Last modified by Xiaoling on 2025/07/10 16:21

From version 149.1
edited by Xiaoling
on 2025/07/10 16:21
Change comment: There is no comment for this version
To version 123.5
edited by Xiaoling
on 2025/04/01 16:54
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,7 +1,8 @@
1 1  
2 2  
3 3  
4 -[[image:image-20240109154731-4.png||data-xwiki-image-style-alignment="center" height="546" width="769"]]
4 +(% style="text-align:center" %)
5 +[[image:image-20240109154731-4.png||height="671" width="945"]]
5 5  
6 6  
7 7  
... ... @@ -47,7 +47,9 @@
47 47  Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 48  )))
49 49  
51 +[[image:1675071321348-194.png]]
50 50  
53 +
51 51  == 1.2 ​Features ==
52 52  
53 53  
... ... @@ -133,7 +133,7 @@
133 133  === 1.4.2 Immersion Type ===
134 134  
135 135  
136 -[[image:image-20240109160445-5.png||height="199" width="150"]]
139 +[[image:image-20240109160445-5.png||height="221" width="166"]]
137 137  
138 138  * Immersion Type, Probe IP Level: IP68
139 139  * Measuring Range: Measure range can be customized, up to 100m.
... ... @@ -141,15 +141,11 @@
141 141  * Long-Term Stability: ±0.2% F.S / Year
142 142  * Storage temperature: -30°C~~80°C
143 143  * Operating temperature: 0°C~~50°C
144 -* Probe Material: 316 stainless steels
145 -* Cable model specifications: CGYPU 5*0.2mm2
146 -* Usage characteristics of Cable
147 -1) Operating temperature:-40℃— +70℃
148 -2) -30℃ bending cable 15 times of outer diameter can work normally
147 +* Material: 316 stainless steels
149 149  
150 150  === 1.4.3 Wireless Differential Air Pressure Sensor ===
151 151  
152 -[[image:image-20240511174954-1.png||height="193" width="193"]]
151 +[[image:image-20240511174954-1.png||height="215" width="215"]]
153 153  
154 154  * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
155 155  * Accuracy: 0.5% F.S, resolution is 0.05%.
... ... @@ -164,7 +164,7 @@
164 164  === 1.5.1 Thread Installation Type ===
165 165  
166 166  
167 -(% style="color:blue" %)**Application:**
166 +Application:
168 168  
169 169  * Hydraulic Pressure
170 170  * Petrochemical Industry
... ... @@ -182,7 +182,7 @@
182 182  === 1.5.2 Immersion Type ===
183 183  
184 184  
185 -(% style="color:blue" %)**Application:**
184 +Application:
186 186  
187 187  Liquid & Water Pressure / Level detect.
188 188  
... ... @@ -209,7 +209,7 @@
209 209  === 1.5.3 Wireless Differential Air Pressure Sensor ===
210 210  
211 211  
212 -(% style="color:blue" %)**Application:**
211 +Application:
213 213  
214 214  Indoor Air Control & Filter clogging Detect.
215 215  
... ... @@ -225,36 +225,40 @@
225 225  
226 226  Size of wind pressure transmitter:
227 227  
228 -[[image:image-20240513094047-2.png||height="462" width="518"]]
227 +[[image:image-20240513094047-2.png]]
229 229  
230 -(% style="color:red" %)**Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.**
229 +Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.
231 231  
232 232  
233 233  == 1.6 Sleep mode and working mode ==
234 234  
235 235  
236 -**Deep Sleep Mode:** Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
235 +Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
237 237  
238 -**Working Mode: **In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
237 +Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
239 239  
240 240  
241 241  == 1.7 Button & LEDs ==
242 242  
243 243  
244 -[[image:image-20250419092225-1.jpeg]]
243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
245 245  
246 246  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
247 247  |=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
248 -|[[image:1749540420016-961.png]] 1~~3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
247 +|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
248 +
249 +
249 249  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
250 250  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
251 251  )))
252 -|[[image:1749540423574-437.png]] >3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
253 +|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
254 +
255 +
253 253  Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
254 254  Green led will solidly turn on for 5 seconds after joined in network.
255 255  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
256 256  )))
257 -|[[image:1749540397649-875.png]] x5|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
260 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
258 258  
259 259  == 1.8 Pin Mapping ==
260 260  
... ... @@ -304,13 +304,13 @@
304 304  
305 305  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
306 306  
307 -[[image:image-20250419162538-1.png]]
310 +[[image:1675144005218-297.png]]
308 308  
309 309  
310 310  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
311 311  
312 312  
313 -(% style="color:blue" %)**Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.**
316 +Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
314 314  
315 315  Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
316 316  
... ... @@ -319,45 +319,30 @@
319 319  
320 320  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
321 321  
322 -**Create the application.**
323 323  
324 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
326 +Register the device
325 325  
326 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
328 +[[image:1675144099263-405.png]]
327 327  
328 328  
329 -**Add devices to the created Application.**
331 +Add APP EUI and DEV EUI
330 330  
331 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
333 +[[image:1675144117571-832.png]]
332 332  
333 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
334 334  
336 +Add APP EUI in the application
335 335  
336 -**Enter end device specifics manually.**
337 337  
338 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
339 +[[image:1675144143021-195.png]]
339 339  
340 340  
341 -**Add DevEUI and AppKey. Customize a platform ID for the device.**
342 +Add APP KEY
342 342  
343 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
344 +[[image:1675144157838-392.png]]
344 344  
346 +Step 2: Activate on PS-LB/LS
345 345  
346 -(% style="color:blue" %)**Step 2: Add decoder.**
347 347  
348 -In TTN, user can add a custom payload so it shows friendly reading.
349 -
350 -Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
351 -
352 -Below is TTN screen shot:
353 -
354 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
355 -
356 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
357 -
358 -
359 -(% style="color:blue" %)**Step 3: Activate on PS-LB/LS**
360 -
361 361  Press the button for 5 seconds to activate the PS-LB/LS.
362 362  
363 363  Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
... ... @@ -375,7 +375,7 @@
375 375  Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
376 376  
377 377  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
378 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
366 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
379 379  |(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
380 380  |(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
381 381  
... ... @@ -445,8 +445,10 @@
445 445  
446 446  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
447 447  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
448 -**Size(bytes)**
449 -)))|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
436 +
437 +
438 +Size(bytes)
439 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
450 450  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
451 451  
452 452  [[image:1675144608950-310.png]]
... ... @@ -467,10 +467,11 @@
467 467  
468 468  PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
469 469  
460 +
470 470  For example.
471 471  
472 472  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
473 -|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
464 +|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
474 474  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
475 475  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
476 476  |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
... ... @@ -478,23 +478,6 @@
478 478  The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
479 479  
480 480  
481 -When connecting to current sensors sold by our company, you can convert current readings to corresponding values by simply configuring the [[AT+PROBE>>||anchor="H3.3.4SettheProbeModel"]] command. If you prefer not to configure this command on the sensor, you can uniformly handle the conversion in the payload decoder instead.
482 -
483 -**Examples for decoder implementation:**
484 -
485 -~1. For AT+PROBE=0005, add the following processing in your decoder:
486 -
487 -[[image:image-20250512144042-1.png]]
488 -
489 -[[image:image-20250512144122-2.png]]
490 -
491 -2. For AT+PROBE=0102, add the following processing in your decoder(Corresponding to the position shown in the above screenshot).
492 -
493 -bytes[i]=0x01;bytes[1+i]=0x02;
494 -
495 -bytes[2]=0x01;bytes[3]=0x02;
496 -
497 -
498 498  === 2.3.5 0~~20mA value (IDC_IN) ===
499 499  
500 500  
... ... @@ -548,9 +548,13 @@
548 548  
549 549  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
550 550  |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
551 -**Size(bytes)**
552 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
525 +
526 +
527 +Size(bytes)
528 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
553 553  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
530 +
531 +
554 554  Voltage value, each 2 bytes is a set of voltage values.
555 555  )))
556 556  
... ... @@ -622,54 +622,45 @@
622 622  == 2.6 Datalog Feature (Since V1.1) ==
623 623  
624 624  
625 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, PS-LB will store the reading for future retrieving purposes.
603 +When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
626 626  
627 627  
628 -=== 2.6.1 How datalog works ===
606 +=== 2.6.1 Unix TimeStamp ===
629 629  
630 630  
631 -PS-LB will wait for ACK for every uplink, when there is no LoRaWAN network,PS-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
609 +PS-LB uses Unix TimeStamp format based on
632 632  
633 -* (((
634 -a) PS-LB will do an ACK check for data records sending to make sure every data arrive server.
635 -)))
636 -* (((
637 -b) PS-LB will send data in **CONFIRMED Mode**, but PS-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if PS-LB gets a ACK, PS-LB will consider there is a network connection and resend all NONE-ACK messages.
611 +[[image:image-20250401163826-3.jpeg]]
638 638  
639 -
640 -)))
613 +Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
641 641  
642 -=== 2.6.2 Enable Datalog ===
615 +Below is the converter example:
643 643  
617 +[[image:image-20250401163906-4.jpeg]]
644 644  
645 -User need to make sure below two settings are enable to use datalog;
646 646  
647 -* (% style="color:blue" %)**SYNCMOD=1(Default)**(%%) to enable sync time via LoRaWAN MAC command, click here ([[AT+SYNCMOD>>https://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.6Settimesynchronizationmethod28ThenetworkservermustsupportLoRaWANv1.0.329]]) for detailed instructions.
648 -* (% style="color:blue" %)**PNACKMD=1**(%%)** **to enable datalog feature, click here ([[AT+PNACKMD>>https://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.26RequesttheservertosendanACK]]) for detailed instructions.
620 +=== 2.6.2 Set Device Time ===
649 649  
650 650  
623 +There are two ways to set the device's time:
651 651  
652 -Once PS-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to PS-LB. If PS-LB fails to get the time from the server, PS-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
653 653  
654 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
626 +~1. Through LoRaWAN MAC Command (Default settings)
655 655  
628 +Users need to set SYNCMOD=1 to enable sync time via the MAC command.
656 656  
657 -=== 2.6.3 Unix TimeStamp ===
630 +Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
658 658  
632 +Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
659 659  
660 -PS-LB uses Unix TimeStamp format based on
661 661  
662 -[[image:image-20250401163826-3.jpeg]]
635 + 2. Manually Set Time
663 663  
664 -Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
637 +Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
665 665  
666 -Below is the converter example:
667 667  
668 -[[image:image-20250401163906-4.jpeg]]
640 +=== 2.6.3 Poll sensor value ===
669 669  
670 -
671 -=== 2.6.4 Poll sensor value ===
672 -
673 673  Users can poll sensor values based on timestamps. Below is the downlink command.
674 674  
675 675  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
... ... @@ -688,7 +688,7 @@
688 688  Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
689 689  
690 690  
691 -=== 2.6.5 Datalog Uplink payload (FPORT~=3) ===
660 +=== 2.6.4 Datalog Uplink payload (FPORT~=3) ===
692 692  
693 693  
694 694  The Datalog uplinks will use below payload format.
... ... @@ -709,6 +709,8 @@
709 709  IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
710 710  )))|(% style="width:86px" %)Unix Time Stamp
711 711  
681 +
682 +
712 712  IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
713 713  
714 714  [[image:image-20250117104847-4.png]]
... ... @@ -788,7 +788,7 @@
788 788  Note: water_deep in the data needs to be converted using decoding to get it.
789 789  
790 790  
791 -=== 2.6.6 Decoder in TTN V3 ===
762 +=== 2.6.5 Decoder in TTN V3 ===
792 792  
793 793  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
794 794  
... ... @@ -814,9 +814,13 @@
814 814  
815 815  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
816 816  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
788 +
789 +
817 817  Size(bytes)
818 818  )))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
819 -|(% style="width:98px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
792 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
793 +
794 +
820 820  [[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
821 821  )))
822 822  
... ... @@ -882,7 +882,6 @@
882 882  
883 883  ==== 2.8.2.1 Wave alarm mode ====
884 884  
885 -
886 886  Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
887 887  
888 888  * Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
... ... @@ -891,29 +891,48 @@
891 891  AT Command: AT+ROC
892 892  
893 893  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
894 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 193px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
868 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
895 895  |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
870 +
871 +
896 896  0,0,0,0(default)
897 897  OK
898 898  )))
899 899  |(% colspan="1" rowspan="4" style="width:143px" %)(((
876 +
877 +
878 +
879 +
880 +
900 900  AT+ROC=a,b,c,d
901 901  )))|(% style="width:154px" %)(((
902 -**a:** Enable or disable the ROC
883 +
884 +
885 +
886 +
887 +
888 +
889 +
890 +a: Enable or disable the ROC
903 903  )))|(% style="width:197px" %)(((
904 -**0:** off
905 -**1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
906 -**2:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
892 +
893 +
894 +0: off
895 +1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
896 +
897 +2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
907 907  )))
908 -|(% style="width:154px" %)**b:** Set the detection interval|(% style="width:197px" %)(((
899 +|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)(((
900 +
901 +
909 909  Range:  0~~65535s
910 910  )))
911 -|(% style="width:154px" %)**c:** Setting the IDC change value|(% style="width:197px" %)Unit: uA
912 -|(% style="width:154px" %)**d:** Setting the VDC change value|(% style="width:197px" %)Unit: mV
904 +|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA
905 +|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV
913 913  
914 914  Example:
915 915  
916 -* AT+ROC=0,0,0,0  ~/~/ The ROC function is not used.
909 +* AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
917 917  * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
918 918  * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
919 919  * AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
... ... @@ -932,9 +932,9 @@
932 932  
933 933  Example:
934 934  
935 -* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/ Equal to AT+ROC=1,60,3000, 500
936 -* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=1,60,3000,0
937 -* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=2,60,3000,0
928 +* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/Equal to AT+ROC=1,60,3000, 500
929 +* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=1,60,3000,0
930 +* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=2,60,3000,0
938 938  
939 939  Screenshot of parsing example in TTN:
940 940  
... ... @@ -945,44 +945,64 @@
945 945  
946 946  ==== 2.8.2.2 Over-threshold alarm mode ====
947 947  
948 -
949 949  Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
950 950  
951 951  AT Command: AT+ROC=3,a,b,c,d,e
952 952  
953 953  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
954 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 187px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
946 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
955 955  |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
948 +
949 +
956 956  0,0,0,0(default)
957 957  OK
958 958  )))
959 959  |(% colspan="1" rowspan="5" style="width:143px" %)(((
954 +
955 +
956 +
957 +
958 +
960 960  AT+ROC=3,a,b,c,d,e
961 961  )))|(% style="width:160px" %)(((
962 -**a:** Set the detection interval
961 +
962 +
963 +a: Set the detection interval
963 963  )))|(% style="width:185px" %)(((
965 +
966 +
964 964  Range:  0~~65535s
965 965  )))
966 -|(% style="width:160px" %)**b:** Set the IDC alarm trigger condition|(% style="width:185px" %)(((
967 -**0:** Less than the set IDC threshold, Alarm
968 -**1:** Greater than the set IDC threshold, Alarm
969 +|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
970 +
971 +
972 +0: Less than the set IDC threshold, Alarm
973 +
974 +1: Greater than the set IDC threshold, Alarm
969 969  )))
970 970  |(% style="width:160px" %)(((
971 -**c: ** IDC alarm threshold
977 +
978 +
979 +c:  IDC alarm threshold
972 972  )))|(% style="width:185px" %)(((
981 +
982 +
973 973  Unit: uA
974 974  )))
975 -|(% style="width:160px" %)**d:** Set the VDC alarm trigger condition|(% style="width:185px" %)(((
976 -**0:** Less than the set VDC threshold, Alarm
977 -**1:** Greater than the set VDC threshold, Alarm
985 +|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
986 +
987 +
988 +0: Less than the set VDC threshold, Alarm
989 +
990 +1: Greater than the set VDC threshold, Alarm
978 978  )))
979 -|(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
992 +|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV
980 980  
981 981  Example:
982 982  
983 -* AT+ROC=3,60,0,3000,0,5000  ~/~/ The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
984 -* AT+ROC=3,180,1,3000,1,5000  ~/~/ The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
985 -* AT+ROC=3,300,0,3000,1,5000  ~/~/ The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
996 +* AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
997 +* AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
998 +* AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
986 986  
987 987  Downlink Command: 0x09 03 aa bb cc dd ee
988 988  
... ... @@ -1001,9 +1001,9 @@
1001 1001  
1002 1002  Example:
1003 1003  
1004 -* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/ Equal to AT+ROC=3,60,0,3000,0,5000
1005 -* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,1,3000,1,5000
1006 -* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,0,3000,1,5000
1017 +* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
1018 +* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
1019 +* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
1007 1007  
1008 1008  Screenshot of parsing example in TTN:
1009 1009  
... ... @@ -1057,14 +1057,18 @@
1057 1057  
1058 1058  AT Command: AT+TDC
1059 1059  
1060 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1073 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1061 1061  |=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
1062 1062  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1076 +
1077 +
1063 1063  30000
1064 1064  OK
1065 1065  the interval is 30000ms = 30s
1066 1066  )))
1067 1067  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1083 +
1084 +
1068 1068  OK
1069 1069  Set transmit interval to 60000ms = 60 seconds
1070 1070  )))
... ... @@ -1085,14 +1085,18 @@
1085 1085  
1086 1086  AT Command: AT+INTMOD
1087 1087  
1088 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1105 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1089 1089  |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
1090 1090  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1108 +
1109 +
1091 1091  0
1092 1092  OK
1093 1093  the mode is 0 =Disable Interrupt
1094 1094  )))
1095 1095  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1115 +
1116 +
1096 1096  Set Transmit Interval
1097 1097  0. (Disable Interrupt),
1098 1098  ~1. (Trigger by rising and falling edge)
... ... @@ -1116,52 +1116,72 @@
1116 1116  
1117 1117  AT Command: AT+3V3T
1118 1118  
1119 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:474px" %)
1140 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
1120 1120  |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1121 1121  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1143 +
1144 +
1122 1122  0
1123 1123  OK
1124 1124  )))
1125 1125  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1149 +
1150 +
1126 1126  OK
1127 1127  default setting
1128 1128  )))
1129 1129  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1155 +
1156 +
1130 1130  OK
1131 1131  )))
1132 1132  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1160 +
1161 +
1133 1133  OK
1134 1134  )))
1135 1135  
1136 1136  AT Command: AT+5VT
1137 1137  
1138 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
1167 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1139 1139  |=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1140 1140  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1170 +
1171 +
1141 1141  0
1142 1142  OK
1143 1143  )))
1144 1144  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1176 +
1177 +
1145 1145  OK
1146 1146  default setting
1147 1147  )))
1148 1148  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1182 +
1183 +
1149 1149  OK
1150 1150  )))
1151 1151  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1187 +
1188 +
1152 1152  OK
1153 1153  )))
1154 1154  
1155 1155  AT Command: AT+12VT
1156 1156  
1157 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:443px" %)
1194 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1158 1158  |=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1159 1159  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1197 +
1198 +
1160 1160  0
1161 1161  OK
1162 1162  )))
1163 1163  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1164 1164  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1204 +
1205 +
1165 1165  OK
1166 1166  )))
1167 1167  
... ... @@ -1212,11 +1212,13 @@
1212 1212  (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1213 1213  
1214 1214  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1215 -|(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1256 +|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1216 1216  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1217 1217  OK
1218 1218  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1219 1219  |(% style="background-color:#f2f2f2; width:154px" %)(((
1261 +
1262 +
1220 1220  AT+PROBE=000A
1221 1221  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1222 1222  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -1237,7 +1237,7 @@
1237 1237  
1238 1238  AT Command: AT +STDC
1239 1239  
1240 -AT+STDC=aa,bb,cc
1283 +AT+STDC=aa,bb,bb
1241 1241  
1242 1242  aa:
1243 1243  0: means disable this function and use TDC to send packets.
... ... @@ -1246,20 +1246,28 @@
1246 1246  bb: Each collection interval (s), the value is 1~~65535
1247 1247  cc: the number of collection times, the value is 1~~120
1248 1248  
1249 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1250 -|(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1292 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1293 +|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1251 1251  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1252 1252  OK
1253 1253  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1297 +
1298 +
1254 1254  Attention:Take effect after ATZ
1300 +
1255 1255  OK
1256 1256  )))
1257 1257  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1304 +
1305 +
1258 1258  Use the TDC interval to send packets.(default)
1259 1259  
1260 1260  
1261 1261  )))|(% style="background-color:#f2f2f2" %)(((
1310 +
1311 +
1262 1262  Attention:Take effect after ATZ
1313 +
1263 1263  OK
1264 1264  )))
1265 1265  
... ... @@ -1269,113 +1269,6 @@
1269 1269  
1270 1270  * Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1271 1271  
1272 -== 3.4 Print data entries base on page(Since v1.1.0) ==
1273 -
1274 -
1275 -Feature: Print the sector data from start page to stop page (max is 416 pages).
1276 -
1277 -(% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1278 -
1279 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1280 -|(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1281 -|(% style="width:156px" %)(((
1282 - AT+PDTA=1,1
1283 -Print page 1 to 1
1284 -)))|(% style="width:311px" %)(((
1285 -Stop Tx events when read sensor data
1286 -
1287 -8031000 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1288 -
1289 -8031010 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1290 -
1291 -8031020 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1292 -
1293 -8031030 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1294 -
1295 -8031040 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1296 -
1297 -8031050 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1298 -
1299 -8031060 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1300 -
1301 -8031070 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1302 -
1303 -Start Tx events
1304 -
1305 -
1306 -OK
1307 -)))
1308 -
1309 -(% style="color:#4f81bd" %)**Downlink Command:**
1310 -
1311 -No downlink commands for feature
1312 -
1313 -
1314 -== 3.5 Print last few data entries(Since v1.1.0) ==
1315 -
1316 -
1317 -Feature: Print the last few data entries
1318 -
1319 -
1320 -(% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1321 -
1322 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1323 -|(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1324 -|(% style="width:156px" %)(((
1325 -AT+PLDTA=10
1326 -Print last 10 entries
1327 -)))|(% style="width:311px" %)(((
1328 -Stop Tx events when read sensor data
1329 -
1330 -0001 2025/5/19 06:16:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1331 -
1332 -0002 2025/5/19 06:17:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1333 -
1334 -0003 2025/5/19 06:18:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1335 -
1336 -0004 2025/5/19 06:19:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1337 -
1338 -0005 2025/5/19 06:20:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1339 -
1340 -0006 2025/5/19 06:21:50 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1341 -
1342 -0007 2025/5/19 06:22:50 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1343 -
1344 -0008 2025/5/19 06:26:44 3276 in1:low in2:low exti:low status:false vdc:3.385 idc:0.000 proble:0000 water_deep:0.000
1345 -
1346 -0009 2025/5/19 06:27:36 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1347 -
1348 -0010 2025/5/19 06:28:36 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1349 -
1350 -Start Tx events
1351 -
1352 -OK
1353 -)))
1354 -
1355 -(% style="color:#4f81bd" %)**Downlink Command:**
1356 -
1357 -No downlink commands for feature
1358 -
1359 -
1360 -== 3.6 Clear Flash Record(Since v1.1.0) ==
1361 -
1362 -
1363 -Feature: Clear flash storage for data log feature.
1364 -
1365 -(% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1366 -
1367 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1368 -|(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1369 -|(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1370 -Clear all stored sensor data…
1371 -
1372 -OK
1373 -)))
1374 -
1375 -(% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1376 -
1377 -* Example: 0xA301  ~/~/  Same as AT+CLRDTA
1378 -
1379 1379  = 4. Battery & Power Consumption =
1380 1380  
1381 1381  
... ... @@ -1421,18 +1421,18 @@
1421 1421  
1422 1422  Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1423 1423  
1424 -Calculate scale factor:
1368 +Calculate scale factor
1425 1425  Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1426 1426  
1427 -Calculation formula:
1371 +Calculation formula
1428 1428  
1429 1429  Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1430 1430  
1431 -Actual calculations:
1375 +Actual calculations
1432 1432  
1433 1433  Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1434 1434  
1435 -Error:
1379 +Error
1436 1436  
1437 1437  0.009810726
1438 1438  
... ... @@ -1439,31 +1439,6 @@
1439 1439  
1440 1440  [[image:image-20240329175044-1.png]]
1441 1441  
1442 -
1443 -== 6.5 Cable & Probe Material Compatibility(Immersion type) ==
1444 -
1445 -
1446 -Since the installation method of immersion sensors requires immersion in a liquid environment, the discussion of liquids that can be safely installed is very important.
1447 -
1448 -(% style="color:blue" %)**The material of the immersed part of the immersion sensor:**
1449 -
1450 -* **Cable Jacket**: Black polyurethane (PU) – Resistant to water, oils, and mild chemicals.
1451 -* **Probe Material**: 316 stainless steel – Corrosion-resistant in most industrial/marine environments.
1452 -
1453 -(% style="color:blue" %)**Chemical Compatibility:**
1454 -
1455 -* **Polyurethane (PU) Cable:** Resists water, oils, fuels, and mild chemicals but may degrade with prolonged exposure to strong acids, bases, or solvents (e.g., acetone, chlorinated hydrocarbons).
1456 -* 3**16 Stainless Steel Probe:** Suitable for water, seawater, mild acids/alkalis, and industrial fluids. Avoid highly concentrated acids (e.g., hydrochloric acid) or chlorides at high temperatures.
1457 -
1458 -**Chemical Resistance Chart for Polyurethane (PU) Cable**
1459 -
1460 -[[image:image-20250603171424-1.png||height="429" width="625"]]
1461 -
1462 -**Chemical Resistance Chart for 316 Stainless Steel Probe**
1463 -
1464 -[[image:image-20250603171503-2.png||height="350" width="616"]]
1465 -
1466 -
1467 1467  = 7. Troubleshooting =
1468 1468  
1469 1469  == 7.1 Water Depth Always shows 0 in payload ==
... ... @@ -1480,40 +1480,16 @@
1480 1480  
1481 1481  = 8. Order Info =
1482 1482  
1483 -== 8.1 Thread Installation Type & Immersion Type Pressure Sensor ==
1484 1484  
1485 1485  
1486 -Part Number: (% style="color:blue" %)**PS-LB/LS-Txx-YY  or  PS-LB/LS-Ixx-YY**
1487 -
1488 -(% style="color:blue" %)**XX:**(%%)** Pressure Range and Thread Type **
1489 -
1490 -(% style="color:blue" %)**YY:**(%%)** The default frequency band**
1491 -
1492 -* YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1493 -
1494 1494  [[image:image-20241021093209-1.png]]
1495 1495  
1496 -
1497 -== 8.2 Wireless Differential Air Pressure Sensor ==
1498 -
1499 -
1500 -Part Number: (% style="color:blue" %)**PS-LB-Dxx-YY  or  PS-LS-Dxx-YY **
1501 -
1502 -(% style="color:blue" %)**XX:**(%%)** Differential Pressure Range**
1503 -
1504 -(% style="color:blue" %)**YY:**(%%)** The default frequency band**
1505 -
1506 -* YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1507 -
1508 -[[image:image-20250401174215-1.png||height="486" width="656"]]
1509 -
1510 -
1511 1511  = 9. ​Packing Info =
1512 1512  
1513 1513  
1514 1514  Package Includes:
1515 1515  
1516 -* PS-LB/LS-Txx/Ixx, PS-LB/LS-Dxx   LoRaWAN Pressure Sensor
1411 +* PS-LB or PS-LS LoRaWAN Pressure Sensor
1517 1517  
1518 1518  Dimension and weight:
1519 1519  
1749540397649-875.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 KB
Content
1749540420016-961.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 KB
Content
1749540423574-437.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 KB
Content
image-20250401174215-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.3 KB
Content
image-20250419092225-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -47.6 KB
Content
image-20250419162538-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.3 KB
Content
image-20250512144042-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -471.4 KB
Content
image-20250512144122-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -572.9 KB
Content
image-20250603171424-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -38.7 KB
Content
image-20250603171503-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -33.7 KB
Content