321
322
323 **aC!** : Start Concurrent Measurement
324
325 **aCC!** : Start Concurrent Measurement – Request CRC
326
327 **aC1!- aC9!** : Start Additional Concurrent Measurements
328
329 **aCC1!- aCC9!** : Start Additional Concurrent Measurements – Request CRC
330
331
332 * AT Command : AT+ADDRC=0,1,0,1 
333
334 * LoRaWAN Downlink(0xAA02): 0xAA 02 30 01 00 01
335
336 Downlink: AA 02 aa bb cc dd
337
338 **aa**: SDI-12 sensor address.
339
340 **bb**: 0: no CRC, 1: request CRC
341
342 **cc**: 1-9: Additional Measurement, 0: no additional measurement
343
344 **dd**: delay (in second) to send **aD0!** to get return.
345
346
347 The following is the display information on the serial port and the server.
348
349
350 [[image:image-20230201091954-12.png]]
351
352
353 [[image:image-20230201091954-13.png||height="203" width="1117"]]
354
355
356 (% style="display:none" %) (%%)
357
358 ==== **aR0!- aR9!,  aRC0!- aRC9!** ====
359
360
361 Start Continuous Measurement
362
363 Start Continuous Measurement – Request CRC
364
365
366 * AT Command : AT+ADDRR=0,1,0,1 
367 * LoRaWAN Downlink (0xAA 03): 0xAA 03 30 01 00 01
368
369 Downlink: AA 03 aa bb cc dd
370
371 **aa**: SDI-12 sensor address.
372
373 **bb**: 0: no CRC, 1: request CRC
374
375 **cc**: 1-9: Additional Measurement, 0: no additional measurement
376
377 **dd**: delay (in second) to send **aD0!** to get return.
378
379
380 The following is the display information on the serial port and the server.
381
382
383
384 [[image:image-20230201092208-14.png]]
385
386
387 [[image:image-20230201092208-15.png||height="214" width="1140"]]
388
389
390 === 2.3.2 Advance SDI-12 Debug command ===
391
392
393 This command can be used to debug all SDI-12 command.
394
395
396 LoRaWAN Downlink: A8 aa xx xx xx xx bb cc
397
398 **aa **: total SDI-12 command length
399
400 **xx **: SDI-12 command
401
402 **bb **: Delay to wait for return
403
404 **cc **: 0: don't uplink return to LoRaWAN, 1: Uplink return to LoRaWAN on FPORT=100
405
406
407 **Example: **AT+CFGDEV =0RC0!,1
408
409 **0RC0! **: SDI-12 Command,
410
411 **1 **: Delay 1 second.  ( 0: 810 mini-second)
412
413 Equal Downlink: 0xA8 05 30 52 43 30 21 01 01
414
415
416 The following is the display information on the serial port and the server.
417
418
419 [[image:image-20230201092355-16.png]]
420
421
422 [[image:image-20230201092355-17.png||height="426" width="1135"]]
423
424 ​​​​​​​
425
426 === 2.3.3 Convert ASCII to String ===
427
428
429 This command is used to convert between ASCII and String format.
430
431 AT+CONVFORM ( Max length: 80 bytes)
432
433
434 **Example:**
435
436 1) AT+CONVFORM=0, string Convert String from String to ASCII
437
438 [[image:1675214845056-885.png]]
439
440
441 2) AT+CONVFORM=1, ASCII Convert ASCII to String.
442
443 [[image:1675214856590-846.png]]
444
445 ​​​​​​​
446
447 === 2.3.4 Define periodically SDI-12 commands and uplink. ===
448
449
450 AT+COMMANDx & AT+DATACUTx
451
452 User can define max 15 SDI-12 Commands (AT+COMMAND1 ~~ AT+COMMANDF). On each uplink period (TDC time, default 20 minutes), SDI-12-LB will send these SDI-12 commands and wait for return from SDI-12 sensors. SDI-12-LB will then combine these returns and uplink via LoRaWAN.
453
454
455 * ** AT Command:**
456
457 **AT+COMMANDx=var1,var2,var3,var4.**
458
459 **var1**: SDI-12 command , for example: 0RC0!
460
461 **var2**: Wait timeout for return. (unit: second)
462
463 **var3**: Whether to send //addrD0!// to get return after var2 timeout. 0: Don't Send //addrD0! //; 1: Send //addrD0!//.
464
465 **var4**: validation check for return. If return invalid, SDI-12-LB will resend this command. Max 2 retries.
466
467 **0 ** No validation check;
468
469 **1**  Check if return chars are printable char(0x20 ~~ 0x7E);
470
471 **2**  Check if there is return from SDI-12 sensor
472
473 **3**  Check if return pass CRC check ( SDI-12 command var1 must include CRC request);
474
475
476 Each AT+COMMANDx is followed by a **AT+DATACUT** command. AT+DATACUT command is used to take the useful string from the SDI-12 sensor so the final payload will have the minimum length to uplink.
477
478
479 **AT+DATACUTx** : This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.
480
481 (% border="1" style="background-color:#f7faff; width:436px" %)
482 |(% style="width:433px" %)(((
483 **AT+DATACUTx=a,b,c**
484
485 **a**:  length for the return of AT+COMMAND
486
487 **b**: 1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.
488
489 **c**:  define the position for valid value. 
490 )))
491
492 For example, if return from AT+COMMAND1 is “013METER   TER12 112T12-00024895” , Below AT+DATACUT1 will get different result to combine payload:
493
494
495 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
496 |(% style="width:170px" %)**AT+DATACUT1 value**|(% style="width:338px" %)**Final Result to combine Payload**
497 |(% style="width:170px" %)34,1,1+2+3|(% style="width:338px" %)0D 00 01 30 31 33
498 |(% style="width:170px" %)34,2,1~~8+12~~16|(% style="width:338px" %)0D 00 01 30 31 33 4D 45 54 45 52 54 45 52 31 32
499 |(% style="width:170px" %)34,2,1~~34|(% style="width:338px" %)0D 00 01 30 31 33 4D 45 54 45 52 20 20 20 54 45 52 31 32 20 31 31 32 54 31 32 2D 30 30 30 32 34 38 39 35 0D 0A
500
501 * ** Downlink Payload:**
502
503 **0xAF**  downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
504
505
506 **Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
507
508
509 Format: ** AF MM NN LL XX XX XX XX YY**
510
511 Where:
512
513 * **MM **: the AT+COMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
514 * **NN **:  1: set the AT+DATACUT value ; 2: set the AT+DATACUT value.
515 * **LL **:  The length of AT+COMMAND or AT+DATACUT command
516 * **XX XX XX XX **: AT+COMMAND or AT+DATACUT command
517 * **YY **:  If YY=0, RS485-LN will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command. 
518
519 **Example:**
520
521 [[image:image-20230201094129-18.png]]
522
523
524 **Clear SDI12 Command**
525
526 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
527
528
529 * ** AT Command:**
530
531 **~ AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
532
533
534 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
535
536
537 * ** Downlink Payload:**
538
539 **~ 0x09 aa bb**  same as AT+CMDEAR=aa,bb
540
541
542
543 **command combination**
544
545 Below shows a screen shot how the results combines together to a uplink payload.
546
547 [[image:1675215745275-920.png]]
548
549
550 If user don't want to use DATACUT for some command, he simply want to uplink all returns. AT+ALLDATAMOD can be set to 1.
551
552 **AT+ALLDATAMOD** will simply get all return and don't do CRC check as result for SDI-12 command. AT+DATACUTx command has higher priority, if AT+DATACUTx has been set, AT+ALLDATAMOD will be ignore for this SDI-12 command.
553
554
555 **For example: ** as below photo, AT+ALLDATAMOD=1, but AT+DATACUT1 has been set, AT+DATACUT1 will be still effect the result.
556
557
558 [[image:1675215782925-448.png]]
559
560
561 If AT+ALLDATAMOD=1, **FX,X** will be added in the payload, FX specify which command is used and X specify the length of return. for example in above screen, F1 05 means the return is from AT+COMMAND1 and the return is 5 bytes.
562
563
564
565 **Compose Uplink**
566
567
568 **AT+DATAUP=0**
569
570 Compose the uplink payload with value returns in sequence and send with A SIGNLE UPLINK.
571
572 Final Payload is Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
573
574 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
575
576
577 [[image:1675215828102-844.png]]
578
579
580 **AT+DATAUP=1**
581
582 Compose the uplink payload with value returns in sequence and send with Multiply UPLINKs.
583
584 Final Payload is
585
586 __**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**__
587
588 1. Battery Info (2 bytes): Battery voltage
589 1. PAYVER (1 byte): Defined by AT+PAYVER
590 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
591 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
592 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
593
594 [[image:1675215848113-696.png]]
595
596
597 **Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
598
599 * For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
600 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
601 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
602 * For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
603
604 **~ When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
605
606 **~ When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value.**
607
608
609 == ​​​​​​​2.4 Uplink Payload ==
610
611
612 Uplink payloads have two types:
613
614 * Distance Value: Use FPORT=2
615 * Other control commands: Use other FPORT fields.
616
617 The application server should parse the correct value based on FPORT settings.
618
619
620 === 2.4.1 Device Payload, FPORT~=5 ===
621
622
623 Include device configure status. Once SDI-12-LB Joined the network, it will uplink this message to the server.
624
625 Users can also use the downlink command(0x26 01) to ask SDI-12-LB to resend this uplink.
626
627 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
628 |(% colspan="6" style="width:434px" %)**Device Status (FPORT=5)**
629 |(% style="width:102px" %)**Size (bytes)**|(% style="width:67px" %)**1**|(% style="width:80px" %)**2**|(% style="width:89px" %)**1**|(% style="width:52px" %)**1**|(% style="width:44px" %)**2**
630 |(% style="width:102px" %)**Value**|(% style="width:67px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:89px" %)Frequency Band|(% style="width:52px" %)Sub-band|(% style="width:44px" %)BAT
631
632 Example parse in TTNv3
633
634 [[image:1675215946738-635.png]]
635
636
637 **Sensor Model**: For SDI-12-LB, this value is 0x17
638
639 **Firmware Version**: 0x0100, Means: v1.0.0 version
640
641 **Frequency Band**:
642
643 *0x01: EU868
644
645 *0x02: US915
646
647 *0x03: IN865
648
649 *0x04: AU915
650
651 *0x05: KZ865
652
653 *0x06: RU864
654
655 *0x07: AS923
656
657 *0x08: AS923-1
658
659 *0x09: AS923-2
660
661 *0x0a: AS923-3
662
663 *0x0b: CN470
664
665 *0x0c: EU433
666
667 *0x0d: KR920
668
669 *0x0e: MA869
670
671
672 **Sub-Band**:
673
674 AU915 and US915:value 0x00 ~~ 0x08
675
676 CN470: value 0x0B ~~ 0x0C
677
678 Other Bands: Always 0x00
679
680
681 **Battery Info**:
682
683 Check the battery voltage.
684
685 Ex1: 0x0B45 = 2885mV
686
687 Ex2: 0x0B49 = 2889mV
688
689
690 === 2.4.2 Uplink Payload, FPORT~=2 ===
691
692
693 There are different cases for uplink. See below
694
695 * SDI-12 Debug Command return: FPORT=100
696
697 * Periodically Uplink: FPORT=2
698
699 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
700 |(% style="width:93px" %)(((
701 **Size(bytes)**
702 )))|(% style="width:83px" %)**2**|(% style="width:70px" %)**1**|(% style="width:234px" %)**Length depends on the return from the commands**
703 |(% style="width:93px" %)**Value**|(% style="width:83px" %)(((
704 Battery(mV)
705 &
706 Interrupt_Flag
707 )))|(% style="width:70px" %)[[PAYLOAD_VER>>path:#Probe_Model]]|(% style="width:234px" %)(((
708 If the valid payload is too long and exceed the maximum support.
709 Payload length in server,server will show payload not provided in the LoRaWAN server.
710 )))
711
712 [[image:1675216282284-923.png]]
713
714
715 === 2.4.3 Battery Info ===
716
717
718 Check the battery voltage for SDI-12-LB.
719
720 Ex1: 0x0B45 = 2885mV
721
722 Ex2: 0x0B49 = 2889mV
723
724
725 === 2.4.4 Interrupt Pin ===
726
727
728 This data field shows if this packet is generated by **Interrupt Pin** or not. [[Click here>>path:#Int_mod]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>path:#pins]].
729
730 **Example:**
731
732 Ex1: 0x0B45:0x0B&0x80= 0x00    Normal uplink packet.
733
734 Ex2: 0x8B49:0x8B&0x80= 0x80    Interrupt Uplink Packet.
735
736
737 === 2.4.5 Payload version ===
738
739
740
741 === 2.4.6 ​Decode payload in The Things Network ===
742
743
744 While using TTN network, you can add the payload format to decode the payload.
745
746 [[image:1675216779406-595.png]]
747
748
749 There is no fix payload decoder in LoRaWAN server because the SDI-12 sensors returns are different. User need to write the decoder themselves for their case.
750
751 SDI-12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
752
753
754 == 2.5 Uplink Interval ==
755
756
757 The SDI-12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
758
759 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval]]
760
761
762
763
764 == 2.6 Frequency Plans ==
765
766
767 The SDI-12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
768
769 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
770
771
772
773 == 2.7 Firmware Change Log ==
774
775
776 **Firmware download link:**
777
778 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
779
780
781 = 3. Configure SDI-12-LB via AT Command or LoRaWAN Downlink =
782
783
784 Use can configure SDI-12-LB via AT Command or LoRaWAN Downlink.
785
786 * AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
787 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
788
789
790 There are two kinds of commands to configure SDI-12-LB, they are:
791
792 * **General Commands**.
793
794 These commands are to configure:
795
796 * General system settings like: uplink interval.
797 * LoRaWAN protocol & radio related command.
798
799 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
800
801 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
802
803
804 * **Commands special design for SDI-12-LB**
805
806 These commands only valid for SDI-12-LB, as below:
807
808
809 == ​​​​​​​3.1 Set Transmit Interval Time ==
810
811
812 Feature: Change LoRaWAN End Node Transmit Interval.
813
814 (% style="color:blue" %)**AT Command: AT+TDC**
815
816 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
817 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
818 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
819 30000
820 OK
821 the interval is 30000ms = 30s
822 )))
823 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
824 OK
825 Set transmit interval to 60000ms = 60 seconds
826 )))
827
828 (% style="color:blue" %)**Downlink Command: 0x01**
829
830
831 Format: Command Code (0x01) followed by 3 bytes time value.
832
833 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
834
835 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
836 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
837
838 == 3.2 Set Interrupt Mode ==
839
840 Feature, Set Interrupt mode for GPIO_EXIT.
841
842 (% style="color:blue" %)**AT Command: AT+INTMOD**
843
844 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
845 |=**Command Example**|=**Function**|=**Response**
846 |AT+INTMOD=?|Show current interrupt mode|(((
847 0
848 OK
849 the mode is 0 = No interruption
850 )))
851 |AT+INTMOD=2|(((
852 Set Transmit Interval
853 ~1. (Disable Interrupt),
854 2. (Trigger by rising and falling edge)
855 3. (Trigger by falling edge)
856 4. (Trigger by rising edge)
857 )))|OK
858
859 (% style="color:blue" %)**Downlink Command: 0x06**
860
861 Format: Command Code (0x06) followed by 3 bytes.
862
863 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
864
865 * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
866 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
867
868
869 == 3.3 Set the output time ==
870
871
872 Feature, Control the output 3V3 , 5V or 12V.
873
874 (% style="color:blue" %)**AT Command: AT+3V3T**
875
876 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
877 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
878 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
879 0
880 OK
881 )))
882 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
883 OK
884 default setting
885 )))
886 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
887 OK
888 )))
889 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
890 OK
891 )))
892
893 (% style="color:blue" %)**AT Command: AT+5VT**
894
895 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
896 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
897 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
898 0
899 OK
900 )))
901 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
902 OK
903 default setting
904 )))
905 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
906 OK
907 )))
908 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
909 OK
910 )))
911
912 (% style="color:blue" %)**AT Command: AT+12VT**
913
914 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
915 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
916 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
917 0
918 OK
919 )))
920 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
921 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
922 OK
923 )))
924
925 (% style="color:blue" %)**Downlink Command: 0x07**
926
927 Format: Command Code (0x07) followed by 3 bytes.
928
929 The first byte is which power, the second and third bytes are the time to turn on.
930
931 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
932 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
933 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
934 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
935 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
936 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
937
938
939 == 3.4 Set the all data mode ==
940
941 Feature, Set the all data mode.
942
943 **AT Command: AT+ALLDATAMOD**
944
945 |**Command Example**|**Function**|**Response**
946 |AT+ALLDATAMOD=?|Show current all data mode|(((
947 0
948
949
950 OK
951 )))
952 |AT+ALLDATAMOD=1|Set all data mode is 1.|OK
953
954 **Downlink Command: 0xAB**
955
956 Format: Command Code (0xAB) followed by 1 bytes.
957
958 * Example 1: Downlink Payload: AB 00 ~/~/ AT+ALLDATAMOD=0
959 * Example 2: Downlink Payload: AB 01 ~/~/ AT+ALLDATAMOD=1
960
961
962 == 3.5 Set the splicing payload for uplink ==
963
964 Feature, splicing payload for uplink.
965
966 **AT Command: AT+DATAUP**
967
968 |**Command Example**|**Function**|**Response**
969 |AT+DATAUP =?|Show current splicing payload for uplink mode|(((
970 0
971 OK
972 )))
973 |AT+DATAUP =0|(((
974 Set splicing payload for uplink mode is 0.
975 )))|(((
976 OK
977 )))
978 |AT+DATAUP =1|Set splicing payload for uplink mode is 1 , and the each splice uplink is sent sequentially.|OK
979 |AT+DATAUP =1,20000|(((
980 Set splicing payload for uplink mode is 1, and the uplink interval of each splice to 20000 milliseconds.
981 )))|OK
982
983 **Downlink Command: 0xAD**
984
985 Format: Command Code (0xAD) followed by 1 bytes or 5 bytes.
986
987 * Example 1: Downlink Payload: AD 00 ~/~/ AT+DATAUP=0
988 * Example 2: Downlink Payload: AD 01 ~/~/ AT+DATAUP =1
989 * Example 3: Downlink Payload: AD 01 00 00 14~/~/ AT+DATAUP =1,20000
990
991 This means that the interval is set to 0x000014=20S
992
993
994 == 3.6 Set the payload version ==
995
996 Feature, Set the payload version.
997
998 **AT Command: AT+PAYVER**
999
1000 |**Command Example**|**Function**|**Response**
1001 |AT+PAYVER=?|Show current payload version|(((
1002 1
1003 OK
1004 )))
1005 |AT+PAYVER=5|Set payload version is 5.|OK
1006
1007 **Downlink Command: 0xAE**
1008
1009 Format: Command Code (0xAE) followed by 1 bytes.
1010
1011 * Example 1: Downlink Payload: AE 01 ~/~/ AT+PAYVER=1
1012 * Example 2: Downlink Payload: AE 05 ~/~/ AT+PAYVER=5
1013
1014 = 4. Battery & how to replace =
1015
1016 == 4.1 Battery Type ==
1017
1018
1019 PS-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1020
1021
1022 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1023
1024 [[image:1675146710956-626.png]]
1025
1026
1027 Minimum Working Voltage for the PS-LB:
1028
1029 PS-LB:  2.45v ~~ 3.6v
1030
1031
1032 == 4.2 Replace Battery ==
1033
1034
1035 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1036
1037 And make sure the positive and negative pins match.
1038
1039
1040 == 4.3 Power Consumption Analyze ==
1041
1042
1043 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1044
1045 Instruction to use as below:
1046
1047 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
1048
1049 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
1050
1051 * Product Model
1052 * Uplink Interval
1053 * Working Mode
1054
1055 And the Life expectation in difference case will be shown on the right.
1056
1057 [[image:1675146895108-304.png]]
1058
1059
1060 The battery related documents as below:
1061
1062 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
1063 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
1064 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
1065
1066 [[image:image-20230131145708-3.png]]
1067
1068
1069 === 4.3.1 ​Battery Note ===
1070
1071
1072 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1073
1074
1075 === 4.3.2 Replace the battery ===
1076
1077
1078 You can change the battery in the PS-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1079
1080 The default battery pack of PS-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1081
1082
1083
1084 = 5. Remote Configure device =
1085
1086 == 5.1 Connect via BLE ==
1087
1088
1089 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
1090
1091
1092 == 5.2 AT Command Set ==
1093
1094
1095
1096
1097 = 6. OTA firmware update =
1098
1099
1100 Please see this link for how to do OTA firmware update.
1101
1102 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1103
1104
1105
1106 = 7. ​Order Info =
1107
1108
1109 Part Number: SDI-12-LB-XXX
1110 XXX: The default frequency band
1111
1112 AS923: LoRaWAN AS923 band
1113 AU915: LoRaWAN AU915 band
1114 EU433: LoRaWAN EU433 band
1115 EU868: LoRaWAN EU868 band
1116 KR920: LoRaWAN KR920 band
1117 US915: LoRaWAN US915 band
1118 IN865: LoRaWAN IN865 band
1119 CN470: LoRaWAN CN470 band
1120
1121
1122
1123
1124
1125
1126
1127 = 8. Packing Info =
1128
1129
1130 **Package Includes**:
1131
1132 * SDI-12-LB SDI-12 to LoRaWAN Converter x 1
1133
1134 **Dimension and weight**:
1135
1136 * Device Size: cm
1137 * Device Weight: g
1138 * Package Size / pcs : cm
1139 * Weight / pcs : g
1140
1141
1142
1143 = 9. ​Support =
1144
1145
1146 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1147
1148 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1149
1150
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0