Changes for page PS-LB/LS -- LoRaWAN Air Water Pressure Sensor User Manual
Last modified by Xiaoling on 2025/07/10 16:21
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 10 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,7 +1,8 @@ 1 1 2 2 3 3 4 -[[image:image-20240109154731-4.png||data-xwiki-image-style-alignment="center" height="546" width="769"]] 4 +(% style="text-align:center" %) 5 +[[image:image-20240109154731-4.png||height="671" width="945"]] 5 5 6 6 7 7 ... ... @@ -47,7 +47,9 @@ 47 47 Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 48 48 ))) 49 49 51 +[[image:1675071321348-194.png]] 50 50 53 + 51 51 == 1.2 Features == 52 52 53 53 ... ... @@ -133,7 +133,7 @@ 133 133 === 1.4.2 Immersion Type === 134 134 135 135 136 -[[image:image-20240109160445-5.png||height="1 99" width="150"]]139 +[[image:image-20240109160445-5.png||height="221" width="166"]] 137 137 138 138 * Immersion Type, Probe IP Level: IP68 139 139 * Measuring Range: Measure range can be customized, up to 100m. ... ... @@ -141,15 +141,11 @@ 141 141 * Long-Term Stability: ±0.2% F.S / Year 142 142 * Storage temperature: -30°C~~80°C 143 143 * Operating temperature: 0°C~~50°C 144 -* Probe Material: 316 stainless steels 145 -* Cable model specifications: CGYPU 5*0.2mm2 146 -* Usage characteristics of Cable 147 -1) Operating temperature:-40℃— +70℃ 148 -2) -30℃ bending cable 15 times of outer diameter can work normally 147 +* Material: 316 stainless steels 149 149 150 150 === 1.4.3 Wireless Differential Air Pressure Sensor === 151 151 152 -[[image:image-20240511174954-1.png||height="1 93" width="193"]]151 +[[image:image-20240511174954-1.png||height="215" width="215"]] 153 153 154 154 * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range). 155 155 * Accuracy: 0.5% F.S, resolution is 0.05%. ... ... @@ -164,7 +164,7 @@ 164 164 === 1.5.1 Thread Installation Type === 165 165 166 166 167 - (% style="color:blue" %)**Application:**166 +Application: 168 168 169 169 * Hydraulic Pressure 170 170 * Petrochemical Industry ... ... @@ -182,7 +182,7 @@ 182 182 === 1.5.2 Immersion Type === 183 183 184 184 185 - (% style="color:blue" %)**Application:**184 +Application: 186 186 187 187 Liquid & Water Pressure / Level detect. 188 188 ... ... @@ -209,7 +209,7 @@ 209 209 === 1.5.3 Wireless Differential Air Pressure Sensor === 210 210 211 211 212 - (% style="color:blue" %)**Application:**211 +Application: 213 213 214 214 Indoor Air Control & Filter clogging Detect. 215 215 ... ... @@ -225,36 +225,40 @@ 225 225 226 226 Size of wind pressure transmitter: 227 227 228 -[[image:image-20240513094047-2.png ||height="462" width="518"]]227 +[[image:image-20240513094047-2.png]] 229 229 230 - (% style="color:red" %)**Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.**229 +Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm. 231 231 232 232 233 233 == 1.6 Sleep mode and working mode == 234 234 235 235 236 - **Deep Sleep Mode:**Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.235 +Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 237 237 238 - **Working Mode:**In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.237 +Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. 239 239 240 240 241 241 == 1.7 Button & LEDs == 242 242 243 243 244 -[[image:i mage-20250419092225-1.jpeg]]243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]] 245 245 246 246 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 247 247 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action 248 -|[[image:1749540420016-961.png]] 1~~3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)((( 247 +|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)((( 248 + 249 + 249 249 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once. 250 250 Meanwhile, BLE module will be active and user can connect via BLE to configure device. 251 251 ))) 252 -|[[image:1749540423574-437.png]] >3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)((( 253 +|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)((( 254 + 255 + 253 253 Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. 254 254 Green led will solidly turn on for 5 seconds after joined in network. 255 255 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network. 256 256 ))) 257 -| [[image:1749540397649-875.png]]x5|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.260 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode. 258 258 259 259 == 1.8 Pin Mapping == 260 260 ... ... @@ -304,13 +304,13 @@ 304 304 305 305 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 306 306 307 -[[image: image-20250419162538-1.png]]310 +[[image:1675144005218-297.png]] 308 308 309 309 310 310 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 311 311 312 312 313 - (% style="color:blue" %)**Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.**316 +Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS. 314 314 315 315 Each PS-LB/LS is shipped with a sticker with the default device EUI as below: 316 316 ... ... @@ -319,45 +319,30 @@ 319 319 320 320 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 321 321 322 -**Create the application.** 323 323 324 - [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]326 +Register the device 325 325 326 -[[image: https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]328 +[[image:1675144099263-405.png]] 327 327 328 328 329 - **Adddevicestothe createdApplication.**331 +Add APP EUI and DEV EUI 330 330 331 -[[image: https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]333 +[[image:1675144117571-832.png]] 332 332 333 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]] 334 334 336 +Add APP EUI in the application 335 335 336 -**Enter end device specifics manually.** 337 337 338 -[[image: https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]339 +[[image:1675144143021-195.png]] 339 339 340 340 341 - **AddDevEUI andAppKey.Customize a platform ID for the device.**342 +Add APP KEY 342 342 343 -[[image: https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]344 +[[image:1675144157838-392.png]] 344 344 346 +Step 2: Activate on PS-LB/LS 345 345 346 -(% style="color:blue" %)**Step 2: Add decoder.** 347 347 348 -In TTN, user can add a custom payload so it shows friendly reading. 349 - 350 -Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]] 351 - 352 -Below is TTN screen shot: 353 - 354 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]] 355 - 356 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]] 357 - 358 - 359 -(% style="color:blue" %)**Step 3: Activate on PS-LB/LS** 360 - 361 361 Press the button for 5 seconds to activate the PS-LB/LS. 362 362 363 363 Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network. ... ... @@ -375,7 +375,7 @@ 375 375 Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink. 376 376 377 377 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 378 -|(% colspan="6" style="background-color:#4f81bd; color:white" %) **Device Status (FPORT=5)**366 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5) 379 379 |(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2 380 380 |(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT 381 381 ... ... @@ -445,8 +445,10 @@ 445 445 446 446 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 447 447 |(% style="background-color:#4f81bd; color:white; width:97px" %)((( 448 -**Size(bytes)** 449 -)))|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1** 436 + 437 + 438 +Size(bytes) 439 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1 450 450 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] 451 451 452 452 [[image:1675144608950-310.png]] ... ... @@ -467,10 +467,11 @@ 467 467 468 468 PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 469 469 460 + 470 470 For example. 471 471 472 472 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 473 -|(% style="background-color:#4f81bd; color:white" %) **Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**464 +|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning 474 474 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water 475 475 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water 476 476 |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure ... ... @@ -478,23 +478,6 @@ 478 478 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value. 479 479 480 480 481 -When connecting to current sensors sold by our company, you can convert current readings to corresponding values by simply configuring the [[AT+PROBE>>||anchor="H3.3.4SettheProbeModel"]] command. If you prefer not to configure this command on the sensor, you can uniformly handle the conversion in the payload decoder instead. 482 - 483 -**Examples for decoder implementation:** 484 - 485 -~1. For AT+PROBE=0005, add the following processing in your decoder: 486 - 487 -[[image:image-20250512144042-1.png]] 488 - 489 -[[image:image-20250512144122-2.png]] 490 - 491 -2. For AT+PROBE=0102, add the following processing in your decoder(Corresponding to the position shown in the above screenshot). 492 - 493 -bytes[i]=0x01;bytes[1+i]=0x02; 494 - 495 -bytes[2]=0x01;bytes[3]=0x02; 496 - 497 - 498 498 === 2.3.5 0~~20mA value (IDC_IN) === 499 499 500 500 ... ... @@ -548,9 +548,13 @@ 548 548 549 549 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %) 550 550 |(% style="background-color:#4f81bd; color:white; width:65px" %)((( 551 -**Size(bytes)** 552 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n** 525 + 526 + 527 +Size(bytes) 528 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n 553 553 |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)((( 530 + 531 + 554 554 Voltage value, each 2 bytes is a set of voltage values. 555 555 ))) 556 556 ... ... @@ -622,54 +622,45 @@ 622 622 == 2.6 Datalog Feature (Since V1.1) == 623 623 624 624 625 - Datalog Featureis to ensureIoT ServercangetallsamplingdatafromSensor even iftheLoRaWANnetworkis down.For each sampling, PS-LB willstorethereadingfor future retrievingpurposes.603 +When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot. 626 626 627 627 628 -=== 2.6.1 Howdatalogworks===606 +=== 2.6.1 Unix TimeStamp === 629 629 630 630 631 -PS-LB will wait for ACK for everyuplink, when there is no LoRaWAN network,PS-LB willmark these records with non-ackmessagesand store the sensor data,and it willsendall messages (10s interval) after the network recovery.609 +PS-LB uses Unix TimeStamp format based on 632 632 633 -* ((( 634 -a) PS-LB will do an ACK check for data records sending to make sure every data arrive server. 635 -))) 636 -* ((( 637 -b) PS-LB will send data in **CONFIRMED Mode**, but PS-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if PS-LB gets a ACK, PS-LB will consider there is a network connection and resend all NONE-ACK messages. 611 +[[image:image-20250401163826-3.jpeg]] 638 638 639 - 640 -))) 613 +Users can get this time from the link: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] : 641 641 642 - ===2.6.2EnableDatalog ===615 +Below is the converter example: 643 643 617 +[[image:image-20250401163906-4.jpeg]] 644 644 645 -User need to make sure below two settings are enable to use datalog; 646 646 647 -* (% style="color:blue" %)**SYNCMOD=1(Default)**(%%) to enable sync time via LoRaWAN MAC command, click here ([[AT+SYNCMOD>>https://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.6Settimesynchronizationmethod28ThenetworkservermustsupportLoRaWANv1.0.329]]) for detailed instructions. 648 -* (% style="color:blue" %)**PNACKMD=1**(%%)** **to enable datalog feature, click here ([[AT+PNACKMD>>https://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.26RequesttheservertosendanACK]]) for detailed instructions. 620 +=== 2.6.2 Set Device Time === 649 649 650 650 623 +There are two ways to set the device's time: 651 651 652 -Once PS-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to PS-LB. If PS-LB fails to get the time from the server, PS-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 653 653 654 - (%style="color:red" %)**Note: LoRaWAN Server need to supportLoRaWANv1.0.3(MACv1.0.3) or higher to support this MACcommandfeature, Chirpstack,TTN V3 v3 andloriot support but TTN V3 v2 doesn'tsupport. If server doesn't support this command, it will through away uplink packet with thiscommand, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**626 +~1. Through LoRaWAN MAC Command (Default settings) 655 655 628 +Users need to set SYNCMOD=1 to enable sync time via the MAC command. 656 656 657 - ===2.6.3UnixTimeStamp===630 +Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]]. 658 658 632 +Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature. 659 659 660 -PS-LB uses Unix TimeStamp format based on 661 661 662 - [[image:image-20250401163826-3.jpeg]]635 + 2. Manually Set Time 663 663 664 -Users canget thistimefromthelink: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :637 +Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server. 665 665 666 -Below is the converter example: 667 667 668 - [[image:image-20250401163906-4.jpeg]]640 +=== 2.6.3 Poll sensor value === 669 669 670 - 671 -=== 2.6.4 Poll sensor value === 672 - 673 673 Users can poll sensor values based on timestamps. Below is the downlink command. 674 674 675 675 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %) ... ... @@ -676,6 +676,8 @@ 676 676 |=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31) 677 677 |(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte 678 678 |(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)((( 648 + 649 + 679 679 Timestamp end 680 680 )))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval 681 681 ... ... @@ -688,7 +688,7 @@ 688 688 Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s. 689 689 690 690 691 -=== 2.6. 5Datalog Uplink payload (FPORT~=3) ===662 +=== 2.6.4 Datalog Uplink payload (FPORT~=3) === 692 692 693 693 694 694 The Datalog uplinks will use below payload format. ... ... @@ -709,6 +709,8 @@ 709 709 IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status 710 710 )))|(% style="width:86px" %)Unix Time Stamp 711 711 683 + 684 + 712 712 IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status: 713 713 714 714 [[image:image-20250117104847-4.png]] ... ... @@ -788,7 +788,7 @@ 788 788 Note: water_deep in the data needs to be converted using decoding to get it. 789 789 790 790 791 -=== 2.6. 6Decoder in TTN V3 ===764 +=== 2.6.5 Decoder in TTN V3 === 792 792 793 793 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]] 794 794 ... ... @@ -814,9 +814,13 @@ 814 814 815 815 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 816 816 |(% style="background-color:#4f81bd; color:white; width:97px" %)((( 790 + 791 + 817 817 Size(bytes) 818 818 )))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1 819 -|(% style="width:98px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)((( 794 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)((( 795 + 796 + 820 820 [[IN1 &IN2 Interrupt flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag 821 821 ))) 822 822 ... ... @@ -882,7 +882,6 @@ 882 882 883 883 ==== 2.8.2.1 Wave alarm mode ==== 884 884 885 - 886 886 Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed. 887 887 888 888 * Change value: The amount by which the next detection value increases/decreases relative to the previous detection value. ... ... @@ -891,29 +891,48 @@ 891 891 AT Command: AT+ROC 892 892 893 893 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 894 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 19 3px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation870 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation 895 895 |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)((( 872 + 873 + 896 896 0,0,0,0(default) 897 897 OK 898 898 ))) 899 899 |(% colspan="1" rowspan="4" style="width:143px" %)((( 878 + 879 + 880 + 881 + 882 + 900 900 AT+ROC=a,b,c,d 901 901 )))|(% style="width:154px" %)((( 902 -**a:** Enable or disable the ROC 885 + 886 + 887 + 888 + 889 + 890 + 891 + 892 +a: Enable or disable the ROC 903 903 )))|(% style="width:197px" %)((( 904 -**0:** off 905 -**1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. 906 -**2:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]). 894 + 895 + 896 +0: off 897 +1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. 898 + 899 +2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]). 907 907 ))) 908 -|(% style="width:154px" %)**b:** Set the detection interval|(% style="width:197px" %)((( 901 +|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)((( 902 + 903 + 909 909 Range: 0~~65535s 910 910 ))) 911 -|(% style="width:154px" %) **c:**Setting the IDC change value|(% style="width:197px" %)Unit: uA912 -|(% style="width:154px" %) **d:**Setting the VDC change value|(% style="width:197px" %)Unit: mV906 +|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA 907 +|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV 913 913 914 914 Example: 915 915 916 -* AT+ROC=0,0,0,0 911 +* AT+ROC=0,0,0,0 ~/~/The ROC function is not used. 917 917 * AT+ROC=1,60,3000, 500 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed. 918 918 * AT+ROC=1,60,3000,0 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. 919 919 * AT+ROC=2,60,3000,0 ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed. ... ... @@ -932,9 +932,9 @@ 932 932 933 933 Example: 934 934 935 -* Downlink Payload: 09 01 00 3C 0B B8 01 F4 ~/~/ 936 -* Downlink Payload: 09 01 00 3C 0B B8 00 00 ~/~/ 937 -* Downlink Payload: 09 02 00 3C 0B B8 00 00 ~/~/ 930 +* Downlink Payload: 09 01 00 3C 0B B8 01 F4 ~/~/Equal to AT+ROC=1,60,3000, 500 931 +* Downlink Payload: 09 01 00 3C 0B B8 00 00 ~/~/Equal to AT+ROC=1,60,3000,0 932 +* Downlink Payload: 09 02 00 3C 0B B8 00 00 ~/~/Equal to AT+ROC=2,60,3000,0 938 938 939 939 Screenshot of parsing example in TTN: 940 940 ... ... @@ -945,44 +945,64 @@ 945 945 946 946 ==== 2.8.2.2 Over-threshold alarm mode ==== 947 947 948 - 949 949 Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded. 950 950 951 951 AT Command: AT+ROC=3,a,b,c,d,e 952 952 953 953 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 954 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 18 7px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation948 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation 955 955 |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)((( 950 + 951 + 956 956 0,0,0,0(default) 957 957 OK 958 958 ))) 959 959 |(% colspan="1" rowspan="5" style="width:143px" %)((( 956 + 957 + 958 + 959 + 960 + 960 960 AT+ROC=3,a,b,c,d,e 961 961 )))|(% style="width:160px" %)((( 962 -**a:** Set the detection interval 963 + 964 + 965 +a: Set the detection interval 963 963 )))|(% style="width:185px" %)((( 967 + 968 + 964 964 Range: 0~~65535s 965 965 ))) 966 -|(% style="width:160px" %)**b:** Set the IDC alarm trigger condition|(% style="width:185px" %)((( 967 -**0:** Less than the set IDC threshold, Alarm 968 -**1:** Greater than the set IDC threshold, Alarm 971 +|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)((( 972 + 973 + 974 +0: Less than the set IDC threshold, Alarm 975 + 976 +1: Greater than the set IDC threshold, Alarm 969 969 ))) 970 970 |(% style="width:160px" %)((( 971 -**c: ** IDC alarm threshold 979 + 980 + 981 +c: IDC alarm threshold 972 972 )))|(% style="width:185px" %)((( 983 + 984 + 973 973 Unit: uA 974 974 ))) 975 -|(% style="width:160px" %)**d:** Set the VDC alarm trigger condition|(% style="width:185px" %)((( 976 -**0:** Less than the set VDC threshold, Alarm 977 -**1:** Greater than the set VDC threshold, Alarm 987 +|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)((( 988 + 989 + 990 +0: Less than the set VDC threshold, Alarm 991 + 992 +1: Greater than the set VDC threshold, Alarm 978 978 ))) 979 -|(% style="width:160px" %) **e:**VDC alarm threshold|(% style="width:185px" %)Unit: mV994 +|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV 980 980 981 981 Example: 982 982 983 -* AT+ROC=3,60,0,3000,0,5000 ~/~/ 984 -* AT+ROC=3,180,1,3000,1,5000 ~/~/ 985 -* AT+ROC=3,300,0,3000,1,5000 ~/~/ 998 +* AT+ROC=3,60,0,3000,0,5000 ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated. 999 +* AT+ROC=3,180,1,3000,1,5000 ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated. 1000 +* AT+ROC=3,300,0,3000,1,5000 ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated. 986 986 987 987 Downlink Command: 0x09 03 aa bb cc dd ee 988 988 ... ... @@ -1001,9 +1001,9 @@ 1001 1001 1002 1002 Example: 1003 1003 1004 -* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/ 1005 -* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38 ~/~/ 1006 -* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38 ~/~/ 1019 +* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000 1020 +* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38 ~/~/Equal to AT+ROC=3,60,1,3000,1,5000 1021 +* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,1,5000 1007 1007 1008 1008 Screenshot of parsing example in TTN: 1009 1009 ... ... @@ -1057,14 +1057,18 @@ 1057 1057 1058 1058 AT Command: AT+TDC 1059 1059 1060 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)1075 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1061 1061 |=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response 1062 1062 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)((( 1078 + 1079 + 1063 1063 30000 1064 1064 OK 1065 1065 the interval is 30000ms = 30s 1066 1066 ))) 1067 1067 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)((( 1085 + 1086 + 1068 1068 OK 1069 1069 Set transmit interval to 60000ms = 60 seconds 1070 1070 ))) ... ... @@ -1085,14 +1085,18 @@ 1085 1085 1086 1086 AT Command: AT+INTMOD 1087 1087 1088 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)1107 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1089 1089 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response 1090 1090 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)((( 1110 + 1111 + 1091 1091 0 1092 1092 OK 1093 1093 the mode is 0 =Disable Interrupt 1094 1094 ))) 1095 1095 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)((( 1117 + 1118 + 1096 1096 Set Transmit Interval 1097 1097 0. (Disable Interrupt), 1098 1098 ~1. (Trigger by rising and falling edge) ... ... @@ -1116,52 +1116,72 @@ 1116 1116 1117 1117 AT Command: AT+3V3T 1118 1118 1119 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:474px" %)1142 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %) 1120 1120 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response 1121 1121 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)((( 1145 + 1146 + 1122 1122 0 1123 1123 OK 1124 1124 ))) 1125 1125 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)((( 1151 + 1152 + 1126 1126 OK 1127 1127 default setting 1128 1128 ))) 1129 1129 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)((( 1157 + 1158 + 1130 1130 OK 1131 1131 ))) 1132 1132 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)((( 1162 + 1163 + 1133 1133 OK 1134 1134 ))) 1135 1135 1136 1136 AT Command: AT+5VT 1137 1137 1138 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:470px" %)1169 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %) 1139 1139 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response 1140 1140 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)((( 1172 + 1173 + 1141 1141 0 1142 1142 OK 1143 1143 ))) 1144 1144 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)((( 1178 + 1179 + 1145 1145 OK 1146 1146 default setting 1147 1147 ))) 1148 1148 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)((( 1184 + 1185 + 1149 1149 OK 1150 1150 ))) 1151 1151 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)((( 1189 + 1190 + 1152 1152 OK 1153 1153 ))) 1154 1154 1155 1155 AT Command: AT+12VT 1156 1156 1157 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:443px" %)1196 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %) 1158 1158 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response 1159 1159 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)((( 1199 + 1200 + 1160 1160 0 1161 1161 OK 1162 1162 ))) 1163 1163 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK 1164 1164 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)((( 1206 + 1207 + 1165 1165 OK 1166 1166 ))) 1167 1167 ... ... @@ -1212,11 +1212,13 @@ 1212 1212 (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C) 1213 1213 1214 1214 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1215 -|(% style="background-color:#4f81bd; color:white; width:154px" %) **Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**1258 +|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response 1216 1216 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0 1217 1217 OK 1218 1218 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK 1219 1219 |(% style="background-color:#f2f2f2; width:154px" %)((( 1263 + 1264 + 1220 1220 AT+PROBE=000A 1221 1221 )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK 1222 1222 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK ... ... @@ -1237,7 +1237,7 @@ 1237 1237 1238 1238 AT Command: AT +STDC 1239 1239 1240 -AT+STDC=aa,bb, cc1285 +AT+STDC=aa,bb,bb 1241 1241 1242 1242 aa: 1243 1243 0: means disable this function and use TDC to send packets. ... ... @@ -1246,12 +1246,15 @@ 1246 1246 bb: Each collection interval (s), the value is 1~~65535 1247 1247 cc: the number of collection times, the value is 1~~120 1248 1248 1249 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)1250 -|(% style="background-color:#4f81bd; color:white; width:160px" %) **Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**1294 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1295 +|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response 1251 1251 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18 1252 1252 OK 1253 1253 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)((( 1299 + 1300 + 1254 1254 Attention:Take effect after ATZ 1302 + 1255 1255 OK 1256 1256 ))) 1257 1257 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)((( ... ... @@ -1261,7 +1261,10 @@ 1261 1261 1262 1262 1263 1263 )))|(% style="background-color:#f2f2f2" %)((( 1312 + 1313 + 1264 1264 Attention:Take effect after ATZ 1315 + 1265 1265 OK 1266 1266 ))) 1267 1267 ... ... @@ -1271,113 +1271,6 @@ 1271 1271 1272 1272 * Example 1: Downlink Payload: AE 01 02 58 12 ~-~--> AT+STDC=1,600,18 1273 1273 1274 -== 3.4 Print data entries base on page(Since v1.1.0) == 1275 - 1276 - 1277 -Feature: Print the sector data from start page to stop page (max is 416 pages). 1278 - 1279 -(% style="color:#4f81bd" %)**AT Command: AT+PDTA** 1280 - 1281 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1282 -|(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function** 1283 -|(% style="width:156px" %)((( 1284 - AT+PDTA=1,1 1285 -Print page 1 to 1 1286 -)))|(% style="width:311px" %)((( 1287 -Stop Tx events when read sensor data 1288 - 1289 -8031000 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000 1290 - 1291 -8031010 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000 1292 - 1293 -8031020 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000 1294 - 1295 -8031030 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000 1296 - 1297 -8031040 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000 1298 - 1299 -8031050 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000 1300 - 1301 -8031060 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000 1302 - 1303 -8031070 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000 1304 - 1305 -Start Tx events 1306 - 1307 - 1308 -OK 1309 -))) 1310 - 1311 -(% style="color:#4f81bd" %)**Downlink Command:** 1312 - 1313 -No downlink commands for feature 1314 - 1315 - 1316 -== 3.5 Print last few data entries(Since v1.1.0) == 1317 - 1318 - 1319 -Feature: Print the last few data entries 1320 - 1321 - 1322 -(% style="color:#4f81bd" %)**AT Command: AT+PLDTA** 1323 - 1324 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1325 -|(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function** 1326 -|(% style="width:156px" %)((( 1327 -AT+PLDTA=10 1328 -Print last 10 entries 1329 -)))|(% style="width:311px" %)((( 1330 -Stop Tx events when read sensor data 1331 - 1332 -0001 2025/5/19 06:16:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000 1333 - 1334 -0002 2025/5/19 06:17:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000 1335 - 1336 -0003 2025/5/19 06:18:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000 1337 - 1338 -0004 2025/5/19 06:19:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000 1339 - 1340 -0005 2025/5/19 06:20:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000 1341 - 1342 -0006 2025/5/19 06:21:50 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000 1343 - 1344 -0007 2025/5/19 06:22:50 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000 1345 - 1346 -0008 2025/5/19 06:26:44 3276 in1:low in2:low exti:low status:false vdc:3.385 idc:0.000 proble:0000 water_deep:0.000 1347 - 1348 -0009 2025/5/19 06:27:36 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000 1349 - 1350 -0010 2025/5/19 06:28:36 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000 1351 - 1352 -Start Tx events 1353 - 1354 -OK 1355 -))) 1356 - 1357 -(% style="color:#4f81bd" %)**Downlink Command:** 1358 - 1359 -No downlink commands for feature 1360 - 1361 - 1362 -== 3.6 Clear Flash Record(Since v1.1.0) == 1363 - 1364 - 1365 -Feature: Clear flash storage for data log feature. 1366 - 1367 -(% style="color:#4f81bd" %)**AT Command: AT+CLRDTA** 1368 - 1369 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %) 1370 -|(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response** 1371 -|(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)((( 1372 -Clear all stored sensor data… 1373 - 1374 -OK 1375 -))) 1376 - 1377 -(% style="color:#4f81bd" %)**Downlink Command: 0xA3** 1378 - 1379 -* Example: 0xA301 ~/~/ Same as AT+CLRDTA 1380 - 1381 1381 = 4. Battery & Power Consumption = 1382 1382 1383 1383 ... ... @@ -1423,18 +1423,18 @@ 1423 1423 1424 1424 Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m. 1425 1425 1426 -Calculate scale factor :1370 +Calculate scale factor: 1427 1427 Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294 1428 1428 1429 -Calculation formula :1373 +Calculation formula: 1430 1430 1431 1431 Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height 1432 1432 1433 -Actual calculations :1377 +Actual calculations: 1434 1434 1435 1435 Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726 1436 1436 1437 -Error :1381 +Error: 1438 1438 1439 1439 0.009810726 1440 1440 ... ... @@ -1441,31 +1441,6 @@ 1441 1441 1442 1442 [[image:image-20240329175044-1.png]] 1443 1443 1444 - 1445 -== 6.5 Cable & Probe Material Compatibility(Immersion type) == 1446 - 1447 - 1448 -Since the installation method of immersion sensors requires immersion in a liquid environment, the discussion of liquids that can be safely installed is very important. 1449 - 1450 -(% style="color:blue" %)**The material of the immersed part of the immersion sensor:** 1451 - 1452 -* **Cable Jacket**: Black polyurethane (PU) – Resistant to water, oils, and mild chemicals. 1453 -* **Probe Material**: 316 stainless steel – Corrosion-resistant in most industrial/marine environments. 1454 - 1455 -(% style="color:blue" %)**Chemical Compatibility:** 1456 - 1457 -* **Polyurethane (PU) Cable:** Resists water, oils, fuels, and mild chemicals but may degrade with prolonged exposure to strong acids, bases, or solvents (e.g., acetone, chlorinated hydrocarbons). 1458 -* 3**16 Stainless Steel Probe:** Suitable for water, seawater, mild acids/alkalis, and industrial fluids. Avoid highly concentrated acids (e.g., hydrochloric acid) or chlorides at high temperatures. 1459 - 1460 -**Chemical Resistance Chart for Polyurethane (PU) Cable** 1461 - 1462 -[[image:image-20250603171424-1.png||height="429" width="625"]] 1463 - 1464 -**Chemical Resistance Chart for 316 Stainless Steel Probe** 1465 - 1466 -[[image:image-20250603171503-2.png||height="350" width="616"]] 1467 - 1468 - 1469 1469 = 7. Troubleshooting = 1470 1470 1471 1471 == 7.1 Water Depth Always shows 0 in payload == ... ... @@ -1482,40 +1482,16 @@ 1482 1482 1483 1483 = 8. Order Info = 1484 1484 1485 -== 8.1 Thread Installation Type & Immersion Type Pressure Sensor == 1486 1486 1487 1487 1488 -Part Number: (% style="color:blue" %)**PS-LB/LS-Txx-YY or PS-LB/LS-Ixx-YY** 1489 - 1490 -(% style="color:blue" %)**XX:**(%%)** Pressure Range and Thread Type ** 1491 - 1492 -(% style="color:blue" %)**YY:**(%%)** The default frequency band** 1493 - 1494 -* YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915 1495 - 1496 1496 [[image:image-20241021093209-1.png]] 1497 1497 1498 - 1499 -== 8.2 Wireless Differential Air Pressure Sensor == 1500 - 1501 - 1502 -Part Number: (% style="color:blue" %)**PS-LB-Dxx-YY or PS-LS-Dxx-YY ** 1503 - 1504 -(% style="color:blue" %)**XX:**(%%)** Differential Pressure Range** 1505 - 1506 -(% style="color:blue" %)**YY:**(%%)** The default frequency band** 1507 - 1508 -* YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915 1509 - 1510 -[[image:image-20250401174215-1.png||height="486" width="656"]] 1511 - 1512 - 1513 1513 = 9. Packing Info = 1514 1514 1515 1515 1516 1516 Package Includes: 1517 1517 1518 -* PS-LB /LS-Txx/Ixx,PS-LB/LS-DxxLoRaWAN Pressure Sensor1413 +* PS-LB or PS-LS LoRaWAN Pressure Sensor 1519 1519 1520 1520 Dimension and weight: 1521 1521
- 1749540397649-875.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.4 KB - Content
- 1749540420016-961.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 KB - Content
- 1749540423574-437.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 KB - Content
- image-20250401174215-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.3 KB - Content
- image-20250419092225-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -47.6 KB - Content
- image-20250419162538-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -90.3 KB - Content
- image-20250512144042-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -471.4 KB - Content
- image-20250512144122-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -572.9 KB - Content
- image-20250603171424-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.7 KB - Content
- image-20250603171503-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -33.7 KB - Content