Hide last authors
Xiaoling 58.22 1 (% style="text-align:center" %)
Xiaoling 58.31 2 [[image:1653266934636-343.png||height="385" width="385"]]
Xiaoling 58.22 3
4
5
6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
7
8
9
10
11 **Table of Contents:**
12
Xiaoling 58.31 13 {{toc/}}
Xiaoling 58.22 14
15
16
17
18
19
20
21 = 1.Introduction =
22
23 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
24
25 (((
26 (((
27 (((
28 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
29 )))
30 )))
31
32 (((
33 (((
34 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
35 )))
36 )))
37
38 (((
39 (((
40 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42 )))
43
44 (((
45 (((
46 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
47 )))
48
49 (((
50 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
51 )))
52 )))
53 )))
54
Xiaoling 58.31 55 [[image:1653267211009-519.png||height="419" width="724"]]
Xiaoling 58.22 56
57
58 == 1.2 Specifications ==
59
60
61 **Hardware System:**
62
63 * STM32L072CZT6 MCU
64 * SX1276/78 Wireless Chip 
65 * Power Consumption (exclude RS485 device):
66 ** Idle: 32mA@12v
67 ** 20dB Transmit: 65mA@12v
68
69 **Interface for Model:**
70
71 * RS485
72 * Power Input 7~~ 24V DC. 
73
74 **LoRa Spec:**
75
76 * Frequency Range:
77 ** Band 1 (HF): 862 ~~ 1020 Mhz
78 ** Band 2 (LF): 410 ~~ 528 Mhz
79 * 168 dB maximum link budget.
80 * +20 dBm - 100 mW constant RF output vs.
81 * +14 dBm high efficiency PA.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Low RX current of 10.3 mA, 200 nA register retention.
87 * Fully integrated synthesizer with a resolution of 61 Hz.
88 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 * Built-in bit synchronizer for clock recovery.
90 * Preamble detection.
91 * 127 dB Dynamic Range RSSI.
92 * Automatic RF Sense and CAD with ultra-fast AFC.
93 * Packet engine up to 256 bytes with CRC
94
95 == 1.3 Features ==
96
97 * LoRaWAN Class A & Class C protocol (default Class C)
98 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
99 * AT Commands to change parameters
100 * Remote configure parameters via LoRa Downlink
101 * Firmware upgradable via program port
102 * Support multiply RS485 devices by flexible rules
103 * Support Modbus protocol
104 * Support Interrupt uplink (Since hardware version v1.2)
105
106 == 1.4 Applications ==
107
108 * Smart Buildings & Home Automation
109 * Logistics and Supply Chain Management
110 * Smart Metering
111 * Smart Agriculture
112 * Smart Cities
113 * Smart Factory
114
115 == 1.5 Firmware Change log ==
116
117 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
118
119
120 == 1.6 Hardware Change log ==
121
122 (((
123 (((
124 (((
125 v1.2: Add External Interrupt Pin.
126 )))
127
128 (((
129 v1.0: Release
130 )))
131
132
133 )))
134 )))
135
136 = 2. Power ON Device =
137
138 (((
139 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
140
141 * Power Source VIN to RS485-LN VIN+
142 * Power Source GND to RS485-LN VIN-
143
144 (((
145 Once there is power, the RS485-LN will be on.
146 )))
147
Xiaoling 58.31 148 [[image:1653268091319-405.png]]
Xiaoling 58.22 149
150
151 )))
152
153 = 3. Operation Mode =
154
155 == 3.1 How it works? ==
156
157 (((
158 (((
159 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
160 )))
161
162
163 )))
164
165 == 3.2 Example to join LoRaWAN network ==
166
167 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
168
Xiaoling 58.31 169 [[image:1653268155545-638.png||height="334" width="724"]]
Xiaoling 58.22 170
171
172 (((
173 (((
174 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
175 )))
176
177 (((
178 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
179 )))
180
Xiaoling 58.31 181 [[image:1653268227651-549.png||height="592" width="720"]]
Xiaoling 58.22 182
183 (((
Xiaoling 58.31 184 The LG308 is already set to connect to [[TTN V3 network >>path:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
Xiaoling 58.22 185 )))
186
187 (((
188 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
189 )))
190
191 (((
192 Each RS485-LN is shipped with a sticker with unique device EUI:
193 )))
194 )))
195
Xiaoling 58.31 196 [[image:1652953462722-299.png]]
Xiaoling 58.22 197
198 (((
199 (((
200 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
201 )))
202
203 (((
204 Add APP EUI in the application.
205 )))
206 )))
207
Xiaoling 58.31 208 [[image:image-20220519174512-1.png]]
Xiaoling 58.22 209
Xiaoling 58.31 210 [[image:image-20220519174512-2.png||height="323" width="720"]]
Xiaoling 58.22 211
Xiaoling 58.31 212 [[image:image-20220519174512-3.png||height="556" width="724"]]
Xiaoling 58.22 213
Xiaoling 58.31 214 [[image:image-20220519174512-4.png]]
Xiaoling 58.22 215
216 You can also choose to create the device manually.
217
Xiaoling 58.31 218 [[image:1652953542269-423.png||height="710" width="723"]]
Xiaoling 58.22 219
220 Add APP KEY and DEV EUI
221
Xiaoling 58.31 222 [[image:1652953553383-907.png||height="514" width="724"]]
Xiaoling 58.22 223
224
225 (((
226 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
227 )))
228
Xiaoling 58.31 229 [[image:1652953568895-172.png||height="232" width="724"]]
Xiaoling 58.22 230
231
232 == 3.3 Configure Commands to read data ==
233
234 (((
235 (((
Xiaoling 58.31 236 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
Xiaoling 58.22 237 )))
238
239 (((
240 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
241
242
243 )))
244 )))
245
246 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
247
248 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
249
250 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
251 |=(% style="width: 110px;" %)(((
252 **AT Commands**
253 )))|=(% style="width: 190px;" %)(((
254 **Description**
255 )))|=(% style="width: 190px;" %)(((
256 **Example**
257 )))
258 |(% style="width:110px" %)(((
259 AT+BAUDR
260 )))|(% style="width:190px" %)(((
261 Set the baud rate (for RS485 connection). Default Value is: 9600.
262 )))|(% style="width:190px" %)(((
263 (((
264 AT+BAUDR=9600
265 )))
266
267 (((
268 Options: (1200,2400,4800,14400,19200,115200)
269 )))
270 )))
271 |(% style="width:110px" %)(((
272 AT+PARITY
273 )))|(% style="width:190px" %)(((
274 Set UART parity (for RS485 connection)
275 )))|(% style="width:190px" %)(((
276 (((
277 AT+PARITY=0
278 )))
279
280 (((
281 Option: 0: no parity, 1: odd parity, 2: even parity
282 )))
283 )))
284 |(% style="width:110px" %)(((
285 AT+STOPBIT
286 )))|(% style="width:190px" %)(((
287 (((
288 Set serial stopbit (for RS485 connection)
289 )))
290
291 (((
292
293 )))
294 )))|(% style="width:190px" %)(((
295 (((
296 AT+STOPBIT=0 for 1bit
297 )))
298
299 (((
300 AT+STOPBIT=1 for 1.5 bit
301 )))
302
303 (((
304 AT+STOPBIT=2 for 2 bits
305 )))
306 )))
307
308 === 3.3.2 Configure sensors ===
309
310 (((
311 (((
312 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
313 )))
314 )))
315
316 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
317 |=(% style="width: 110px;" %)**AT Commands**|=(% style="width: 190px;" %)**Description**|=(% style="width: 190px;" %)**Example**
318 |AT+CFGDEV|(% style="width:110px" %)(((
319 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
320
321 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
322
323 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
324 )))|(% style="width:190px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
325
326 === 3.3.3 Configure read commands for each sampling ===
327
328 (((
329 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
330
331 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
332
333 This section describes how to achieve above goals.
334
335 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
336
337
338 **Each RS485 commands include two parts:**
339
340 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
341
342 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
343
344 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
345
346
347 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
348
349
350 Below are examples for the how above AT Commands works.
351
352
353 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
354
355 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
356 |(% style="width:496px" %)(((
357 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
358
359 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
360
361 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
362 )))
363
364 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
365
366 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
367
368
369 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
370
371 (% border="1" style="background-color:#4bacc6; color:white; width:510px" %)
372 |(% style="width:510px" %)(((
373 **AT+DATACUTx=a,b,c**
374
375 * **a: length for the return of AT+COMMAND**
376 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
377 * **c: define the position for valid value.  **
378 )))
379
380 **Examples:**
381
382 * Grab bytes:
383
Xiaoling 58.31 384 [[image:image-20220602153621-1.png]]
Xiaoling 58.22 385
386
387 * Grab a section.
388
Xiaoling 58.31 389 [[image:image-20220602153621-2.png]]
Xiaoling 58.22 390
391
392 * Grab different sections.
393
Xiaoling 58.31 394 [[image:image-20220602153621-3.png]]
Xiaoling 58.22 395
396
397 )))
398
399 === 3.3.4 Compose the uplink payload ===
400
401 (((
402 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
403
404
405 )))
406
407 (((
408 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
409
410
411 )))
412
413 (((
414 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
415 )))
416
417 (((
418 Final Payload is
419 )))
420
421 (((
422 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
423 )))
424
425 (((
426 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
427 )))
428
Xiaoling 58.31 429 [[image:1653269759169-150.png||height="513" width="716"]]
Xiaoling 58.22 430
431
432 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
433
434
435 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
436
437 Final Payload is
438
439 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
440
441
442 1. PAYVER: Defined by AT+PAYVER
443 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
444 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
445 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
446
Xiaoling 58.31 447 [[image:image-20220602155039-4.png]]
Xiaoling 58.22 448
449
450 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
451
452 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
453
454 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
455
456 DATA3=the rest of Valid value of RETURN10= **30**
457
458
459 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
460
461 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
462
463 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
464
465 * For US915 band, max 11 bytes for each uplink.
466
467 ~* For all other bands: max 51 bytes for each uplink.
468
469
470 Below are the uplink payloads:
471
Xiaoling 58.31 472 [[image:1654157178836-407.png]]
Xiaoling 58.22 473
474
475 === 3.3.5 Uplink on demand ===
476
477 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
478
479 Downlink control command:
480
481 **0x08 command**: Poll an uplink with current command set in RS485-LN.
482
483 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
484
485
486
487 === 3.3.6 Uplink on Interrupt ===
488
489 RS485-LN support external Interrupt uplink since hardware v1.2 release.
490
Xiaoling 58.31 491 [[image:1654157342174-798.png]]
Xiaoling 58.22 492
493 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
494
495
496 == 3.4 Uplink Payload ==
497
498
Xiaoling 58.31 499 [[image:image-20220606110929-1.png]]
Xiaoling 58.22 500
501 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
502
503
504 == 3.5 Configure RS485-BL via AT or Downlink ==
505
506 (((
507 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
508 )))
509
510 (((
511 There are two kinds of Commands:
512 )))
513
514 * (((
Xiaoling 58.31 515 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
Xiaoling 58.22 516 )))
517
518 * (((
519 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
520 )))
521
522 (((
523
524 )))
525
526
527 === 3.5.1 Common Commands ===
528
Xiaoling 58.31 529 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
Xiaoling 58.22 530
531
532 === 3.5.2 Sensor related commands ===
533
534 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
535
Xiaoling 58.31 536 [[image:image-20220602163333-5.png||height="263" width="1160"]]
Xiaoling 58.22 537
538 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
539
540
541 === 3.5.3 Sensor related commands ===
542
543
544
545
546 ==== **RS485 Debug Command** ====
547
548 (((
549 This command is used to configure the RS485 devices; they won’t be used during sampling.
550 )))
551
552 * (((
553 **AT Command**
554 )))
555
556 (% class="box infomessage" %)
557 (((
558 (((
559 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
560 )))
561 )))
562
563 (((
564 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
565 )))
566
567 * (((
568 **Downlink Payload**
569 )))
570
571 (((
572 Format: A8 MM NN XX XX XX XX YY
573 )))
574
575 (((
576 Where:
577 )))
578
579 * (((
580 MM: 1: add CRC-16/MODBUS ; 0: no CRC
581 )))
582 * (((
583 NN: The length of RS485 command
584 )))
585 * (((
586 XX XX XX XX: RS485 command total NN bytes
587 )))
588 * (((
589 (((
590 YY: How many bytes will be uplink from the return of this RS485 command,
591 )))
592
593 * (((
594 if YY=0, RS485-LN will execute the downlink command without uplink;
595 )))
596 * (((
597 if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
598 )))
599 * (((
600 if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
601 )))
602 )))
603
604 (((
605 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
606 )))
607
608 (((
609 To connect a Modbus Alarm with below commands.
610 )))
611
612 * (((
613 The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
614 )))
615
616 * (((
617 The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
618 )))
619
620 (((
621 So if user want to use downlink command to control to RS485 Alarm, he can use:
622 )))
623
624 (((
625 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
626 )))
627
628 (((
629 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
630 )))
631
632 (((
633 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
634 )))
635
636 (((
637
638 )))
639
640 (((
641 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
642 )))
643
644 (((
645 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
646 )))
647
648 (((
649
650 )))
651
652 (((
653 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
654 )))
655
656 (((
657 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
658 )))
659
660 (((
Xiaoling 58.31 661 [[image:1654159460680-153.png]]
Xiaoling 58.22 662 )))
663
664
665
666
667 ==== **Set Payload version** ====
668
669 (((
670 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
671 )))
672
673 * (((
674 **AT Command:**
675 )))
676
677 (% class="box infomessage" %)
678 (((
679 (((
680 **AT+PAYVER: Set PAYVER field = 1**
681 )))
682 )))
683
684 * (((
685 **Downlink Payload:**
686 )))
687
688 (((
689 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
690 )))
691
692 (((
693 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
694 )))
695
696
697
698
699 ==== **Set RS485 Sampling Commands** ====
700
701 (((
702 AT+COMMANDx or AT+DATACUTx
703 )))
704
705 (((
Xiaoling 58.31 706 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
Xiaoling 58.22 707 )))
708
709 (((
710
711 )))
712
713 * (((
714 **AT Command:**
715 )))
716
717 (% class="box infomessage" %)
718 (((
719 (((
720 **AT+COMMANDx: Configure RS485 read command to sensor.**
721 )))
722 )))
723
724 (% class="box infomessage" %)
725 (((
726 (((
727 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
728 )))
729 )))
730
731 (((
732
733 )))
734
735 * (((
736 **Downlink Payload:**
737 )))
738
739 (((
740 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
741 )))
742
743 (((
744 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
745 )))
746
747 (((
748 Format: AF MM NN LL XX XX XX XX YY
749 )))
750
751 (((
752 Where:
753 )))
754
755 * (((
756 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
757 )))
758 * (((
759 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
760 )))
761 * (((
762 LL:  The length of AT+COMMAND or AT+DATACUT command
763 )))
764 * (((
765 XX XX XX XX: AT+COMMAND or AT+DATACUT command
766 )))
767 * (((
768 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
769 )))
770
771 (((
772 **Example:**
773 )))
774
775 (((
776 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
777 )))
778
779 (((
780 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
781 )))
782
783 (((
784 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
785 )))
786
787
788
789
790 ==== **Fast command to handle MODBUS device** ====
791
792 (((
793 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
794 )))
795
796 (((
797 This command is valid since v1.3 firmware version
798 )))
799
800 (((
801 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
802 )))
803
804 (((
805
806 )))
807
808 (((
809 **Example:**
810 )))
811
812 * (((
813 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
814 )))
815 * (((
816 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
817 )))
818 * (((
819 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
820 )))
821
Xiaoling 58.31 822 [[image:image-20220602165351-6.png]]
Xiaoling 58.22 823
Xiaoling 58.31 824 [[image:image-20220602165351-7.png]]
Xiaoling 58.22 825
826
827
828
829 ==== **RS485 command timeout** ====
830
831 (((
832 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
833 )))
834
835 (((
836 Default value: 0, range:  0 ~~ 65 seconds
837 )))
838
839 * (((
840 **AT Command:**
841 )))
842
843 (% class="box infomessage" %)
844 (((
845 (((
846 **AT+CMDDLaa=hex(bb cc)*1000**
847 )))
848 )))
849
850 (((
851 **Example:**
852 )))
853
854 (((
855 **AT+CMDDL1=1000** to send the open time to 1000ms
856 )))
857
858 (((
859
860 )))
861
862 * (((
863 **Downlink Payload:**
864 )))
865
866 (((
867 **0x AA aa bb cc**
868 )))
869
870 (((
871 Same as: AT+CMDDLaa=hex(bb cc)*1000
872 )))
873
874 (((
875 **Example:**
876 )))
877
878 (((
879 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
880 )))
881
882
883
884
885 ==== **Uplink payload mode** ====
886
887 (((
888 Define to use one uplink or multiple uplinks for the sampling.
889 )))
890
891 (((
Xiaoling 58.31 892 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
Xiaoling 58.22 893 )))
894
895 * (((
896 **AT Command:**
897 )))
898
899 (% class="box infomessage" %)
900 (((
901 (((
902 **AT+DATAUP=0**
903 )))
904 )))
905
906 (% class="box infomessage" %)
907 (((
908 (((
909 **AT+DATAUP=1**
910 )))
911 )))
912
913 (((
914
915 )))
916
917 * (((
918 **Downlink Payload:**
919 )))
920
921 (((
922 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
923 )))
924
925 (((
926 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
927 )))
928
929
930
931
932 ==== **Manually trigger an Uplink** ====
933
934 (((
935 Ask device to send an uplink immediately.
936 )))
937
938 * (((
939 **AT Command:**
940 )))
941
942 (((
Xiaoling 58.31 943 No AT Command for this, user can press the [[ACT button>>||anchor="H3.7Buttons"]] for 1 second for the same.
Xiaoling 58.22 944 )))
945
946 (((
947
948 )))
949
950 * (((
951 **Downlink Payload:**
952 )))
953
954 (((
955 **0x08 FF**, RS485-LN will immediately send an uplink.
956 )))
957
958
959
960
961 ==== **Clear RS485 Command** ====
962
963 (((
964 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
965 )))
966
967 * (((
968 **AT Command:**
969 )))
970
971 (((
972 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
973 )))
974
975 (((
976 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
977 )))
978
979 (((
980 Example screen shot after clear all RS485 commands. 
981 )))
982
983 (((
984
985 )))
986
987 (((
988 The uplink screen shot is:
989 )))
990
Xiaoling 58.31 991 [[image:1654160691922-496.png]]
Xiaoling 58.22 992
993
994 * (((
995 **Downlink Payload:**
996 )))
997
998 (((
999 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1000 )))
1001
1002
1003
1004
1005 ==== **Set Serial Communication Parameters** ====
1006
1007 (((
1008 Set the Rs485 serial communication parameters:
1009 )))
1010
1011 * (((
1012 **AT Command:**
1013 )))
1014
1015 (((
1016 Set Baud Rate:
1017 )))
1018
1019 (% class="box infomessage" %)
1020 (((
1021 (((
1022 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1023 )))
1024 )))
1025
1026 (((
1027 Set UART Parity
1028 )))
1029
1030 (% class="box infomessage" %)
1031 (((
1032 (((
1033 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1034 )))
1035 )))
1036
1037 (((
1038 Set STOPBIT
1039 )))
1040
1041 (% class="box infomessage" %)
1042 (((
1043 (((
1044 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1045 )))
1046 )))
1047
1048 (((
1049
1050 )))
1051
1052 * (((
1053 **Downlink Payload:**
1054 )))
1055
1056 (((
1057 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1058 )))
1059
1060 (((
1061 **Example:**
1062 )))
1063
1064 * (((
1065 A7 01 00 60   same as AT+BAUDR=9600
1066 )))
1067 * (((
1068 A7 01 04 80  same as AT+BAUDR=115200
1069 )))
1070
1071 (((
1072 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1073 )))
1074
1075 (((
1076 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1077 )))
1078
1079
1080
1081
1082 == 3.6 Listening mode for RS485 network ==
1083
1084 (((
1085 This feature support since firmware v1.4
1086 )))
1087
1088 (((
1089 RS485-LN supports listening mode, it can listen the RS485 network packets and send them via LoRaWAN uplink. Below is the structure. The blue arrow shows the RS485 network packets to RS485-LN.
1090 )))
1091
Xiaoling 58.31 1092 [[image:image-20220602171200-8.png||height="567" width="1007"]]
Xiaoling 58.22 1093
1094 (((
1095 To enable the listening mode, use can run the command AT+RXMODE.
1096 )))
1097
1098 (((
1099
1100 )))
1101
1102 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
1103 |=(% style="width: 161px;" %)(((
1104 **Command example:**
1105 )))|=(% style="width: 337px;" %)(((
1106 **Function**
1107 )))
1108 |(% style="width:161px" %)(((
1109 AT+RXMODE=1,10
1110 )))|(% style="width:337px" %)(((
1111 Enable listening mode 1, if RS485-LN has received more than 10 RS485 commands from the network. RS485-LN will send these commands via LoRaWAN uplinks.
1112 )))
1113 |(% style="width:161px" %)(((
1114 AT+RXMODE=2,500
1115 )))|(% style="width:337px" %)(((
1116 Enable listening mode 2, RS485-LN will capture and send a 500ms content once from the first detect of character. Max value is 65535 ms
1117 )))
1118 |(% style="width:161px" %)(((
1119 AT+RXMODE=0,0
1120 )))|(% style="width:337px" %)(((
1121 Disable listening mode. This is the default settings.
1122 )))
1123 |(% style="width:161px" %)(((
1124
1125 )))|(% style="width:337px" %)(((
1126 A6 aa bb cc  same as AT+RXMODE=aa,(bb<<8 | cc)
1127 )))
1128
1129 (((
1130 **Downlink Command:**
1131 )))
1132
1133 (((
1134 **0xA6 aa bb cc ** same as AT+RXMODE=aa,(bb<<8 | cc)
1135 )))
1136
1137 (((
1138
1139 )))
1140
1141 (((
1142 **Example**:
1143 )))
1144
1145 (((
1146 The RS485-LN is set to AT+RXMODE=2,1000
1147 )))
1148
1149 (((
1150 There is a two Modbus commands in the RS485 network as below:
1151 )))
1152
1153 (((
1154 The Modbus master send a command: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b
1155 )))
1156
1157 (((
1158 And Modbus slave reply with: (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1159 )))
1160
1161 (((
1162 RS485-LN will capture both and send the uplink: (% style="background-color:#ffc000" %)01 03 00 00 00 02 c4 0b  (% style="background-color:green" %)01 03 04 00 00 00 00 fa 33
1163 )))
1164
1165 (((
Xiaoling 58.31 1166 [[image:image-20220602171200-9.png]]
Xiaoling 58.22 1167 )))
1168
1169 (((
1170
1171 )))
1172
1173 (((
1174 (% style="color:red" %)Notice: Listening mode can work with the default polling mode of RS485-LN. When RS485-LN is in to send the RS485 commands (from AT+COMMANDx), the listening mode will be interrupt for a while.
1175 )))
1176
1177
1178 == 3.7 Buttons ==
1179
1180
Xiaoling 58.38 1181 (% border="1" cellspacing="10" style="background-color:#f7faff; width:400px" %)
1182 |=(% style="width: 50px;" %)**Button**|=(% style="width: 350px;" %)**Feature**
1183 |(% style="width:50px" %)**ACT**|(% style="width:350px" %)If RS485 joined in network, press this button for more than 1 second, RS485 will upload a packet, and the SYS LED will give a (% style="color:blue" %)**Blue blink**
1184 |(% style="width:50px" %)**RST**|(% style="width:350px" %)Reboot RS485
1185 |(% style="width:50px" %)**PRO**|(% style="width:350px" %)Use for upload image, see [[How to Update Image>>||anchor="H6.1Howtoupgradetheimage3F"]]
Xiaoling 58.22 1186
Xiaoling 58.38 1187
Xiaoling 58.22 1188 == 3.8 LEDs ==
1189
Xiaoling 58.36 1190
Xiaoling 58.32 1191 (% border="1" cellspacing="10" style="background-color:#f7faff; width:430px" %)
Xiaoling 58.38 1192 |=(% style="width: 50px;" %)**LEDs**|=(% style="width: 380px;" %)**Feature**
Xiaoling 58.36 1193 |**PWR**|Always on if there is power
1194 |**SYS**|After device is powered on, the SYS will (% style="color:green" %)**fast blink in GREEN**(%%) for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be (% style="color:green" %)**on GREEN for 5 seconds** (%%)**. **SYS will (% style="color:green" %)**blink Blue**(%%) on every upload and (% style="color:green" %)**blink Green**(%%) once receive a downlink message.
Xiaoling 58.22 1195
Xiaoling 58.29 1196
Xiaoling 58.38 1197
Xiaoling 58.22 1198 = 4. Case Study =
1199
Xiaoling 58.31 1200 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
Xiaoling 58.22 1201
1202
1203 = 5. Use AT Command =
1204
1205 == 5.1 Access AT Command ==
1206
Xiaoling 58.25 1207 (((
Xiaoling 58.22 1208 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
Xiaoling 58.25 1209 )))
Xiaoling 58.22 1210
Xiaoling 58.31 1211 [[image:1654162355560-817.png]]
Xiaoling 58.22 1212
1213
Xiaoling 58.25 1214 (((
Xiaoling 58.22 1215 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
Xiaoling 58.25 1216 )))
Xiaoling 58.22 1217
Xiaoling 58.31 1218 [[image:1654162368066-342.png]]
Xiaoling 58.22 1219
1220
Xiaoling 58.26 1221 (((
Xiaoling 58.31 1222 More detail AT Command manual can be found at [[AT Command Manual>>https://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
Xiaoling 58.26 1223 )))
Xiaoling 58.22 1224
1225
Xiaoling 58.27 1226
Xiaoling 58.22 1227 == 5.2 Common AT Command Sequence ==
1228
1229 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1230
1231 If device has not joined network yet:
1232
1233 (% class="box infomessage" %)
1234 (((
1235 **AT+FDR**
1236 )))
1237
1238 (% class="box infomessage" %)
1239 (((
1240 **AT+NJM=0**
1241 )))
1242
1243 (% class="box infomessage" %)
1244 (((
1245 **ATZ**
1246 )))
1247
1248
1249 If device already joined network:
1250
1251 (% class="box infomessage" %)
1252 (((
1253 **AT+NJM=0**
1254 )))
1255
1256 (% class="box infomessage" %)
1257 (((
1258 **ATZ**
1259 )))
1260
1261
1262 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1263
1264
1265 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1266
1267 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1268
1269 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1270
1271 (% style="background-color:#dcdcdc" %)**AT+DR=5**   (%%)Set Data Rate
1272
1273 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1274
1275 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1276
1277 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1278
1279 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1280
1281 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1282
1283 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1284
1285
1286 (% style="color:red" %)**Note:**
1287
1288 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1289 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1290 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1291 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1292
Xiaoling 58.31 1293 [[image:1654162478620-421.png]]
Xiaoling 58.22 1294
1295
1296 = 6. FAQ =
1297
1298 == 6.1 How to upgrade the image? ==
1299
Xiaoling 58.34 1300 (((
Xiaoling 58.22 1301 The RS485-LN LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LN to:
Xiaoling 58.34 1302 )))
Xiaoling 58.22 1303
Xiaoling 58.34 1304 * (((
1305 Support new features
1306 )))
1307 * (((
1308 For bug fix
1309 )))
1310 * (((
1311 Change LoRaWAN bands.
1312 )))
Xiaoling 58.22 1313
Xiaoling 58.34 1314 (((
Xiaoling 58.22 1315 Below shows the hardware connection for how to upload an image to RS485-LN:
Xiaoling 58.34 1316 )))
Xiaoling 58.22 1317
Xiaoling 58.31 1318 [[image:1654162535040-878.png]]
Xiaoling 58.22 1319
1320 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1321
1322 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1323
1324 **Step3: **Open flashloader; choose the correct COM port to update.
1325
1326 (((
Xiaoling 58.35 1327 (((
Xiaoling 58.22 1328 (% style="color:blue" %) Hold down the PRO button and then momentarily press the RST reset button and the SYS led will change from OFF to ON, While SYS LED is RED ON, it means the RS485-LN is ready to be program.
1329 )))
Xiaoling 58.35 1330 )))
Xiaoling 58.22 1331
1332
Xiaoling 58.31 1333 [[image:image-20220602175818-12.png]]
Xiaoling 58.22 1334
1335
Xiaoling 58.31 1336 [[image:image-20220602175848-13.png]]
Xiaoling 58.22 1337
1338
Xiaoling 58.31 1339 [[image:image-20220602175912-14.png]]
Xiaoling 58.22 1340
1341
1342 **Notice**: In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
1343
Xiaoling 58.31 1344 [[image:image-20220602175638-10.png]]
Xiaoling 58.22 1345
1346
1347 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1348
Xiaoling 58.31 1349 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
Xiaoling 58.22 1350
1351
1352 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1353
Xiaoling 58.31 1354 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
Xiaoling 58.22 1355
1356
1357 == 6.4 Compatible question to ChirpStack and TTI LoRaWAN server ? ==
1358
1359 When user need to use with ChirpStack or TTI. Please set AT+RPL=4.
1360
Xiaoling 58.31 1361 Detail info check this link: [[Set Packet Receiving Response Level>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.23SetPacketReceivingResponseLevel"]]
Xiaoling 58.22 1362
1363
1364 = 7. Trouble Shooting =
1365
1366 == 7.1 Downlink doesn’t work, how to solve it? ==
1367
Xiaoling 58.31 1368 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
Xiaoling 58.22 1369
1370
1371 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1372
Xiaoling 58.31 1373 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
Xiaoling 58.22 1374
1375
1376 = 8. Order Info =
1377
1378 (% style="color:blue" %)**Part Number: RS485-LN-XXX**
1379
1380 (% style="color:blue" %)**XXX:**
1381
1382 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1383 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1384 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1385 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1386 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1387 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1388 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1389 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1390 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1391 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1392
1393 = 9.Packing Info =
1394
1395
1396 **Package Includes**:
1397
1398 * RS485-LN x 1
1399 * Stick Antenna for LoRa RF part x 1
1400 * Program cable x 1
1401
1402 **Dimension and weight**:
1403
1404 * Device Size: 13.5 x 7 x 3 cm
1405 * Device Weight: 105g
1406 * Package Size / pcs : 14.5 x 8 x 5 cm
1407 * Weight / pcs : 170g
1408
1409 = 10. FCC Caution for RS485LN-US915 =
1410
1411 (((
1412 Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.
1413 )))
1414
1415 (((
1416 This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
1417 )))
1418
1419 (((
1420
1421 )))
1422
1423 (((
1424 **IMPORTANT NOTE:**
1425 )))
1426
1427 (((
1428 **Note: **This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
1429 )))
1430
1431 (((
1432 —Reorient or relocate the receiving antenna.
1433 )))
1434
1435 (((
1436 —Increase the separation between the equipment and receiver.
1437 )))
1438
1439 (((
1440 —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
1441 )))
1442
1443 (((
1444 —Consult the dealer or an experienced radio/TV technician for help.
1445 )))
1446
1447 (((
1448
1449 )))
1450
1451 (((
1452 **FCC Radiation Exposure Statement:**
1453 )))
1454
1455 (((
1456 This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.This equipment should be installed and operated with minimum distance 20cm between the radiator& your body.
1457 )))
1458
1459
1460 = 11. Support =
1461
1462 * (((
1463 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1464 )))
1465 * (((
1466 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1467 )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0