Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230131183542-1.jpeg||height="694" width="694"]]
3
4 **Table of Contents:**
5
6 {{toc/}}
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 = 1. Introduction =
22
23 == 1.1 ​What is SDI-12 to LoRaWAN Converter ==
24
25
26 The Dragino (% style="color:blue" %)**SDI-12-LB**(%%) is a (% style="color:blue" %)**SDI-12 to LoRaWAN Converter **(%%)designed for Smart Agriculture solution.
27
28 SDI-12 (Serial Digital Interface at 1200 baud) is an asynchronous [[serial communications>>url:https://en.wikipedia.org/wiki/Serial_communication]] protocol for intelligent sensors that monitor environment data. SDI-12 protocol is widely used in Agriculture sensor and Weather Station sensors.
29
30 SDI-12-LB has SDI-12 interface and support 12v output to power external SDI-12 sensor. It can get the environment data from SDI-12 sensor and sends out the data via LoRaWAN wireless protocol.
31
32 The LoRa wireless technology used in SDI-12-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33
34 SDI-12-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
35
36 Each SDI-12-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37
38
39 [[image:image-20230201084414-1.png||height="464" width="1108"]]
40
41
42
43
44 == ​1.2 Features ==
45
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra-low power consumption
49 * Controllable 5v and 12v output to power external sensor
50 * SDI-12 Protocol to connect to SDI-12 Sensor
51 * Monitor Battery Level
52 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
53 * Support Bluetooth v5.1 and LoRaWAN remote configure.
54 * Support wireless OTA update firmware
55 * Uplink on periodically
56 * Downlink to change configure
57 * 8500mAh Battery for long term use
58
59 == 1.3 Specification ==
60
61
62 (% style="color:#037691" %)**Micro Controller:**
63
64 * MCU: 48Mhz ARM
65 * Flash: 256KB
66 * RAM: 64KB
67
68 (% style="color:#037691" %)**Common DC Characteristics:**
69
70 * Supply Voltage: 2.5v ~~ 3.6v
71 * Operating Temperature: -40 ~~ 85°C
72
73 (% style="color:#037691" %)**LoRa Spec:**
74
75 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
76 * Max +22 dBm constant RF output vs.
77 * RX sensitivity: down to -139 dBm.
78 * Excellent blocking immunity
79
80 (% style="color:#037691" %)**Current Input Measuring :**
81
82 * Range: 0 ~~ 20mA
83 * Accuracy: 0.02mA
84 * Resolution: 0.001mA
85
86 (% style="color:#037691" %)**Voltage Input Measuring:**
87
88 * Range: 0 ~~ 30v
89 * Accuracy: 0.02v
90 * Resolution: 0.001v
91
92 (% style="color:#037691" %)**Battery:**
93
94 * Li/SOCI2 un-chargeable battery
95 * Capacity: 8500mAh
96 * Self-Discharge: <1% / Year @ 25°C
97 * Max continuously current: 130mA
98 * Max boost current: 2A, 1 second
99
100 (% style="color:#037691" %)**Power Consumption**
101
102 * Sleep Mode: 5uA @ 3.3v
103 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
104
105 == 1.4 Connect to SDI-12 Sensor ==
106
107
108
109 [[image:1675212538524-889.png]]
110
111
112 == 1.5 Sleep mode and working mode ==
113
114
115 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
116
117 (% style="color:blue" %)**Working Mode: **(%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
118
119
120 == 1.6 Button & LEDs ==
121
122
123 [[image:1675212633011-651.png]]
124
125
126
127 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
128 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
129 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
130 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
131 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
132 )))
133 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
134 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
135 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
136 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
137 )))
138 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
139
140 == 1.7 Pin Mapping ==
141
142
143 [[image:1675213198663-754.png]]
144
145
146 == 1.8 BLE connection ==
147
148
149 SDI-12-LB support BLE remote configure.
150
151 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
152
153 * Press button to send an uplink
154 * Press button to active device.
155 * Device Power on or reset.
156
157 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
158
159
160 == 1.9 Mechanical ==
161
162
163 [[image:image-20230201090139-2.png]]
164
165 [[image:image-20230201090139-3.png]]
166
167 [[image:image-20230201090139-4.png]]
168
169
170 = 2. Configure SDI-12 to connect to LoRaWAN network =
171
172 == 2.1 How it works ==
173
174
175 The SDI-12-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the SDI-12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
176
177
178 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) ==
179
180
181 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
182
183
184 [[image:image-20230201090528-5.png||height="465" width="1111"]]
185
186
187 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
188
189
190 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from SDI-12-LB.
191
192 Each SDI-12-LB is shipped with a sticker with the default device EUI as below:
193
194
195 [[image:image-20230131134744-2.jpeg]]
196
197
198
199
200
201 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
202
203
204 (% style="color:blue" %)**Register the device**
205
206 [[image:1675213652444-622.png]]
207
208
209 (% style="color:blue" %)**Add APP EUI and DEV EUI**
210
211
212 [[image:1675213661769-223.png]]
213
214
215 (% style="color:blue" %)**Add APP EUI in the application**
216
217
218 [[image:1675213675852-577.png]]
219
220
221 (% style="color:blue" %)**Add APP KEY**
222
223 [[image:1675213686734-883.png]]
224
225
226 (% style="color:blue" %)**Step 2**(%%): Activate on SDI-12-LB
227
228
229 Press the button for 5 seconds to activate the SDI-12-LB.
230
231
232 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode** (%%)for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
233
234
235 [[image:1675213704414-644.png]]
236
237
238 == ​2.3 SDI-12 Related Commands ==
239
240
241 User need to configure SDI-12-LB to communicate with SDI-12 sensors otherwise the uplink payload will only include a few bytes.
242
243
244 === 2.3.1 Basic SDI-12 debug command ===
245
246
247 User can run some basic SDI-12 command to debug the connection to the SDI-12 sensor. These commands can be sent via AT Command or LoRaWAN downlink command.
248
249 If SDI-12 sensor return value after get these commands, //SDI-12-LB// will uplink the return on FPORT=100, otherwise, if there is no response from SDI-12 sensor. //SDI-12-LB// will uplink NULL (0x 4E 55 4C 4C) to server.
250
251 The following is the display information on the serial port and the server.
252
253
254
255 [[image:image-20230201091027-6.png]]
256
257
258 [[image:image-20230201091027-7.png||height="261" width="1179"]]
259
260
261 ==== (% style="color:blue" %)**al!  ~-~- Get SDI-12 sensor Identification**(%%) ====
262
263
264 * AT Command: AT+ADDRI=aa
265 * LoRaWAN Downlink(prefix 0xAA00): AA 00 aa
266
267 (% style="color:#037691" %)**Parameter:  **(%%)aa: ASCII value of SDI-12 sensor address in downlink or HEX value in AT Command)
268
269 (% style="color:blue" %)**Example :   **AT+ADDRI=0 ( Equal to downlink: 0x AA 00 30)
270
271
272 The following is the display information on the serial port and the server.
273
274
275 [[image:image-20230201091257-8.png]]
276
277
278 [[image:image-20230201091257-9.png||height="225" width="1242"]]
279
280
281 ==== (% style="color:blue" %)**aM!,aMC!, aM1!- aM9!, aMC1!- aMC9!**(%%) ====
282
283
284 (% style="color:red" %)**aM! **(%%): Start Non-Concurrent Measurement
285
286 (% style="color:red" %)**aMC! **(%%): Start Non-Concurrent Measurement – Request CRC
287
288 (% style="color:red" %)**aM1!- aM9! **(%%): Additional Measurements
289
290 (% style="color:red" %)**aMC1!- aMC9!**(%%) : Additional Measurements – Request CRC
291
292
293 * AT Command : AT+ADDRM=0,1,0,1
294
295 * LoRaWAN Downlink(prefix 0xAA01): 0xAA 01 30 01 00 01
296
297 Downlink:AA 01 aa bb cc dd
298
299 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
300
301 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
302
303 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
304
305 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)**aD0!**(%%) to get return.
306
307
308 The following is the display information on the serial port and the server.
309
310
311 [[image:image-20230201091630-10.png]]
312
313
314 [[image:image-20230201091630-11.png||height="247" width="1165"]]
315
316
317
318 ==== (% style="color:blue" %)**aC!, aCC!,  aC1!- aC9!,  aCC1!- aCC9! **(%%) ====
319
320
321 (% style="color:red" %)**aC!**(%%) : Start Concurrent Measurement
322
323 (% style="color:red" %)**aCC!** (%%): Start Concurrent Measurement – Request CRC
324
325 (% style="color:red" %)**aC1!- aC9!**(%%) : Start Additional Concurrent Measurements
326
327 (% style="color:red" %)**aCC1!- aCC9!**(%%) : Start Additional Concurrent Measurements – Request CRC
328
329
330 * AT Command : AT+ADDRC=0,1,0,1 
331
332 * LoRaWAN Downlink(0xAA02): 0xAA 02 30 01 00 01
333
334 Downlink: AA 02 aa bb cc dd
335
336 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
337
338 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
339
340 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
341
342 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)**aD0!**(%%) to get return.
343
344
345 The following is the display information on the serial port and the server.
346
347
348 [[image:image-20230201091954-12.png]]
349
350
351 [[image:image-20230201091954-13.png||height="203" width="1117"]]
352
353
354
355
356 ==== (% style="color:blue" %)**aR0!- aR9!,  aRC0!- aRC9!**(%%) ====
357
358
359 Start Continuous Measurement
360
361 Start Continuous Measurement – Request CRC
362
363
364 * AT Command : AT+ADDRR=0,1,0,1 
365 * LoRaWAN Downlink (0xAA 03): 0xAA 03 30 01 00 01
366
367 Downlink: AA 03 aa bb cc dd
368
369 (% style="color:#037691" %)**aa**(%%): SDI-12 sensor address.
370
371 (% style="color:#037691" %)**bb**(%%): 0: no CRC, 1: request CRC
372
373 (% style="color:#037691" %)**cc**(%%): 1-9: Additional Measurement, 0: no additional measurement
374
375 (% style="color:#037691" %)**dd**(%%): delay (in second) to send (% style="color:#037691" %)**aD0!**(%%) to get return.
376
377
378 The following is the display information on the serial port and the server.
379
380
381
382 [[image:image-20230201092208-14.png]]
383
384
385 [[image:image-20230201092208-15.png||height="214" width="1140"]]
386
387
388 === 2.3.2 Advance SDI-12 Debug command ===
389
390
391 This command can be used to debug all SDI-12 command.
392
393
394 LoRaWAN Downlink: A8 aa xx xx xx xx bb cc
395
396 (% style="color:#037691" %)**aa **(%%): total SDI-12 command length
397
398 (% style="color:#037691" %)**xx **(%%): SDI-12 command
399
400 (% style="color:#037691" %)**bb **(%%): Delay to wait for return
401
402 (% style="color:#037691" %)**cc **(%%): 0: don't uplink return to LoRaWAN, 1: Uplink return to LoRaWAN on FPORT=100
403
404
405 (% style="color:blue" %)**Example: **(%%) AT+CFGDEV =0RC0!,1
406
407 (% style="color:#037691" %)**0RC0! **(%%): SDI-12 Command,
408
409 (% style="color:#037691" %)**1 **(%%): Delay 1 second.  ( 0: 810 mini-second)
410
411 Equal Downlink: 0xA8 05 30 52 43 30 21 01 01
412
413
414 The following is the display information on the serial port and the server.
415
416
417 [[image:image-20230201092355-16.png]]
418
419
420 [[image:image-20230201092355-17.png||height="426" width="1135"]]
421
422
423 === 2.3.3 Convert ASCII to String ===
424
425
426 This command is used to convert between ASCII and String format.
427
428 AT+CONVFORM ( Max length: 80 bytes)
429
430
431 (% style="color:blue" %)**Example:**
432
433 1) AT+CONVFORM=0, string Convert String from String to ASCII
434
435 [[image:1675214845056-885.png]]
436
437
438 2) AT+CONVFORM=1, ASCII Convert ASCII to String.
439
440 [[image:1675214856590-846.png]]
441
442
443 === 2.3.4 Define periodically SDI-12 commands and uplink. ===
444
445
446 AT+COMMANDx & AT+DATACUTx
447
448 User can define max 15 SDI-12 Commands (AT+COMMAND1 ~~ AT+COMMANDF). On each uplink period (TDC time, default 20 minutes), SDI-12-LB will send these SDI-12 commands and wait for return from SDI-12 sensors. SDI-12-LB will then combine these returns and uplink via LoRaWAN.
449
450
451 * (% style="color:blue" %)**AT Command:**
452
453 (% style="color:#037691" %)**AT+COMMANDx=var1,var2,var3,var4.**
454
455 (% style="color:red" %)**var1**(%%): SDI-12 command , for example: 0RC0!
456
457 (% style="color:red" %)**var2**(%%): Wait timeout for return. (unit: second)
458
459 (% style="color:red" %)**var3**(%%): Whether to send //addrD0!// to get return after var2 timeout. 0: Don't Send //addrD0! //; 1: Send //addrD0!//.
460
461 (% style="color:red" %)**var4**(%%): validation check for return. If return invalid, SDI-12-LB will resend this command. Max 2 retries.
462
463 (% style="color:red" %)**0 **(%%) No validation check;
464
465 (% style="color:red" %)**1** (%%) Check if return chars are printable char(0x20 ~~ 0x7E);
466
467 (% style="color:#red" %)**2**(%%)  Check if there is return from SDI-12 sensor
468
469 (% style="color:red" %)**3** (%%) Check if return pass CRC check ( SDI-12 command var1 must include CRC request);
470
471
472 Each AT+COMMANDx is followed by a (% style="color:blue" %)**AT+DATACUT**(%%) command. AT+DATACUT command is used to take the useful string from the SDI-12 sensor so the final payload will have the minimum length to uplink.
473
474
475 (% style="color:blue" %)**AT+DATACUTx**(%%) : This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.
476
477 (% border="1" style="background-color:#f7faff; width:436px" %)
478 |(% style="width:433px" %)(((
479 **AT+DATACUTx=a,b,c**
480
481 **a**:  length for the return of AT+COMMAND
482
483 **b**: 1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.
484
485 **c**:  define the position for valid value. 
486 )))
487
488 For example, if return from AT+COMMAND1 is “013METER   TER12 112T12-00024895” , Below AT+DATACUT1 will get different result to combine payload:
489
490
491 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
492 |(% style="width:170px" %)**AT+DATACUT1 value**|(% style="width:338px" %)**Final Result to combine Payload**
493 |(% style="width:170px" %)34,1,1+2+3|(% style="width:338px" %)0D 00 01 30 31 33
494 |(% style="width:170px" %)34,2,1~~8+12~~16|(% style="width:338px" %)0D 00 01 30 31 33 4D 45 54 45 52 54 45 52 31 32
495 |(% style="width:170px" %)34,2,1~~34|(% style="width:338px" %)0D 00 01 30 31 33 4D 45 54 45 52 20 20 20 54 45 52 31 32 20 31 31 32 54 31 32 2D 30 30 30 32 34 38 39 35 0D 0A
496
497 * (% style="color:blue" %)** Downlink Payload:**
498
499 (% style="color:blue" %)**0xAF**(%%)  downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
500
501
502 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
503
504
505 Format: ** (% style="color:#037691" %)AF MM NN LL XX XX XX XX YY(%%)**
506
507 Where:
508
509 * (% style="color:#037691" %)**MM **(%%): the AT+COMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
510 * (% style="color:#037691" %)**NN **(%%):  1: set the AT+DATACUT value ; 2: set the AT+DATACUT value.
511 * (% style="color:#037691" %)**LL **(%%):  The length of AT+COMMAND or AT+DATACUT command
512 * (% style="color:#037691" %)**XX XX XX XX **(%%): AT+COMMAND or AT+DATACUT command
513 * (% style="color:#037691" %)**YY **(%%):  If YY=0, RS485-LN will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command. 
514
515 (% style="color:blue" %)**Example:**
516
517 [[image:image-20230201094129-18.png]]
518
519
520 (% style="color:blue" %)**Clear SDI12 Command**
521
522 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
523
524
525 * (% style="color:#037691" %)**AT Command:**
526
527 (% style="color:#4f81bd" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase
528
529
530 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
531
532
533 * (% style="color:#037691" %)** Downlink Payload:**
534
535 (% style="color:#4f81bd" %)**0x09 aa bb**(%%)  same as AT+CMDEAR=aa,bb
536
537
538
539 (% style="color:blue" %)**command combination**
540
541 Below shows a screen shot how the results combines together to a uplink payload.
542
543 [[image:1675215745275-920.png]]
544
545
546 If user don't want to use DATACUT for some command, he simply want to uplink all returns. AT+ALLDATAMOD can be set to 1.
547
548 (% style="color:blue" %)**AT+ALLDATAMOD**(%%) will simply get all return and don't do CRC check as result for SDI-12 command. AT+DATACUTx command has higher priority, if AT+DATACUTx has been set, AT+ALLDATAMOD will be ignore for this SDI-12 command.
549
550
551 (% style="color:#4f81bd" %)**For example: ** as below photo, AT+ALLDATAMOD=1, but AT+DATACUT1 has been set, AT+DATACUT1 will be still effect the result.
552
553
554 [[image:1675215782925-448.png]]
555
556
557 If AT+ALLDATAMOD=1, (% style="color:#4f81bd" %)**FX,X**(%%) will be added in the payload, FX specify which command is used and X specify the length of return. for example in above screen, F1 05 means the return is from AT+COMMAND1 and the return is 5 bytes.
558
559
560
561 (% style="color:blue" %)**Compose Uplink**
562
563
564 (% style="color:#4f81bd" %)**AT+DATAUP=0**
565
566 Compose the uplink payload with value returns in sequence and send with A SIGNLE UPLINK.
567
568 Final Payload is Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
569
570 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
571
572
573 [[image:1675215828102-844.png]]
574
575
576 (% style="color:#4f81bd" %)**AT+DATAUP=1**
577
578 Compose the uplink payload with value returns in sequence and send with Multiply UPLINKs.
579
580 Final Payload is
581
582 __**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**__
583
584 1. Battery Info (2 bytes): Battery voltage
585 1. PAYVER (1 byte): Defined by AT+PAYVER
586 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
587 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
588 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
589
590 [[image:1675215848113-696.png]]
591
592
593 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
594
595 * For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
596 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
597 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
598 * For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
599
600 (% style="color:red" %)**When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
601
602 (% style="color:red" %)**When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value.**
603
604
605 == ​​​​​​​2.4 Uplink Payload ==
606
607
608 Uplink payloads have two types:
609
610 * Distance Value: Use FPORT=2
611 * Other control commands: Use other FPORT fields.
612
613 The application server should parse the correct value based on FPORT settings.
614
615
616 === 2.4.1 Device Payload, FPORT~=5 ===
617
618
619 Include device configure status. Once SDI-12-LB Joined the network, it will uplink this message to the server.
620
621 Users can also use the downlink command(0x26 01) to ask SDI-12-LB to resend this uplink.
622
623 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
624 |(% colspan="6" style="width:434px" %)**Device Status (FPORT=5)**
625 |(% style="width:102px" %)**Size (bytes)**|(% style="width:67px" %)**1**|(% style="width:80px" %)**2**|(% style="width:89px" %)**1**|(% style="width:52px" %)**1**|(% style="width:44px" %)**2**
626 |(% style="width:102px" %)**Value**|(% style="width:67px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:89px" %)Frequency Band|(% style="width:52px" %)Sub-band|(% style="width:44px" %)BAT
627
628 Example parse in TTNv3
629
630 [[image:1675215946738-635.png]]
631
632
633 (% style="color:#037691" %)**Sensor Model**(%%): For SDI-12-LB, this value is 0x17
634
635 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
636
637 (% style="color:#037691" %)**Frequency Band**:
638
639 *0x01: EU868
640
641 *0x02: US915
642
643 *0x03: IN865
644
645 *0x04: AU915
646
647 *0x05: KZ865
648
649 *0x06: RU864
650
651 *0x07: AS923
652
653 *0x08: AS923-1
654
655 *0x09: AS923-2
656
657 *0x0a: AS923-3
658
659 *0x0b: CN470
660
661 *0x0c: EU433
662
663 *0x0d: KR920
664
665 *0x0e: MA869
666
667
668 (% style="color:#037691" %)**Sub-Band**:
669
670 AU915 and US915:value 0x00 ~~ 0x08
671
672 CN470: value 0x0B ~~ 0x0C
673
674 Other Bands: Always 0x00
675
676
677 (% style="color:#037691" %)**Battery Info**:
678
679 Check the battery voltage.
680
681 Ex1: 0x0B45 = 2885mV
682
683 Ex2: 0x0B49 = 2889mV
684
685
686 === 2.4.2 Uplink Payload, FPORT~=2 ===
687
688
689 There are different cases for uplink. See below
690
691 * SDI-12 Debug Command return: FPORT=100
692
693 * Periodically Uplink: FPORT=2
694
695 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
696 |(% style="width:93px" %)(((
697 **Size(bytes)**
698 )))|(% style="width:83px" %)**2**|(% style="width:70px" %)**1**|(% style="width:234px" %)**Length depends on the return from the commands**
699 |(% style="width:93px" %)**Value**|(% style="width:83px" %)(((
700 Battery(mV)
701 &
702 Interrupt_Flag
703 )))|(% style="width:70px" %)[[PAYLOAD_VER>>||anchor="H3.6Setthepayloadversion"]]|(% style="width:234px" %)(((
704 If the valid payload is too long and exceed the maximum support.
705 Payload length in server,server will show payload not provided in the LoRaWAN server.
706 )))
707
708 [[image:1675216282284-923.png]]
709
710
711 === 2.4.3 Battery Info ===
712
713
714 Check the battery voltage for SDI-12-LB.
715
716 Ex1: 0x0B45 = 2885mV
717
718 Ex2: 0x0B49 = 2889mV
719
720
721 === 2.4.4 Interrupt Pin ===
722
723
724 This data field shows if this packet is generated by (% style="color:#037691" %)**Interrupt Pin**(%%) or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.7PinMapping"]].
725
726 **Example:**
727
728 Ex1: 0x0B45:0x0B&0x80= 0x00    Normal uplink packet.
729
730 Ex2: 0x8B49:0x8B&0x80= 0x80    Interrupt Uplink Packet.
731
732
733 === 2.4.5 Payload version ===
734
735
736
737 === 2.4.6 ​Decode payload in The Things Network ===
738
739
740 While using TTN network, you can add the payload format to decode the payload.
741
742 [[image:1675216779406-595.png]]
743
744
745 There is no fix payload decoder in LoRaWAN server because the SDI-12 sensors returns are different. User need to write the decoder themselves for their case.
746
747 SDI-12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
748
749
750 == 2.5 Uplink Interval ==
751
752
753 The SDI-12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
754
755 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval]]]]
756
757
758
759
760 == 2.6 Frequency Plans ==
761
762
763 The SDI-12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
764
765 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
766
767
768 == 2.7 Firmware Change Log ==
769
770
771 **Firmware download link:**
772
773 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
774
775
776 = 3. Configure SDI-12-LB via AT Command or LoRaWAN Downlink =
777
778
779 Use can configure SDI-12-LB via AT Command or LoRaWAN Downlink.
780
781 * AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
782 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
783
784 There are two kinds of commands to configure SDI-12-LB, they are:
785
786 * **General Commands**.
787
788 These commands are to configure:
789
790 * General system settings like: uplink interval.
791 * LoRaWAN protocol & radio related command.
792
793 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
794
795 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
796
797
798 * **Commands special design for SDI-12-LB**
799
800 These commands only valid for SDI-12-LB, as below:
801
802
803 == ​​​​​​​3.1 Set Transmit Interval Time ==
804
805
806 Feature: Change LoRaWAN End Node Transmit Interval.
807
808 (% style="color:blue" %)**AT Command: AT+TDC**
809
810 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
811 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
812 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
813 30000
814 OK
815 the interval is 30000ms = 30s
816 )))
817 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
818 OK
819 Set transmit interval to 60000ms = 60 seconds
820 )))
821
822 (% style="color:blue" %)**Downlink Command: 0x01**
823
824
825 Format: Command Code (0x01) followed by 3 bytes time value.
826
827 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
828
829 * Example 1: Downlink Payload: 0100001E  ~/~/ Set Transmit Interval (TDC) = 30 seconds
830 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
831
832 == 3.2 Set Interrupt Mode ==
833
834
835 Feature, Set Interrupt mode for GPIO_EXIT.
836
837 (% style="color:blue" %)**AT Command: AT+INTMOD**
838
839 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
840 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 187px;" %)**Function**|=(% style="width: 165px;" %)**Response**
841 |(% style="width:156px" %)AT+INTMOD=?|(% style="width:187px" %)Show current interrupt mode|(% style="width:165px" %)(((
842 0
843 OK
844 the mode is 0 = No interruption
845 )))
846 |(% style="width:156px" %)AT+INTMOD=2|(% style="width:187px" %)(((
847 Set Transmit Interval
848 ~1. (Disable Interrupt),
849 2. (Trigger by rising and falling edge)
850 3. (Trigger by falling edge)
851 4. (Trigger by rising edge)
852 )))|(% style="width:165px" %)OK
853
854 (% style="color:blue" %)**Downlink Command: 0x06**
855
856 Format: Command Code (0x06) followed by 3 bytes.
857
858 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
859
860 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
861 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
862
863 == 3.3 Set the output time ==
864
865
866 Feature, Control the output 3V3 , 5V or 12V.
867
868 (% style="color:blue" %)**AT Command: AT+3V3T**
869
870 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
871 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
872 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
873 0
874 OK
875 )))
876 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
877 OK
878 default setting
879 )))
880 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
881 OK
882 )))
883 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
884 OK
885 )))
886
887 (% style="color:blue" %)**AT Command: AT+5VT**
888
889 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
890 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
891 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
892 0
893 OK
894 )))
895 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
896 OK
897 default setting
898 )))
899 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
900 OK
901 )))
902 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
903 OK
904 )))
905
906 (% style="color:blue" %)**AT Command: AT+12VT**
907
908 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
909 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
910 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
911 0
912 OK
913 )))
914 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
915 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
916 OK
917 )))
918
919 (% style="color:blue" %)**Downlink Command: 0x07**
920
921 Format: Command Code (0x07) followed by 3 bytes.
922
923 The first byte is which power, the second and third bytes are the time to turn on.
924
925 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
926 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
927 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
928 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
929 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
930 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
931
932 == 3.4 Set the all data mode ==
933
934
935 Feature, Set the all data mode.
936
937 (% style="color:blue" %)**AT Command: AT+ALLDATAMOD**
938
939 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
940 |=**Command Example**|=**Function**|=**Response**
941 |AT+ALLDATAMOD=?|Show current all data mode|(((
942 0
943 OK
944 )))
945 |AT+ALLDATAMOD=1|Set all data mode is 1.|OK
946
947 (% style="color:blue" %)**Downlink Command: 0xAB**
948
949 Format: Command Code (0xAB) followed by 1 bytes.
950
951 * Example 1: Downlink Payload: AB 00  ~/~/  AT+ALLDATAMOD=0
952 * Example 2: Downlink Payload: AB 01  ~/~/  AT+ALLDATAMOD=1
953
954 == 3.5 Set the splicing payload for uplink ==
955
956
957 Feature, splicing payload for uplink.
958
959 (% style="color:blue" %)**AT Command: AT+DATAUP**
960
961 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
962 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 266px;" %)**Function**|=**Response**
963 |(% style="width:154px" %)AT+DATAUP =?|(% style="width:266px" %)Show current splicing payload for uplink mode|(((
964 0
965 OK
966 )))
967 |(% style="width:154px" %)AT+DATAUP =0|(% style="width:266px" %)(((
968 Set splicing payload for uplink mode is 0.
969 )))|(((
970 OK
971 )))
972 |(% style="width:154px" %)AT+DATAUP =1|(% style="width:266px" %)Set splicing payload for uplink mode is 1 , and the each splice uplink is sent sequentially.|OK
973 |(% style="width:154px" %)AT+DATAUP =1,20000|(% style="width:266px" %)(((
974 Set splicing payload for uplink mode is 1, and the uplink interval of each splice to 20000 milliseconds.
975 )))|OK
976
977 (% style="color:blue" %)**Downlink Command: 0xAD**
978
979 Format: Command Code (0xAD) followed by 1 bytes or 5 bytes.
980
981 * Example 1: Downlink Payload: AD 00  ~/~/  AT+DATAUP=0
982 * Example 2: Downlink Payload: AD 01  ~/~/  AT+DATAUP =1
983 * Example 3: Downlink Payload: AD 01 00 00 14  ~/~/  AT+DATAUP =1,20000
984
985 This means that the interval is set to 0x000014=20S
986
987
988 == 3.6 Set the payload version ==
989
990 Feature, Set the payload version.
991
992 (% style="color:blue" %)**AT Command: AT+PAYVER**
993
994 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
995 |=(% style="width: 158px;" %)**Command Example**|=(% style="width: 192px;" %)**Function**|=**Response**
996 |(% style="width:158px" %)AT+PAYVER=?|(% style="width:192px" %)Show current payload version|(((
997 1
998 OK
999 )))
1000 |(% style="width:158px" %)AT+PAYVER=5|(% style="width:192px" %)Set payload version is 5.|OK
1001
1002 (% style="color:blue" %)**Downlink Command: 0xAE**
1003
1004 Format: Command Code (0xAE) followed by 1 bytes.
1005
1006 * Example 1: Downlink Payload: AE 01  ~/~/  AT+PAYVER=1
1007 * Example 2: Downlink Payload: AE 05  ~/~/  AT+PAYVER=5
1008
1009 = 4. Battery & how to replace =
1010
1011 == 4.1 Battery Type ==
1012
1013
1014 SDI-12-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1015
1016
1017 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1018
1019 [[image:1675234124233-857.png]]
1020
1021
1022 Minimum Working Voltage for the SDI-12-LB:
1023
1024 SDI-12-LB:  2.45v ~~ 3.6v
1025
1026
1027 == 4.2 Replace Battery ==
1028
1029
1030 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1031
1032 And make sure the positive and negative pins match.
1033
1034
1035 == 4.3 Power Consumption Analyze ==
1036
1037
1038 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1039
1040 Instruction to use as below:
1041
1042 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
1043
1044 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
1045
1046 * Product Model
1047 * Uplink Interval
1048 * Working Mode
1049
1050 And the Life expectation in difference case will be shown on the right.
1051
1052
1053 [[image:1675234155374-163.png]]
1054
1055
1056 The battery related documents as below:
1057
1058 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
1059 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
1060 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
1061
1062
1063 [[image:image-20230201145019-19.png]]
1064
1065
1066 === 4.3.1 ​Battery Note ===
1067
1068
1069 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1070
1071
1072 === 4.3.2 Replace the battery ===
1073
1074
1075 You can change the battery in the SDI-12-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1076
1077 The default battery pack of SDI-12-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1078
1079
1080 = 5. Remote Configure device =
1081
1082 == 5.1 Connect via BLE ==
1083
1084
1085 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
1086
1087
1088 == 5.2 AT Command Set ==
1089
1090
1091
1092 = 6. OTA firmware update =
1093
1094
1095 Please see this link for how to do OTA firmware update.
1096
1097 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1098
1099
1100 = 7. FAQ =
1101
1102 == 7.1 How to use AT Command to access device? ==
1103
1104
1105 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1106
1107
1108 == 7.2 How to update firmware via UART port? ==
1109
1110
1111 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
1112
1113
1114 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1115
1116
1117 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
1118 When downloading the images, choose the required image file for download. ​
1119
1120
1121 = 8. ​Order Info =
1122
1123
1124 Part Number: SDI-12-LB-XXX
1125 XXX: The default frequency band
1126
1127 AS923: LoRaWAN AS923 band
1128 AU915: LoRaWAN AU915 band
1129 EU433: LoRaWAN EU433 band
1130 EU868: LoRaWAN EU868 band
1131 KR920: LoRaWAN KR920 band
1132 US915: LoRaWAN US915 band
1133 IN865: LoRaWAN IN865 band
1134 CN470: LoRaWAN CN470 band
1135
1136
1137
1138
1139
1140
1141
1142 = 9. Packing Info =
1143
1144
1145 **Package Includes**:
1146
1147 * SDI-12-LB SDI-12 to LoRaWAN Converter x 1
1148
1149 **Dimension and weight**:
1150
1151 * Device Size: cm
1152 * Device Weight: g
1153 * Package Size / pcs : cm
1154 * Weight / pcs : g
1155
1156 = 10. ​Support =
1157
1158
1159 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1160
1161 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1162
1163
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0