Hide last authors
Xiaoling 3.2 1 (% style="text-align:center" %)
Xiaoling 18.2 2 [[image:1653266934636-343.png||height="385" width="385"]]
Xiaoling 1.1 3
4
5
Xiaoling 18.2 6 **RS485-LN – RS485 to LoRaWAN Converter User Manual**
Xiaoling 1.1 7
8
Xiaoling 3.2 9 **Table of Contents:**
Xiaoling 1.1 10
11
12
13
14
Xiaoling 3.2 15 = 1.Introduction =
Xiaoling 1.1 16
Xiaoling 19.2 17 == 1.1 What is RS485-LN RS485 to LoRaWAN Converter ==
Xiaoling 1.1 18
Xiaoling 3.2 19 (((
20 (((
Xiaoling 32.3 21 The Dragino RS485-LN is a (% style="color:blue" %)**RS485 to LoRaWAN Converter**(%%). It converts the RS485 signal into LoRaWAN wireless signal which simplify the IoT installation and reduce the installation/maintaining cost.
Xiaoling 3.2 22 )))
Xiaoling 2.2 23
Xiaoling 3.2 24 (((
Xiaoling 32.3 25 RS485-LN allows user to (% style="color:blue" %)**monitor / control RS485 devices**(%%) and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
Xiaoling 3.2 26 )))
Xiaoling 2.2 27
Xiaoling 3.2 28 (((
Xiaoling 32.3 29 (% style="color:blue" %)**For data uplink**(%%), RS485-LN sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LN will process these returns according to user-define rules to get the final payload and upload to LoRaWAN server.
Xiaoling 3.2 30 )))
Xiaoling 2.2 31
Xiaoling 3.2 32 (((
Xiaoling 32.3 33 (% style="color:blue" %)**For data downlink**(%%), RS485-LN runs in LoRaWAN Class C. When there downlink commands from LoRaWAN server, RS485-LN will forward the commands from LoRaWAN server to RS485 devices.
Xiaoling 32.2 34
Xiaoling 32.3 35 (% style="color:blue" %)**Demo Dashboard for RS485-LN**(%%) connect to two energy meters: [[https:~~/~~/app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a>>url:https://app.datacake.de/dashboard/d/58844a26-378d-4c5a-aaf5-b5b5b153447a]]
Xiaoling 3.2 36 )))
37 )))
Xiaoling 2.2 38
Xiaoling 19.2 39 [[image:1653267211009-519.png||height="419" width="724"]]
Xiaoling 2.2 40
Xiaoling 32.4 41
Xiaoling 3.2 42 == 1.2 Specifications ==
Xiaoling 2.2 43
Xiaoling 32.6 44
Xiaoling 2.2 45 **Hardware System:**
46
47 * STM32L072CZT6 MCU
Xiaoling 22.4 48 * SX1276/78 Wireless Chip 
Xiaoling 2.2 49 * Power Consumption (exclude RS485 device):
Xiaoling 19.3 50 ** Idle: 32mA@12v
51 ** 20dB Transmit: 65mA@12v
Xiaoling 2.2 52
53 **Interface for Model:**
54
Xiaoling 19.3 55 * RS485
Xiaoling 22.4 56 * Power Input 7~~ 24V DC. 
Xiaoling 2.2 57
58 **LoRa Spec:**
59
60 * Frequency Range:
61 ** Band 1 (HF): 862 ~~ 1020 Mhz
62 ** Band 2 (LF): 410 ~~ 528 Mhz
63 * 168 dB maximum link budget.
64 * +20 dBm - 100 mW constant RF output vs.
Xiaoling 19.3 65 * +14 dBm high efficiency PA.
Xiaoling 2.2 66 * Programmable bit rate up to 300 kbps.
67 * High sensitivity: down to -148 dBm.
68 * Bullet-proof front end: IIP3 = -12.5 dBm.
69 * Excellent blocking immunity.
Xiaoling 19.3 70 * Low RX current of 10.3 mA, 200 nA register retention.
Xiaoling 2.2 71 * Fully integrated synthesizer with a resolution of 61 Hz.
Xiaoling 19.3 72 * FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
Xiaoling 2.2 73 * Built-in bit synchronizer for clock recovery.
74 * Preamble detection.
75 * 127 dB Dynamic Range RSSI.
Xiaoling 19.3 76 * Automatic RF Sense and CAD with ultra-fast AFC.
77 * Packet engine up to 256 bytes with CRC.
Xiaoling 2.2 78
Xiaoling 3.3 79 == 1.3 Features ==
Xiaoling 2.2 80
Xiaoling 19.4 81 * LoRaWAN Class A & Class C protocol (default Class C)
Xiaoling 2.2 82 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
83 * AT Commands to change parameters
Xiaoling 19.4 84 * Remote configure parameters via LoRa Downlink
Xiaoling 2.2 85 * Firmware upgradable via program port
86 * Support multiply RS485 devices by flexible rules
87 * Support Modbus protocol
Xiaoling 19.4 88 * Support Interrupt uplink (Since hardware version v1.2)
Xiaoling 2.2 89
Xiaoling 3.3 90 == 1.4 Applications ==
Xiaoling 2.2 91
92 * Smart Buildings & Home Automation
93 * Logistics and Supply Chain Management
94 * Smart Metering
95 * Smart Agriculture
96 * Smart Cities
97 * Smart Factory
98
Xiaoling 6.2 99 == 1.5 Firmware Change log ==
Xiaoling 2.2 100
Xiaoling 19.4 101 [[RS485-LN Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/]]
Xiaoling 2.2 102
Xiaoling 32.10 103
Xiaoling 4.2 104 == 1.6 Hardware Change log ==
Xiaoling 2.2 105
Xiaoling 4.2 106 (((
107 (((
Xiaoling 19.4 108 v1.2: Add External Interrupt Pin.
Xiaoling 2.2 109
Xiaoling 19.4 110 v1.0: Release
Xiaoling 32.10 111
112
Xiaoling 4.2 113 )))
114 )))
Xiaoling 2.2 115
Xiaoling 20.2 116 = 2. Power ON Device =
Xiaoling 2.2 117
Xiaoling 6.2 118 (((
Xiaoling 20.2 119 The RS485-LN can be powered by 7 ~~ 24V DC power source. Connection as below
Xiaoling 2.2 120
Xiaoling 20.2 121 * Power Source VIN to RS485-LN VIN+
122 * Power Source GND to RS485-LN VIN-
Xiaoling 2.2 123
Xiaoling 20.3 124 (((
Xiaoling 20.2 125 Once there is power, the RS485-LN will be on.
Xiaoling 20.3 126 )))
Xiaoling 2.2 127
Xiaoling 20.2 128 [[image:1653268091319-405.png]]
Xiaoling 32.11 129
130
Xiaoling 20.2 131 )))
Xiaoling 2.2 132
Xiaoling 6.2 133 = 3. Operation Mode =
Xiaoling 2.2 134
Xiaoling 6.2 135 == 3.1 How it works? ==
Xiaoling 2.2 136
Xiaoling 7.2 137 (((
Xiaoling 21.2 138 The RS485-LN is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LN. It will auto join the network via OTAA.
Xiaoling 32.12 139
140
Xiaoling 7.2 141 )))
Xiaoling 2.2 142
Xiaoling 7.2 143 == 3.2 Example to join LoRaWAN network ==
Xiaoling 2.2 144
Xiaoling 6.2 145 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
Xiaoling 2.2 146
Xiaoling 21.2 147 [[image:1653268155545-638.png||height="334" width="724"]]
Xiaoling 2.2 148
Xiaoling 32.13 149
Xiaoling 15.3 150 (((
Xiaoling 32.13 151 (((
Xiaoling 22.2 152 The RS485-LN in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method. The connection is as below:
Xiaoling 32.13 153 )))
Xiaoling 2.2 154
Xiaoling 32.13 155 (((
Xiaoling 22.2 156 485A+ and 485B- of the sensor are connected to RS485A and RA485B of RS485-LN respectively.
Xiaoling 32.13 157 )))
Xiaoling 22.2 158
159 [[image:1653268227651-549.png||height="592" width="720"]]
160
Xiaoling 15.3 161 (((
Xiaoling 22.2 162 The LG308 is already set to connect to [[TTN V3 network >>path:eu1.cloud.thethings.network/]]. So what we need to now is only configure the TTN V3:
Xiaoling 15.3 163 )))
Xiaoling 2.2 164
Xiaoling 15.3 165 (((
Xiaoling 22.2 166 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-LN.
Xiaoling 15.3 167 )))
Xiaoling 2.2 168
Xiaoling 15.3 169 (((
Xiaoling 22.2 170 Each RS485-LN is shipped with a sticker with unique device EUI:
Xiaoling 15.3 171 )))
Xiaoling 22.2 172 )))
Xiaoling 2.2 173
Xiaoling 15.2 174 [[image:1652953462722-299.png]]
Xiaoling 2.2 175
Xiaoling 15.3 176 (((
Xiaoling 22.3 177 (((
Xiaoling 2.2 178 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
Xiaoling 15.3 179 )))
Xiaoling 2.2 180
Xiaoling 15.3 181 (((
Xiaoling 2.2 182 Add APP EUI in the application.
Xiaoling 15.3 183 )))
Xiaoling 22.3 184 )))
Xiaoling 2.2 185
Xiaoling 15.2 186 [[image:image-20220519174512-1.png]]
Xiaoling 2.2 187
Xiaoling 22.3 188 [[image:image-20220519174512-2.png||height="323" width="720"]]
Xiaoling 2.2 189
Xiaoling 15.2 190 [[image:image-20220519174512-3.png||height="556" width="724"]]
Xiaoling 2.2 191
Xiaoling 15.2 192 [[image:image-20220519174512-4.png]]
Xiaoling 2.2 193
194 You can also choose to create the device manually.
195
Xiaoling 15.2 196 [[image:1652953542269-423.png||height="710" width="723"]]
Xiaoling 2.2 197
198 Add APP KEY and DEV EUI
199
Xiaoling 15.2 200 [[image:1652953553383-907.png||height="514" width="724"]]
Xiaoling 2.2 201
202
Xiaoling 15.2 203 (((
Xiaoling 22.4 204 **Step 2**: Power on RS485-LN and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
Xiaoling 15.2 205 )))
Xiaoling 2.2 206
Xiaoling 15.2 207 [[image:1652953568895-172.png||height="232" width="724"]]
Xiaoling 2.2 208
Xiaoling 32.14 209
Xiaoling 15.5 210 == 3.3 Configure Commands to read data ==
Xiaoling 2.2 211
Xiaoling 15.5 212 (((
Xiaoling 22.4 213 (((
214 There are plenty of RS485 devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-LN supports flexible command set. User can use [[AT Commands>>path:#AT_COMMAND]] or LoRaWAN Downlink Command to configure what commands RS485-LN should send for each sampling and how to handle the return from RS485 devices.
Xiaoling 15.5 215 )))
Xiaoling 2.2 216
Xiaoling 22.4 217 (((
218 (% style="color:red" %)Note: below description and commands are for firmware version >v1.1, if you have firmware version v1.0. Please check the [[user manual v1.0>>url:http://www.dragino.com/downloads/index.php?dir=RS485-LN/&file=RS485-LN_UserManual_v1.0.1.pdf]] or upgrade the firmware to v1.1
Xiaoling 32.15 219
220
Xiaoling 22.4 221 )))
222 )))
223
Xiaoling 15.5 224 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
Xiaoling 2.2 225
Xiaoling 22.6 226 To use RS485-LN to read data from RS485 sensors, connect the RS485-LN A/B traces to the sensors. And user need to make sure RS485-LN use the match UART setting to access the sensors. The related commands for UART settings are:
Xiaoling 2.2 227
Xiaoling 32.16 228 (% border="1" style="background-color:#ffffcc; color:green; width:782px" %)
229 |(% style="width:128px" %)(((
Xiaoling 15.5 230 **AT Commands**
Xiaoling 32.16 231 )))|(% style="width:305px" %)(((
Xiaoling 15.5 232 **Description**
Xiaoling 32.16 233 )))|(% style="width:346px" %)(((
Xiaoling 15.5 234 **Example**
235 )))
Xiaoling 32.16 236 |(% style="width:128px" %)(((
Xiaoling 15.5 237 AT+BAUDR
Xiaoling 32.16 238 )))|(% style="width:305px" %)(((
Xiaoling 15.5 239 Set the baud rate (for RS485 connection). Default Value is: 9600.
Xiaoling 32.16 240 )))|(% style="width:346px" %)(((
Xiaoling 15.5 241 (((
Xiaoling 2.2 242 AT+BAUDR=9600
Xiaoling 15.5 243 )))
Xiaoling 2.2 244
Xiaoling 15.5 245 (((
Xiaoling 2.2 246 Options: (1200,2400,4800,14400,19200,115200)
247 )))
Xiaoling 15.5 248 )))
Xiaoling 32.16 249 |(% style="width:128px" %)(((
Xiaoling 15.5 250 AT+PARITY
Xiaoling 32.16 251 )))|(% style="width:305px" %)(((
Xiaoling 2.2 252 Set UART parity (for RS485 connection)
Xiaoling 32.16 253 )))|(% style="width:346px" %)(((
Xiaoling 15.5 254 (((
Xiaoling 2.2 255 AT+PARITY=0
Xiaoling 15.5 256 )))
Xiaoling 2.2 257
Xiaoling 15.5 258 (((
Xiaoling 2.2 259 Option: 0: no parity, 1: odd parity, 2: even parity
260 )))
Xiaoling 15.5 261 )))
Xiaoling 32.16 262 |(% style="width:128px" %)(((
Xiaoling 15.5 263 AT+STOPBIT
Xiaoling 32.16 264 )))|(% style="width:305px" %)(((
Xiaoling 15.5 265 (((
Xiaoling 2.2 266 Set serial stopbit (for RS485 connection)
Xiaoling 15.5 267 )))
Xiaoling 2.2 268
Xiaoling 15.5 269 (((
Xiaoling 22.6 270
Xiaoling 15.5 271 )))
Xiaoling 32.16 272 )))|(% style="width:346px" %)(((
Xiaoling 15.5 273 (((
Xiaoling 2.2 274 AT+STOPBIT=0 for 1bit
Xiaoling 15.5 275 )))
Xiaoling 2.2 276
Xiaoling 15.5 277 (((
Xiaoling 2.2 278 AT+STOPBIT=1 for 1.5 bit
Xiaoling 15.5 279 )))
Xiaoling 2.2 280
Xiaoling 15.5 281 (((
Xiaoling 2.2 282 AT+STOPBIT=2 for 2 bits
283 )))
Xiaoling 15.5 284 )))
Xiaoling 2.2 285
Xiaoling 15.6 286 === 3.3.2 Configure sensors ===
Xiaoling 2.2 287
Xiaoling 15.6 288 (((
289 (((
Xiaoling 22.7 290 Some sensors might need to configure before normal operation. User can configure such sensor via PC and RS485 adapter or through RS485-LN AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**(%%). Each (% style="color:#4f81bd" %)**AT+CFGDEV **(%%)equals to send a RS485 command to sensors. This command will only run when user input it and won’t run during each sampling.
Xiaoling 15.6 291 )))
Xiaoling 22.7 292 )))
Xiaoling 2.2 293
Xiaoling 15.6 294 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
295 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
296 |AT+CFGDEV|(% style="width:418px" %)(((
Xiaoling 2.2 297 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
298
Xiaoling 15.6 299 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
Xiaoling 2.2 300
Xiaoling 15.6 301 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
302 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
Xiaoling 2.2 303
Xiaoling 15.6 304 === 3.3.3 Configure read commands for each sampling ===
Xiaoling 2.2 305
Xiaoling 15.6 306 (((
Xiaoling 35.2 307 During each sampling, we need confirm what commands we need to send to the RS485 sensors to read data. After the RS485 sensors send back the value, it normally include some bytes and we only need a few from them for a shorten payload.
Xiaoling 2.2 308
309 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
310
311 This section describes how to achieve above goals.
312
Xiaoling 35.2 313 During each sampling, the RS485-LN can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
Xiaoling 2.2 314
315
Xiaoling 35.2 316 **Each RS485 commands include two parts:**
Xiaoling 2.2 317
Xiaoling 35.2 318 ~1. What commands RS485-LN will send to the RS485 sensors. There are total 15 commands from **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF**. All commands are of same grammar.
Xiaoling 2.2 319
Xiaoling 35.2 320 2. How to get wanted value the from RS485 sensors returns from by 1). There are total 15 AT Commands to handle the return, commands are **AT+DATACUT1**,**AT+DATACUT2**,…, **AT+DATACUTF** corresponding to the commands from 1). All commands are of same grammar.
Xiaoling 2.2 321
Xiaoling 35.4 322 3. Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example **AT+CMDDL1=1000** to send the open time to 1000ms
Xiaoling 2.2 323
324
325 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
326
327
328 Below are examples for the how above AT Commands works.
329
330
Xiaoling 35.2 331 **AT+COMMANDx : **This command will be sent to RS485 devices during each sampling, Max command length is 14 bytes. The grammar is:
332
333 (% border="1" style="background-color:#4bacc6; color:white; width:499px" %)
334 |(% style="width:496px" %)(((
Xiaoling 2.2 335 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
336
337 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
338
339 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
340 )))
341
342 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
343
Xiaoling 35.2 344 In the RS485-LN, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
Xiaoling 2.2 345
346
347 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
348
Xiaoling 35.2 349 (% border="1" style="background-color:#4bacc6; color:white; width:725px" %)
350 |(% style="width:722px" %)(((
Xiaoling 2.2 351 **AT+DATACUTx=a,b,c**
352
353 * **a: length for the return of AT+COMMAND**
354 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
Xiaoling 35.5 355 * **c: define the position for valid value.  **
Xiaoling 2.2 356 )))
357
Xiaoling 35.2 358 **Examples:**
359
Xiaoling 2.2 360 * Grab bytes:
361
Xiaoling 35.2 362 [[image:image-20220602153621-1.png]]
Xiaoling 2.2 363
Xiaoling 35.2 364
Xiaoling 2.2 365 * Grab a section.
366
Xiaoling 35.2 367 [[image:image-20220602153621-2.png]]
Xiaoling 2.2 368
Xiaoling 35.2 369
Xiaoling 2.2 370 * Grab different sections.
371
Xiaoling 35.2 372 [[image:image-20220602153621-3.png]]
Xiaoling 35.3 373
374
Xiaoling 35.2 375 )))
Xiaoling 2.2 376
Xiaoling 29.2 377 === 3.3.4 Compose the uplink payload ===
Xiaoling 2.2 378
Xiaoling 29.2 379 (((
Xiaoling 2.2 380 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
Xiaoling 35.5 381
382
Xiaoling 29.2 383 )))
Xiaoling 2.2 384
Xiaoling 29.2 385 (((
Xiaoling 35.5 386 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
387
388
Xiaoling 29.2 389 )))
Xiaoling 2.2 390
Xiaoling 29.2 391 (((
392 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
393 )))
Xiaoling 2.2 394
Xiaoling 29.2 395 (((
Xiaoling 2.2 396 Final Payload is
Xiaoling 29.2 397 )))
Xiaoling 2.2 398
Xiaoling 29.2 399 (((
400 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
401 )))
Xiaoling 2.2 402
Xiaoling 29.2 403 (((
Xiaoling 2.2 404 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
Xiaoling 29.2 405 )))
Xiaoling 2.2 406
Xiaoling 29.3 407 [[image:1653269759169-150.png||height="513" width="716"]]
Xiaoling 2.2 408
Xiaoling 35.5 409
Xiaoling 35.6 410 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
Xiaoling 2.2 411
Xiaoling 35.5 412
Xiaoling 30.2 413 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
Xiaoling 2.2 414
415 Final Payload is
416
Xiaoling 30.2 417 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
Xiaoling 2.2 418
Xiaoling 36.2 419 1. PAYVER: Defined by AT+PAYVER
420 1. PAYLOAD COUNT: Total how many uplinks of this sampling.
421 1. PAYLOAD#: Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
422 1. DATA: Valid value: max 8 bytes for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 8 bytes
Xiaoling 2.2 423
Xiaoling 36.2 424 [[image:image-20220602155039-4.png]]
Xiaoling 2.2 425
426
Xiaoling 36.2 427 So totally there will be 3 uplinks for this sampling, each uplink include 8 bytes DATA
Xiaoling 2.2 428
Xiaoling 36.2 429 DATA1=RETURN1 Valid Value + the first two of Valid value of RETURN10= **20 20 0a 33 90 41 02 aa**
Xiaoling 2.2 430
Xiaoling 36.2 431 DATA2=3^^rd^^ ~~ 10^^th^^ byte of Valid value of RETURN10= **05 81 0a 20 20 20 20 2d**
Xiaoling 2.2 432
Xiaoling 36.2 433 DATA3=the rest of Valid value of RETURN10= **30**
Xiaoling 2.2 434
Xiaoling 36.2 435
436 (% style="color:red" %)Notice: In firmware v1.3, the Max bytes has been changed according to the max bytes in different Frequency Bands for lowest SF. As below:
437
438 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink.
439
440 * For AU915/AS923 bands, if UplinkDwell time=0, max 11 bytes for each uplink.
441
442 * For US915 band, max 11 bytes for each uplink.
443
444 ~* For all other bands: max 51 bytes for each uplink.
445
446
Xiaoling 2.2 447 Below are the uplink payloads:
448
Xiaoling 37.2 449 [[image:1654157178836-407.png]]
Xiaoling 2.2 450
451
Xiaoling 31.3 452 === 3.3.5 Uplink on demand ===
Xiaoling 2.2 453
Xiaoling 37.4 454 Except uplink periodically, RS485-LN is able to uplink on demand. The server send downlink command to RS485-LN and RS485 will uplink data base on the command.
Xiaoling 2.2 455
456 Downlink control command:
457
Xiaoling 37.4 458 **0x08 command**: Poll an uplink with current command set in RS485-LN.
Xiaoling 2.2 459
Xiaoling 37.4 460 **0xA8 command**: Send a command to RS485-LN and uplink the output from sensors.
Xiaoling 2.2 461
462
463
Xiaoling 38.2 464 === 3.3.6 Uplink on Interrupt ===
Xiaoling 2.2 465
Xiaoling 38.2 466 RS485-LN support external Interrupt uplink since hardware v1.2 release.
Xiaoling 2.2 467
Xiaoling 38.2 468 [[image:1654157342174-798.png]]
Xiaoling 2.2 469
Xiaoling 38.2 470 Connect the Interrupt pin to RS485-LN INT port and connect the GND pin to V- port. When there is a high voltage (Max 24v) on INT pin. Device will send an uplink packet.
Xiaoling 2.2 471
472
Xiaoling 38.4 473 == 3.4 Uplink Payload ==
Xiaoling 2.2 474
Xiaoling 38.4 475 (% border="1" style="background-color:#4bacc6; color:white; width:734px" %)
476 |**Size(bytes)**|(% style="width:120px" %)**2**|(% style="width:116px" %)**1**|(% style="width:386px" %)**Length depends on the return from the commands**
477 |Value|(% style="width:120px" %)(((
Xiaoling 2.2 478 Battery(mV)
479
480 &
481
482 Interrupt _Flag
Xiaoling 38.4 483 )))|(% style="width:116px" %)(((
Xiaoling 2.2 484 PAYLOAD_VER
485
486
Xiaoling 38.4 487 )))|(% style="width:386px" %)If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
Xiaoling 2.2 488
489 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
490
491
Xiaoling 38.4 492 == 3.5 Configure RS485-BL via AT or Downlink ==
Xiaoling 2.2 493
Xiaoling 38.4 494 User can configure RS485-LN via AT Commands or LoRaWAN Downlink Commands
Xiaoling 2.2 495
Xiaoling 38.4 496 There are two kinds of Commands:
Xiaoling 2.2 497
Xiaoling 38.4 498 * (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
Xiaoling 2.2 499
Xiaoling 38.4 500 * (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-LN.  User can see these commands below:
Xiaoling 2.2 501
Xiaoling 38.4 502 === 3.5.1 Common Commands ===
Xiaoling 2.2 503
Xiaoling 38.4 504 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
Xiaoling 2.2 505
506
Xiaoling 41.1 507 === 3.5.2 Sensor related commands ===
Xiaoling 2.2 508
Xiaoling 41.1 509 Response feature is added to the server's downlink, a special package with a FPort of 200 will be uploaded immediately after receiving the data sent by the server.
Xiaoling 2.2 510
Xiaoling 41.1 511 [[image:image-20220602163333-5.png||height="263" width="1160"]]
Xiaoling 2.2 512
Xiaoling 41.1 513 The first byte of this package represents whether the configuration is successful, 00 represents failure, 01 represents success. Except for the first byte, the other is the previous downlink. (All commands except A8 type commands are applicable)
Xiaoling 2.2 514
515
Xiaoling 42.2 516 === 3.5.3 Sensor related commands ===
Xiaoling 2.2 517
Xiaoling 41.1 518 ==== ====
Xiaoling 2.2 519
Xiaoling 42.2 520 ==== **RS485 Debug Command** ====
521
522 This command is used to configure the RS485 devices; they won’t be used during sampling.
523
524 * **AT Command**
525
526 (% class="box infomessage" %)
527 (((
528 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**
529 )))
530
531 m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
532
533 * **Downlink Payload**
534
535 Format: A8 MM NN XX XX XX XX YY
536
537 Where:
538
539 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
540 * NN: The length of RS485 command
541 * XX XX XX XX: RS485 command total NN bytes
542 * YY: How many bytes will be uplink from the return of this RS485 command,
543 ** if YY=0, RS485-LN will execute the downlink command without uplink;
544 ** if YY>0, RS485-LN will uplink total YY bytes from the output of this RS485 command; Fport=200
545 ** if YY=FF, RS485-LN will uplink RS485 output with the downlink command content; Fport=200.
546
547 **Example 1** ~-~-> Configure without ask for uplink (YY=0)
548
549 To connect a Modbus Alarm with below commands.
550
551 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
552
553 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
554
555 So if user want to use downlink command to control to RS485 Alarm, he can use:
556
557 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
558
559 (% style="color:#4f81bd" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
560
561 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
562
563
564 **Example 2** ~-~-> Configure with requesting uplink and original downlink command (**YY=FF**)
565
566 User in IoT server send a downlink command: (% style="color:#4f81bd" %)**A8 01 06 0A 08 00 04 00 01 YY**
567
568
569 RS485-LN got this downlink command and send (% style="color:#4f81bd" %)**0A 08 00 04 00 01 **(%%)to Modbus network. One of the RS485 sensor in the network send back Modbus reply **0A 08 00 04 00 00**. RS485-LN get this reply and combine with the original downlink command and uplink. The uplink message is:
570
571 **A8** (% style="color:#4f81bd" %)**0A 08 00 04 00  **(% style="color:red" %)**01 06** ** **(% style="color:green" %)**0A 08 00 04 00 00**
572
573 [[image:1654159460680-153.png]]
574
Xiaoling 42.3 575
576
577 ==== **Set Payload version** ====
578
579 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
580
581 * **AT Command:**
582
583 (% class="box infomessage" %)
584 (((
585 **AT+PAYVER: Set PAYVER field = 1**
586 )))
587
588 * **Downlink Payload:**
589
590 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
591
592 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
593
594
595
596 ==== **Set RS485 Sampling Commands** ====
597
Xiaoling 44.2 598 AT+COMMANDx or AT+DATACUTx
Xiaoling 42.3 599
Xiaoling 44.2 600 These three commands are used to configure how the RS485-LN polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
Xiaoling 42.3 601
602
603 * **AT Command:**
604
605 (% class="box infomessage" %)
606 (((
607 **AT+COMMANDx: Configure RS485 read command to sensor.**
608 )))
609
610 (% class="box infomessage" %)
611 (((
612 **AT+DATACUTx: Configure how to handle return from RS485 devices.**
613 )))
614
615
616 * **Downlink Payload:**
617
618 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
619
620 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
621
622 Format: AF MM NN LL XX XX XX XX YY
623
624 Where:
625
626 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
627 * NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
628 * LL:  The length of AT+COMMAND or AT+DATACUT command
629 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
Xiaoling 44.2 630 * YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-LN will execute an uplink after got this command.
Xiaoling 42.3 631
632 **Example:**
633
634 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
635
636 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
637
638 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
639
640
641
642 ==== **Fast command to handle MODBUS device** ====
643
644 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
645
646 This command is valid since v1.3 firmware version
647
Xiaoling 44.2 648 AT+MBFUN can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
Xiaoling 42.3 649
650
651 **Example:**
652
Xiaoling 44.2 653 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0). So RS485-LN.
Xiaoling 42.3 654 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
655 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
656
Xiaoling 44.2 657 [[image:image-20220602165351-6.png]]
Xiaoling 42.3 658
Xiaoling 44.2 659 [[image:image-20220602165351-7.png]]
Xiaoling 42.3 660
661
662
663 ==== **RS485 command timeout** ====
664
Xiaoling 44.3 665 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LN to use longer time to wait for their action.
Xiaoling 42.3 666
Xiaoling 44.3 667 Default value: 0, range:  0 ~~ 65 seconds
Xiaoling 42.3 668
669 * **AT Command:**
670
671 (% class="box infomessage" %)
672 (((
Xiaoling 44.3 673 **AT+CMDDLaa=hex(bb cc)*1000**
Xiaoling 42.3 674 )))
675
676 **Example:**
677
678 **AT+CMDDL1=1000** to send the open time to 1000ms
679
680
681 * **Downlink Payload:**
682
Xiaoling 44.3 683 **0x AA aa bb cc**
Xiaoling 42.3 684
Xiaoling 44.3 685 Same as: AT+CMDDLaa=hex(bb cc)*1000
Xiaoling 42.3 686
687 **Example:**
688
Xiaoling 44.3 689 0xAA 01 00 01  ~-~-> Same as **AT+CMDDL1=1000 ms**
Xiaoling 42.3 690
691
692
693 ==== **Uplink payload mode** ====
694
695 Define to use one uplink or multiple uplinks for the sampling.
696
697 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
698
699 * **AT Command:**
700
701 (% class="box infomessage" %)
702 (((
703 **AT+DATAUP=0**
704 )))
705
706 (% class="box infomessage" %)
707 (((
708 **AT+DATAUP=1**
709 )))
710
711
712 * **Downlink Payload:**
713
714 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
715
716 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
717
718
719
720 ==== **Manually trigger an Uplink** ====
721
722 Ask device to send an uplink immediately.
723
724 * **Downlink Payload:**
725
726 **0x08 FF**, RS485-BL will immediately send an uplink.
727
728
729
730 ==== **Clear RS485 Command** ====
731
732 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
733
734
735 * **AT Command:**
736
737 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
738
739 Example screen shot after clear all RS485 commands. 
740
741
742 The uplink screen shot is:
743
744 [[image:1654134704555-320.png]]
745
746
747 * **Downlink Payload:**
748
749 **0x09 aa bb** same as AT+CMDEAR=aa,bb
750
751
752
753 ==== **Set Serial Communication Parameters** ====
754
755 Set the Rs485 serial communication parameters:
756
757 * **AT Command:**
758
759 Set Baud Rate:
760
761 (% class="box infomessage" %)
762 (((
763 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
764 )))
765
766 Set UART Parity
767
768 (% class="box infomessage" %)
769 (((
770 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
771 )))
772
773 Set STOPBIT
774
775 (% class="box infomessage" %)
776 (((
777 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
778 )))
779
780
781 * **Downlink Payload:**
782
783 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
784
785 **Example:**
786
787 * A7 01 00 60   same as AT+BAUDR=9600
788 * A7 01 04 80  same as AT+BAUDR=115200
789
790 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
791
792 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
793
794
795
796 ==== **Control output power duration** ====
797
798 User can set the output power duration before each sampling.
799
800 * **AT Command:**
801
802 **Example:**
803
804 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
805
806 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
807
808
809 * **LoRaWAN Downlink Command:**
810
811 **07 01 aa bb**  Same as AT+5VT=(aa bb)
812
813 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0