Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20230131183542-1.jpeg||height="694" width="694"]]
3
4 **Table of Contents:**
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 = 1. Introduction =
20
21 == 1.1 ​What is SDI-12 to LoRaWAN Converter ==
22
23
24 The Dragino **SDI-12-LB** is a **SDI-12 to LoRaWAN Converter **designed for Smart Agriculture solution.
25
26 SDI-12 (Serial Digital Interface at 1200 baud) is an asynchronous [[serial communications>>url:https://en.wikipedia.org/wiki/Serial_communication]] protocol for intelligent sensors that monitor environment data. SDI-12 protocol is widely used in Agriculture sensor and Weather Station sensors.
27
28 **SDI-12-LB** has SDI-12 interface and support 12v output to power external SDI-12 sensor. It can get the environment data from SDI-12 sensor and sends out the data via LoRaWAN wireless protocol.
29
30 The LoRa wireless technology used in **SDI-12-LB** allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31
32 **SDI-12-LB** is powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use up to 5 years.
33
34 Each **SDI-12-LB** is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
35
36
37 [[image:image-20230201084414-1.png||height="464" width="1108"]]
38
39
40
41
42
43
44 == ​1.2 Features ==
45
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra-low power consumption
49 * Controllable 5v and 12v output to power external sensor
50 * SDI-12 Protocol to connect to SDI-12 Sensor
51 * Monitor Battery Level
52 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
53 * Support Bluetooth v5.1 and LoRaWAN remote configure.
54 * Support wireless OTA update firmware
55 * Uplink on periodically
56 * Downlink to change configure
57 * 8500mAh Battery for long term use
58
59 == 1.3 Specification ==
60
61
62 **Micro Controller:**
63
64 * MCU: 48Mhz ARM
65 * Flash: 256KB
66 * RAM: 64KB
67
68 **Common DC Characteristics:**
69
70 * Supply Voltage: 2.5v ~~ 3.6v
71 * Operating Temperature: -40 ~~ 85°C
72
73 **LoRa Spec:**
74
75 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
76 * Max +22 dBm constant RF output vs.
77 * RX sensitivity: down to -139 dBm.
78 * Excellent blocking immunity
79
80 **Current Input Measuring :**
81
82 * Range: 0 ~~ 20mA
83 * Accuracy: 0.02mA
84 * Resolution: 0.001mA
85
86 **Voltage Input Measuring:**
87
88 * Range: 0 ~~ 30v
89 * Accuracy: 0.02v
90 * Resolution: 0.001v
91
92 **Battery:**
93
94 * Li/SOCI2 un-chargeable battery
95 * Capacity: 8500mAh
96 * Self-Discharge: <1% / Year @ 25°C
97 * Max continuously current: 130mA
98 * Max boost current: 2A, 1 second
99
100 **Power Consumption**
101
102 * Sleep Mode: 5uA @ 3.3v
103 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
104
105 == 1.4 Connect to SDI-12 Sensor ==
106
107
108
109 [[image:1675212538524-889.png]]
110
111
112 == 1.5 Sleep mode and working mode ==
113
114
115 **Deep Sleep Mode: **Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
116
117 **Working Mode: **In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
118
119
120 == 1.6 Button & LEDs ==
121
122
123 [[image:1675212633011-651.png]]
124
125
126
127 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
128 |=(% style="width: 167px;" %)**Behavior on ACT**|=(% style="width: 117px;" %)**Function**|=(% style="width: 225px;" %)**Action**
129 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
130 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
131 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
132 )))
133 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
134 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
135 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
136 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
137 )))
138 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
139
140 == 1.7 Pin Mapping ==
141
142
143 [[image:1675213198663-754.png]]
144
145
146 == 1.8 BLE connection ==
147
148
149 SDI-12-LB support BLE remote configure.
150
151 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
152
153 * Press button to send an uplink
154 * Press button to active device.
155 * Device Power on or reset.
156
157 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
158
159
160 == 1.9 Mechanical ==
161
162
163
164
165
166 [[image:image-20230201090139-2.png]]
167
168 [[image:image-20230201090139-3.png]]
169
170 [[image:image-20230201090139-4.png]]
171
172
173 = 2. Configure SDI-12 to connect to LoRaWAN network =
174
175 == 2.1 How it works ==
176
177
178 The SDI-12-LB is configured as **LoRaWAN OTAA Class A** mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the SDI-12-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
179
180
181 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) ==
182
183
184 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
185
186
187 [[image:image-20230201090528-5.png||height="465" width="1111"]]
188
189
190 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
191
192
193 **Step 1**: Create a device in TTN with the OTAA keys from SDI-12-LB.
194
195 Each SDI-12-LB is shipped with a sticker with the default device EUI as below:
196
197
198 [[image:image-20230131134744-2.jpeg]]
199
200
201
202
203
204 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
205
206
207 **Register the device**
208
209 [[image:1675213652444-622.png]]
210
211
212 **Add APP EUI and DEV EUI**
213
214
215 [[image:1675213661769-223.png]]
216
217
218 **Add APP EUI in the application**
219
220
221 [[image:1675213675852-577.png]]
222
223
224 **Add APP KEY**
225
226 [[image:1675213686734-883.png]]
227
228
229 **Step 2**: Activate on SDI-12-LB
230
231
232 Press the button for 5 seconds to activate the SDI-12-LB.
233
234
235 **Green led** will fast blink 5 times, device will enter **OTA mode** for 3 seconds. And then start to JOIN LoRaWAN network. **Green led** will solidly turn on for 5 seconds after joined in network.
236
237
238 [[image:1675213704414-644.png]]
239
240
241 == ​2.3 SDI-12 Related Commands ==
242
243
244 User need to configure SDI-12-LB to communicate with SDI-12 sensors otherwise the uplink payload will only include a few bytes.
245
246
247 === 2.3.1 Basic SDI-12 debug command ===
248
249
250 User can run some basic SDI-12 command to debug the connection to the SDI-12 sensor. These commands can be sent via AT Command or LoRaWAN downlink command.
251
252 If SDI-12 sensor return value after get these commands, //SDI-12-LB// will uplink the return on FPORT=100, otherwise, if there is no response from SDI-12 sensor. //SDI-12-LB// will uplink NULL (0x 4E 55 4C 4C) to server.
253
254 The following is the display information on the serial port and the server.
255
256
257
258 [[image:image-20230201091027-6.png]]
259
260
261 [[image:image-20230201091027-7.png||height="261" width="1179"]]
262
263
264 ==== **al!  ~-~- Get SDI-12 sensor Identification** ====
265
266
267 * AT Command: AT+ADDRI=aa
268 * LoRaWAN Downlink(prefix 0xAA00): AA 00 aa
269
270 **Parameter:  **aa: ASCII value of SDI-12 sensor address in downlink or HEX value in AT Command)
271
272 **Example :   **AT+ADDRI=0 ( Equal to downlink: 0x AA 00 30)
273
274
275 The following is the display information on the serial port and the server.
276
277
278 [[image:image-20230201091257-8.png]]
279
280
281 [[image:image-20230201091257-9.png||height="225" width="1242"]]
282
283
284 ==== **aM!,aMC!, aM1!- aM9!, aMC1!- aMC9!** ====
285
286
287 **aM! **: Start Non-Concurrent Measurement
288
289 **aMC! **: Start Non-Concurrent Measurement – Request CRC
290
291 **aM1!- aM9! **: Additional Measurements
292
293 **aMC1!- aMC9!** : Additional Measurements – Request CRC
294
295
296 * AT Command : AT+ADDRM=0,1,0,1
297 * LoRaWAN Downlink(prefix 0xAA01): 0xAA 01 30 01 00 01
298
299 Downlink:AA 01 aa bb cc dd
300
301 **aa**: SDI-12 sensor address.
302
303 **bb**: 0: no CRC, 1: request CRC
304
305 **cc**: 1-9: Additional Measurement, 0: no additional measurement
306
307 **dd**: delay (in second) to send **aD0!** to get return.
308
309
310 The following is the display information on the serial port and the server.
311
312
313 [[image:image-20230201091630-10.png]]
314
315
316 [[image:image-20230201091630-11.png||height="247" width="1165"]]
317
318
319
320 ==== **aC!, aCC!,  aC1!- aC9!,  aCC1!- aCC9! ** ====
321
322
323 **aC!** : Start Concurrent Measurement
324
325 **aCC!** : Start Concurrent Measurement – Request CRC
326
327 **aC1!- aC9!** : Start Additional Concurrent Measurements
328
329 **aCC1!- aCC9!** : Start Additional Concurrent Measurements – Request CRC
330
331
332 * AT Command : AT+ADDRC=0,1,0,1 
333
334 * LoRaWAN Downlink(0xAA02): 0xAA 02 30 01 00 01
335
336 Downlink: AA 02 aa bb cc dd
337
338 **aa**: SDI-12 sensor address.
339
340 **bb**: 0: no CRC, 1: request CRC
341
342 **cc**: 1-9: Additional Measurement, 0: no additional measurement
343
344 **dd**: delay (in second) to send **aD0!** to get return.
345
346
347 The following is the display information on the serial port and the server.
348
349
350 [[image:image-20230201091954-12.png]]
351
352
353 [[image:image-20230201091954-13.png||height="203" width="1117"]]
354
355
356 (% style="display:none" %) (%%)
357
358 ==== **aR0!- aR9!,  aRC0!- aRC9!** ====
359
360
361 Start Continuous Measurement
362
363 Start Continuous Measurement – Request CRC
364
365
366 * AT Command : AT+ADDRR=0,1,0,1 
367 * LoRaWAN Downlink (0xAA 03): 0xAA 03 30 01 00 01
368
369 Downlink: AA 03 aa bb cc dd
370
371 **aa**: SDI-12 sensor address.
372
373 **bb**: 0: no CRC, 1: request CRC
374
375 **cc**: 1-9: Additional Measurement, 0: no additional measurement
376
377 **dd**: delay (in second) to send **aD0!** to get return.
378
379
380 The following is the display information on the serial port and the server.
381
382
383
384 [[image:image-20230201092208-14.png]]
385
386
387 [[image:image-20230201092208-15.png||height="214" width="1140"]]
388
389
390 === 2.3.2 Advance SDI-12 Debug command ===
391
392
393 This command can be used to debug all SDI-12 command.
394
395
396 LoRaWAN Downlink: A8 aa xx xx xx xx bb cc
397
398 **aa **: total SDI-12 command length
399
400 **xx **: SDI-12 command
401
402 **bb **: Delay to wait for return
403
404 **cc **: 0: don't uplink return to LoRaWAN, 1: Uplink return to LoRaWAN on FPORT=100
405
406
407 **Example: **AT+CFGDEV =0RC0!,1
408
409 **0RC0! **: SDI-12 Command,
410
411 **1 **: Delay 1 second.  ( 0: 810 mini-second)
412
413 Equal Downlink: 0xA8 05 30 52 43 30 21 01 01
414
415
416 The following is the display information on the serial port and the server.
417
418
419 [[image:image-20230201092355-16.png]]
420
421
422 [[image:image-20230201092355-17.png||height="426" width="1135"]]
423
424
425 === 2.3.3 Convert ASCII to String ===
426
427
428 This command is used to convert between ASCII and String format.
429
430 AT+CONVFORM ( Max length: 80 bytes)
431
432
433 **Example:**
434
435 1) AT+CONVFORM=0, string Convert String from String to ASCII
436
437 [[image:1675214845056-885.png]]
438
439
440 2) AT+CONVFORM=1, ASCII Convert ASCII to String.
441
442 [[image:1675214856590-846.png]]
443
444
445 === 2.3.4 Define periodically SDI-12 commands and uplink. ===
446
447
448 AT+COMMANDx & AT+DATACUTx
449
450 User can define max 15 SDI-12 Commands (AT+COMMAND1 ~~ AT+COMMANDF). On each uplink period (TDC time, default 20 minutes), SDI-12-LB will send these SDI-12 commands and wait for return from SDI-12 sensors. SDI-12-LB will then combine these returns and uplink via LoRaWAN.
451
452
453 * ** AT Command:**
454
455 **AT+COMMANDx=var1,var2,var3,var4.**
456
457 **var1**: SDI-12 command , for example: 0RC0!
458
459 **var2**: Wait timeout for return. (unit: second)
460
461 **var3**: Whether to send //addrD0!// to get return after var2 timeout. 0: Don't Send //addrD0! //; 1: Send //addrD0!//.
462
463 **var4**: validation check for return. If return invalid, SDI-12-LB will resend this command. Max 2 retries.
464
465 **0 ** No validation check;
466
467 **1**  Check if return chars are printable char(0x20 ~~ 0x7E);
468
469 **2**  Check if there is return from SDI-12 sensor
470
471 **3**  Check if return pass CRC check ( SDI-12 command var1 must include CRC request);
472
473
474 Each AT+COMMANDx is followed by a **AT+DATACUT** command. AT+DATACUT command is used to take the useful string from the SDI-12 sensor so the final payload will have the minimum length to uplink.
475
476
477 **AT+DATACUTx** : This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.
478
479 (% border="1" style="background-color:#f7faff; width:436px" %)
480 |(% style="width:433px" %)(((
481 **AT+DATACUTx=a,b,c**
482
483 **a**:  length for the return of AT+COMMAND
484
485 **b**: 1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.
486
487 **c**:  define the position for valid value. 
488 )))
489
490 For example, if return from AT+COMMAND1 is “013METER   TER12 112T12-00024895” , Below AT+DATACUT1 will get different result to combine payload:
491
492
493 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
494 |(% style="width:170px" %)**AT+DATACUT1 value**|(% style="width:338px" %)**Final Result to combine Payload**
495 |(% style="width:170px" %)34,1,1+2+3|(% style="width:338px" %)0D 00 01 30 31 33
496 |(% style="width:170px" %)34,2,1~~8+12~~16|(% style="width:338px" %)0D 00 01 30 31 33 4D 45 54 45 52 54 45 52 31 32
497 |(% style="width:170px" %)34,2,1~~34|(% style="width:338px" %)0D 00 01 30 31 33 4D 45 54 45 52 20 20 20 54 45 52 31 32 20 31 31 32 54 31 32 2D 30 30 30 32 34 38 39 35 0D 0A
498
499 * ** Downlink Payload:**
500
501 **0xAF**  downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
502
503
504 **Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
505
506
507 Format: ** AF MM NN LL XX XX XX XX YY**
508
509 Where:
510
511 * **MM **: the AT+COMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
512 * **NN **:  1: set the AT+DATACUT value ; 2: set the AT+DATACUT value.
513 * **LL **:  The length of AT+COMMAND or AT+DATACUT command
514 * **XX XX XX XX **: AT+COMMAND or AT+DATACUT command
515 * **YY **:  If YY=0, RS485-LN will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command. 
516
517 **Example:**
518
519 [[image:image-20230201094129-18.png]]
520
521
522 **Clear SDI12 Command**
523
524 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
525
526
527 * ** AT Command:**
528
529 **~ AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
530
531
532 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
533
534
535 * ** Downlink Payload:**
536
537 **~ 0x09 aa bb**  same as AT+CMDEAR=aa,bb
538
539
540
541 **command combination**
542
543 Below shows a screen shot how the results combines together to a uplink payload.
544
545 [[image:1675215745275-920.png]]
546
547
548 If user don't want to use DATACUT for some command, he simply want to uplink all returns. AT+ALLDATAMOD can be set to 1.
549
550 **AT+ALLDATAMOD** will simply get all return and don't do CRC check as result for SDI-12 command. AT+DATACUTx command has higher priority, if AT+DATACUTx has been set, AT+ALLDATAMOD will be ignore for this SDI-12 command.
551
552
553 **For example: ** as below photo, AT+ALLDATAMOD=1, but AT+DATACUT1 has been set, AT+DATACUT1 will be still effect the result.
554
555
556 [[image:1675215782925-448.png]]
557
558
559 If AT+ALLDATAMOD=1, **FX,X** will be added in the payload, FX specify which command is used and X specify the length of return. for example in above screen, F1 05 means the return is from AT+COMMAND1 and the return is 5 bytes.
560
561
562
563 **Compose Uplink**
564
565
566 **AT+DATAUP=0**
567
568 Compose the uplink payload with value returns in sequence and send with A SIGNLE UPLINK.
569
570 Final Payload is Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
571
572 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
573
574
575 [[image:1675215828102-844.png]]
576
577
578 **AT+DATAUP=1**
579
580 Compose the uplink payload with value returns in sequence and send with Multiply UPLINKs.
581
582 Final Payload is
583
584 __**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**__
585
586 1. Battery Info (2 bytes): Battery voltage
587 1. PAYVER (1 byte): Defined by AT+PAYVER
588 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
589 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
590 1. DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
591
592 [[image:1675215848113-696.png]]
593
594
595 **Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
596
597 * For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
598 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
599 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
600 * For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
601
602 **~ When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
603
604 **~ When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value.**
605
606
607 == ​​​​​​​2.4 Uplink Payload ==
608
609
610 Uplink payloads have two types:
611
612 * Distance Value: Use FPORT=2
613 * Other control commands: Use other FPORT fields.
614
615 The application server should parse the correct value based on FPORT settings.
616
617
618 === 2.4.1 Device Payload, FPORT~=5 ===
619
620
621 Include device configure status. Once SDI-12-LB Joined the network, it will uplink this message to the server.
622
623 Users can also use the downlink command(0x26 01) to ask SDI-12-LB to resend this uplink.
624
625 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
626 |(% colspan="6" style="width:434px" %)**Device Status (FPORT=5)**
627 |(% style="width:102px" %)**Size (bytes)**|(% style="width:67px" %)**1**|(% style="width:80px" %)**2**|(% style="width:89px" %)**1**|(% style="width:52px" %)**1**|(% style="width:44px" %)**2**
628 |(% style="width:102px" %)**Value**|(% style="width:67px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:89px" %)Frequency Band|(% style="width:52px" %)Sub-band|(% style="width:44px" %)BAT
629
630 Example parse in TTNv3
631
632 [[image:1675215946738-635.png]]
633
634
635 **Sensor Model**: For SDI-12-LB, this value is 0x17
636
637 **Firmware Version**: 0x0100, Means: v1.0.0 version
638
639 **Frequency Band**:
640
641 *0x01: EU868
642
643 *0x02: US915
644
645 *0x03: IN865
646
647 *0x04: AU915
648
649 *0x05: KZ865
650
651 *0x06: RU864
652
653 *0x07: AS923
654
655 *0x08: AS923-1
656
657 *0x09: AS923-2
658
659 *0x0a: AS923-3
660
661 *0x0b: CN470
662
663 *0x0c: EU433
664
665 *0x0d: KR920
666
667 *0x0e: MA869
668
669
670 **Sub-Band**:
671
672 AU915 and US915:value 0x00 ~~ 0x08
673
674 CN470: value 0x0B ~~ 0x0C
675
676 Other Bands: Always 0x00
677
678
679 **Battery Info**:
680
681 Check the battery voltage.
682
683 Ex1: 0x0B45 = 2885mV
684
685 Ex2: 0x0B49 = 2889mV
686
687
688 === 2.4.2 Uplink Payload, FPORT~=2 ===
689
690
691 There are different cases for uplink. See below
692
693 * SDI-12 Debug Command return: FPORT=100
694
695 * Periodically Uplink: FPORT=2
696
697 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
698 |(% style="width:93px" %)(((
699 **Size(bytes)**
700 )))|(% style="width:83px" %)**2**|(% style="width:70px" %)**1**|(% style="width:234px" %)**Length depends on the return from the commands**
701 |(% style="width:93px" %)**Value**|(% style="width:83px" %)(((
702 Battery(mV)
703 &
704 Interrupt_Flag
705 )))|(% style="width:70px" %)[[PAYLOAD_VER>>path:#Probe_Model]]|(% style="width:234px" %)(((
706 If the valid payload is too long and exceed the maximum support.
707 Payload length in server,server will show payload not provided in the LoRaWAN server.
708 )))
709
710 [[image:1675216282284-923.png]]
711
712
713 === 2.4.3 Battery Info ===
714
715
716 Check the battery voltage for SDI-12-LB.
717
718 Ex1: 0x0B45 = 2885mV
719
720 Ex2: 0x0B49 = 2889mV
721
722
723 === 2.4.4 Interrupt Pin ===
724
725
726 This data field shows if this packet is generated by **Interrupt Pin** or not. [[Click here>>path:#Int_mod]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>path:#pins]].
727
728 **Example:**
729
730 Ex1: 0x0B45:0x0B&0x80= 0x00    Normal uplink packet.
731
732 Ex2: 0x8B49:0x8B&0x80= 0x80    Interrupt Uplink Packet.
733
734
735 === 2.4.5 Payload version ===
736
737
738
739 === 2.4.6 ​Decode payload in The Things Network ===
740
741
742 While using TTN network, you can add the payload format to decode the payload.
743
744 [[image:1675216779406-595.png]]
745
746
747 There is no fix payload decoder in LoRaWAN server because the SDI-12 sensors returns are different. User need to write the decoder themselves for their case.
748
749 SDI-12-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
750
751
752 == 2.5 Uplink Interval ==
753
754
755 The SDI-12-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
756
757 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval]]
758
759
760
761
762 == 2.6 Frequency Plans ==
763
764
765 The SDI-12-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
766
767 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
768
769
770
771 == 2.7 Firmware Change Log ==
772
773
774 **Firmware download link:**
775
776 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
777
778
779 = 3. Configure SDI-12-LB via AT Command or LoRaWAN Downlink =
780
781
782 Use can configure SDI-12-LB via AT Command or LoRaWAN Downlink.
783
784 * AT Command Connection: See [[FAQ>>path:#AT_COMMAND]].
785 * LoRaWAN Downlink instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
786
787 There are two kinds of commands to configure SDI-12-LB, they are:
788
789 * **General Commands**.
790
791 These commands are to configure:
792
793 * General system settings like: uplink interval.
794 * LoRaWAN protocol & radio related command.
795
796 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
797
798 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
799
800
801 * **Commands special design for SDI-12-LB**
802
803 These commands only valid for SDI-12-LB, as below:
804
805
806 == ​​​​​​​3.1 Set Transmit Interval Time ==
807
808
809 Feature: Change LoRaWAN End Node Transmit Interval.
810
811 (% style="color:blue" %)**AT Command: AT+TDC**
812
813 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
814 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 137px;" %)**Function**|=**Response**
815 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
816 30000
817 OK
818 the interval is 30000ms = 30s
819 )))
820 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
821 OK
822 Set transmit interval to 60000ms = 60 seconds
823 )))
824
825 (% style="color:blue" %)**Downlink Command: 0x01**
826
827
828 Format: Command Code (0x01) followed by 3 bytes time value.
829
830 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
831
832 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
833 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
834
835 == 3.2 Set Interrupt Mode ==
836
837 Feature, Set Interrupt mode for GPIO_EXIT.
838
839 (% style="color:blue" %)**AT Command: AT+INTMOD**
840
841 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:510px" %)
842 |=**Command Example**|=**Function**|=**Response**
843 |AT+INTMOD=?|Show current interrupt mode|(((
844 0
845 OK
846 the mode is 0 = No interruption
847 )))
848 |AT+INTMOD=2|(((
849 Set Transmit Interval
850 ~1. (Disable Interrupt),
851 2. (Trigger by rising and falling edge)
852 3. (Trigger by falling edge)
853 4. (Trigger by rising edge)
854 )))|OK
855
856 (% style="color:blue" %)**Downlink Command: 0x06**
857
858 Format: Command Code (0x06) followed by 3 bytes.
859
860 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
861
862 * Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
863 * Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
864
865 == 3.3 Set the output time ==
866
867
868 Feature, Control the output 3V3 , 5V or 12V.
869
870 (% style="color:blue" %)**AT Command: AT+3V3T**
871
872 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:474px" %)
873 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 201px;" %)**Function**|=(% style="width: 116px;" %)**Response**
874 |(% style="width:154px" %)AT+3V3T=?|(% style="width:201px" %)Show 3V3 open time.|(% style="width:116px" %)(((
875 0
876 OK
877 )))
878 |(% style="width:154px" %)AT+3V3T=0|(% style="width:201px" %)Normally open 3V3 power supply.|(% style="width:116px" %)(((
879 OK
880 default setting
881 )))
882 |(% style="width:154px" %)AT+3V3T=1000|(% style="width:201px" %)Close after a delay of 1000 milliseconds.|(% style="width:116px" %)(((
883 OK
884 )))
885 |(% style="width:154px" %)AT+3V3T=65535|(% style="width:201px" %)Normally closed 3V3 power supply.|(% style="width:116px" %)(((
886 OK
887 )))
888
889 (% style="color:blue" %)**AT Command: AT+5VT**
890
891 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:470px" %)
892 |=(% style="width: 155px;" %)**Command Example**|=(% style="width: 196px;" %)**Function**|=(% style="width: 114px;" %)**Response**
893 |(% style="width:155px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:114px" %)(((
894 0
895 OK
896 )))
897 |(% style="width:155px" %)AT+5VT=0|(% style="width:196px" %)Normally closed 5V power supply.|(% style="width:114px" %)(((
898 OK
899 default setting
900 )))
901 |(% style="width:155px" %)AT+5VT=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:114px" %)(((
902 OK
903 )))
904 |(% style="width:155px" %)AT+5VT=65535|(% style="width:196px" %)Normally open 5V power supply.|(% style="width:114px" %)(((
905 OK
906 )))
907
908 (% style="color:blue" %)**AT Command: AT+12VT**
909
910 (% border="1" cellspacing="4" style="background-color:#f7faff; color:black; width:443px" %)
911 |=(% style="width: 156px;" %)**Command Example**|=(% style="width: 199px;" %)**Function**|=(% style="width: 83px;" %)**Response**
912 |(% style="width:156px" %)AT+12VT=?|(% style="width:199px" %)Show 12V open time.|(% style="width:83px" %)(((
913 0
914 OK
915 )))
916 |(% style="width:156px" %)AT+12VT=0|(% style="width:199px" %)Normally closed 12V power supply.|(% style="width:83px" %)OK
917 |(% style="width:156px" %)AT+12VT=500|(% style="width:199px" %)Close after a delay of 500 milliseconds.|(% style="width:83px" %)(((
918 OK
919 )))
920
921 (% style="color:blue" %)**Downlink Command: 0x07**
922
923 Format: Command Code (0x07) followed by 3 bytes.
924
925 The first byte is which power, the second and third bytes are the time to turn on.
926
927 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
928 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
929 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
930 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
931 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
932 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
933
934 == 3.4 Set the all data mode ==
935
936
937 Feature, Set the all data mode.
938
939 (% style="color:blue" %)**AT Command: AT+ALLDATAMOD**
940
941 (% border="1" cellspacing="4" style="background-color:#f7faff; width:437px" %)
942 |=**Command Example**|=**Function**|=**Response**
943 |AT+ALLDATAMOD=?|Show current all data mode|(((
944 0
945 OK
946 )))
947 |AT+ALLDATAMOD=1|Set all data mode is 1.|OK
948
949 (% style="color:blue" %)**Downlink Command: 0xAB**
950
951 Format: Command Code (0xAB) followed by 1 bytes.
952
953 * Example 1: Downlink Payload: AB 00  ~/~/  AT+ALLDATAMOD=0
954 * Example 2: Downlink Payload: AB 01  ~/~/  AT+ALLDATAMOD=1
955
956 == 3.5 Set the splicing payload for uplink ==
957
958
959 Feature, splicing payload for uplink.
960
961 (% style="color:blue" %)**AT Command: AT+DATAUP**
962
963 (% border="1" cellspacing="4" style="background-color:#f7faff; width:510px" %)
964 |=(% style="width: 154px;" %)**Command Example**|=(% style="width: 266px;" %)**Function**|=**Response**
965 |(% style="width:154px" %)AT+DATAUP =?|(% style="width:266px" %)Show current splicing payload for uplink mode|(((
966 0
967 OK
968 )))
969 |(% style="width:154px" %)AT+DATAUP =0|(% style="width:266px" %)(((
970 Set splicing payload for uplink mode is 0.
971 )))|(((
972 OK
973 )))
974 |(% style="width:154px" %)AT+DATAUP =1|(% style="width:266px" %)Set splicing payload for uplink mode is 1 , and the each splice uplink is sent sequentially.|OK
975 |(% style="width:154px" %)AT+DATAUP =1,20000|(% style="width:266px" %)(((
976 Set splicing payload for uplink mode is 1, and the uplink interval of each splice to 20000 milliseconds.
977 )))|OK
978
979 (% style="color:blue" %)**Downlink Command: 0xAD**
980
981 Format: Command Code (0xAD) followed by 1 bytes or 5 bytes.
982
983 * Example 1: Downlink Payload: AD 00 ~/~/ AT+DATAUP=0
984 * Example 2: Downlink Payload: AD 01 ~/~/ AT+DATAUP =1
985 * Example 3: Downlink Payload: AD 01 00 00 14~/~/ AT+DATAUP =1,20000
986
987 This means that the interval is set to 0x000014=20S
988
989
990 == 3.6 Set the payload version ==
991
992 Feature, Set the payload version.
993
994 (% style="color:blue" %)**AT Command: AT+PAYVER**
995
996 |**Command Example**|**Function**|**Response**
997 |AT+PAYVER=?|Show current payload version|(((
998 1
999 OK
1000 )))
1001 |AT+PAYVER=5|Set payload version is 5.|OK
1002
1003 (% style="color:blue" %)**Downlink Command: 0xAE**
1004
1005 Format: Command Code (0xAE) followed by 1 bytes.
1006
1007 * Example 1: Downlink Payload: AE 01 ~/~/ AT+PAYVER=1
1008 * Example 2: Downlink Payload: AE 05 ~/~/ AT+PAYVER=5
1009
1010 = 4. Battery & how to replace =
1011
1012 == 4.1 Battery Type ==
1013
1014
1015 SDI-12-LB is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>https://www.dropbox.com/sh/w9l2oa3ytpculph/AAAPtt-apH4lYfCj-2Y6lHvQa?dl=0]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1016
1017
1018 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1019
1020 [[image:1675146710956-626.png]]
1021
1022
1023 Minimum Working Voltage for the SDI-12-LB:
1024
1025 SDI-12-LB:  2.45v ~~ 3.6v
1026
1027
1028 == 4.2 Replace Battery ==
1029
1030
1031 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1032
1033 And make sure the positive and negative pins match.
1034
1035
1036 == 4.3 Power Consumption Analyze ==
1037
1038
1039 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1040
1041 Instruction to use as below:
1042
1043 (% style="color:blue" %)**Step 1:**(%%) Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0>>https://www.dropbox.com/sh/zwex6i331j5oeq2/AACIMf9f_v2qsJ39CuMQ5Py_a?dl=0]]
1044
1045 (% style="color:blue" %)**Step 2:**(%%) Open it and choose
1046
1047 * Product Model
1048 * Uplink Interval
1049 * Working Mode
1050
1051 And the Life expectation in difference case will be shown on the right.
1052
1053 [[image:1675146895108-304.png]]
1054
1055
1056 The battery related documents as below:
1057
1058 * [[Battery Dimension>>https://www.dropbox.com/s/ox5g9njwjle7aw3/LSN50-Battery-Dimension.pdf?dl=0]],
1059 * [[Lithium-Thionyl Chloride Battery datasheet, Tech Spec>>https://www.dropbox.com/sh/d4oyfnp8o94180o/AABQewCNSh5GPeQH86UxRgQQa?dl=0]]
1060 * [[Lithium-ion Battery-Capacitor datasheet>>https://www.dropbox.com/s/791gjes2lcbfi1p/SPC_1520_datasheet.jpg?dl=0]], [[Tech Spec>>https://www.dropbox.com/s/4pkepr9qqqvtzf2/SPC1520%20Technical%20Specification20171123.pdf?dl=0]]
1061
1062 [[image:image-20230131145708-3.png]]
1063
1064
1065 === 4.3.1 ​Battery Note ===
1066
1067
1068 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1069
1070
1071 === 4.3.2 Replace the battery ===
1072
1073
1074 You can change the battery in the SDI-12-LB.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won't be voltage drop between battery and main board.
1075
1076 The default battery pack of SDI-12-LB includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1077
1078
1079
1080 = 5. Remote Configure device =
1081
1082 == 5.1 Connect via BLE ==
1083
1084
1085 Please see this instruction for how to configure via BLE: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]
1086
1087
1088 == 5.2 AT Command Set ==
1089
1090
1091
1092 = 6. OTA firmware update =
1093
1094
1095 Please see this link for how to do OTA firmware update.
1096
1097 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1098
1099
1100
1101 = 7. ​Order Info =
1102
1103
1104 Part Number: SDI-12-LB-XXX
1105 XXX: The default frequency band
1106
1107 AS923: LoRaWAN AS923 band
1108 AU915: LoRaWAN AU915 band
1109 EU433: LoRaWAN EU433 band
1110 EU868: LoRaWAN EU868 band
1111 KR920: LoRaWAN KR920 band
1112 US915: LoRaWAN US915 band
1113 IN865: LoRaWAN IN865 band
1114 CN470: LoRaWAN CN470 band
1115
1116
1117
1118
1119
1120
1121
1122 = 8. Packing Info =
1123
1124
1125 **Package Includes**:
1126
1127 * SDI-12-LB SDI-12 to LoRaWAN Converter x 1
1128
1129 **Dimension and weight**:
1130
1131 * Device Size: cm
1132 * Device Weight: g
1133 * Package Size / pcs : cm
1134 * Weight / pcs : g
1135
1136 = 9. ​Support =
1137
1138
1139 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1140
1141 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0