Last modified by Xiaoling on 2025/07/10 16:21

From version 148.3
edited by Xiaoling
on 2025/07/10 16:20
Change comment: There is no comment for this version
To version 122.1
edited by Xiaoling
on 2025/04/01 16:38
Change comment: Uploaded new attachment "image-20250401163826-3.jpeg", version {1}

Summary

Details

Page properties
Content
... ... @@ -1,7 +1,8 @@
1 1  
2 2  
3 3  
4 -[[image:image-20240109154731-4.png||data-xwiki-image-style-alignment="center" height="546" width="769"]]
4 +(% style="text-align:center" %)
5 +[[image:image-20240109154731-4.png||height="671" width="945"]]
5 5  
6 6  
7 7  
... ... @@ -47,7 +47,9 @@
47 47  Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 48  )))
49 49  
51 +[[image:1675071321348-194.png]]
50 50  
53 +
51 51  == 1.2 ​Features ==
52 52  
53 53  
... ... @@ -133,7 +133,7 @@
133 133  === 1.4.2 Immersion Type ===
134 134  
135 135  
136 -[[image:image-20240109160445-5.png||height="199" width="150"]]
139 +[[image:image-20240109160445-5.png||height="221" width="166"]]
137 137  
138 138  * Immersion Type, Probe IP Level: IP68
139 139  * Measuring Range: Measure range can be customized, up to 100m.
... ... @@ -141,15 +141,11 @@
141 141  * Long-Term Stability: ±0.2% F.S / Year
142 142  * Storage temperature: -30°C~~80°C
143 143  * Operating temperature: 0°C~~50°C
144 -* Probe Material: 316 stainless steels
145 -* Cable model specifications: CGYPU 5*0.2mm2
146 -* Usage characteristics of Cable
147 -1) Operating temperature:-40℃— +70℃
148 -2) -30℃ bending cable 15 times of outer diameter can work normally
147 +* Material: 316 stainless steels
149 149  
150 150  === 1.4.3 Wireless Differential Air Pressure Sensor ===
151 151  
152 -[[image:image-20240511174954-1.png||height="193" width="193"]]
151 +[[image:image-20240511174954-1.png]]
153 153  
154 154  * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
155 155  * Accuracy: 0.5% F.S, resolution is 0.05%.
... ... @@ -225,36 +225,36 @@
225 225  
226 226  Size of wind pressure transmitter:
227 227  
228 -[[image:image-20240513094047-2.png||height="462" width="518"]]
227 +[[image:image-20240513094047-2.png]]
229 229  
230 -(% style="color:red" %)**Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.**
229 +Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.
231 231  
232 232  
233 233  == 1.6 Sleep mode and working mode ==
234 234  
235 235  
236 -**Deep Sleep Mode:** Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
235 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
237 237  
238 -**Working Mode: **In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
237 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
239 239  
240 240  
241 241  == 1.7 Button & LEDs ==
242 242  
243 243  
244 -[[image:image-20250419092225-1.jpeg]]
243 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
245 245  
246 246  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
247 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
248 -|[[image:1749540420016-961.png]] 1~~3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
249 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
246 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
247 +|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
248 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
250 250  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
251 251  )))
252 -|[[image:1749540423574-437.png]] >3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
253 -Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
254 -Green led will solidly turn on for 5 seconds after joined in network.
251 +|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
252 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
253 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
255 255  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
256 256  )))
257 -|[[image:1749540397649-875.png]] x5|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
256 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
258 258  
259 259  == 1.8 Pin Mapping ==
260 260  
... ... @@ -282,13 +282,13 @@
282 282  === 1.10.1 for LB version ===
283 283  
284 284  
285 -[[image:image-20250401163530-1.jpeg]]
284 +[[image:image-20240109160800-6.png]]
286 286  
287 287  
288 288  === 1.10.2 for LS version ===
289 289  
290 290  
291 -[[image:image-20250401163539-2.jpeg]]
290 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
292 292  
293 293  
294 294  = 2. Configure PS-LB/LS to connect to LoRaWAN network =
... ... @@ -296,7 +296,7 @@
296 296  == 2.1 How it works ==
297 297  
298 298  
299 -The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
298 +The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
300 300  
301 301  
302 302  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -304,13 +304,13 @@
304 304  
305 305  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
306 306  
307 -[[image:image-20250419162538-1.png]]
306 +[[image:1675144005218-297.png]]
308 308  
309 309  
310 310  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
311 311  
312 312  
313 -(% style="color:blue" %)**Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.**
312 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
314 314  
315 315  Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
316 316  
... ... @@ -319,48 +319,33 @@
319 319  
320 320  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
321 321  
322 -**Create the application.**
323 323  
324 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
322 +(% style="color:blue" %)**Register the device**
325 325  
326 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
324 +[[image:1675144099263-405.png]]
327 327  
328 328  
329 -**Add devices to the created Application.**
327 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
330 330  
331 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
329 +[[image:1675144117571-832.png]]
332 332  
333 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
334 334  
332 +(% style="color:blue" %)**Add APP EUI in the application**
335 335  
336 -**Enter end device specifics manually.**
337 337  
338 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
335 +[[image:1675144143021-195.png]]
339 339  
340 340  
341 -**Add DevEUI and AppKey. Customize a platform ID for the device.**
338 +(% style="color:blue" %)**Add APP KEY**
342 342  
343 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
340 +[[image:1675144157838-392.png]]
344 344  
342 +(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
345 345  
346 -(% style="color:blue" %)**Step 2: Add decoder.**
347 347  
348 -In TTN, user can add a custom payload so it shows friendly reading.
349 -
350 -Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
351 -
352 -Below is TTN screen shot:
353 -
354 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
355 -
356 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
357 -
358 -
359 -(% style="color:blue" %)**Step 3: Activate on PS-LB/LS**
360 -
361 361  Press the button for 5 seconds to activate the PS-LB/LS.
362 362  
363 -Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
347 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
364 364  
365 365  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
366 366  
... ... @@ -376,8 +376,8 @@
376 376  
377 377  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
378 378  |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
379 -|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
380 -|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
363 +|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
364 +|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
381 381  
382 382  Example parse in TTNv3
383 383  
... ... @@ -384,11 +384,11 @@
384 384  [[image:1675144504430-490.png]]
385 385  
386 386  
387 -Sensor Model: For PS-LB/LS, this value is 0x16
371 +(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
388 388  
389 -Firmware Version: 0x0100, Means: v1.0.0 version
373 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
390 390  
391 -Frequency Band:
375 +(% style="color:#037691" %)**Frequency Band**:
392 392  
393 393  *0x01: EU868
394 394  
... ... @@ -419,7 +419,7 @@
419 419  *0x0e: MA869
420 420  
421 421  
422 -Sub-Band:
406 +(% style="color:#037691" %)**Sub-Band**:
423 423  
424 424  AU915 and US915:value 0x00 ~~ 0x08
425 425  
... ... @@ -428,7 +428,7 @@
428 428  Other Bands: Always 0x00
429 429  
430 430  
431 -Battery Info:
415 +(% style="color:#037691" %)**Battery Info**:
432 432  
433 433  Check the battery voltage.
434 434  
... ... @@ -443,10 +443,10 @@
443 443  Uplink payload includes in total 9 bytes.
444 444  
445 445  
446 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
430 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
447 447  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
448 448  **Size(bytes)**
449 -)))|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
433 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
450 450  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
451 451  
452 452  [[image:1675144608950-310.png]]
... ... @@ -467,8 +467,9 @@
467 467  
468 468  PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
469 469  
470 -For example.
471 471  
455 +**For example.**
456 +
472 472  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
473 473  |(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
474 474  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
... ... @@ -478,29 +478,12 @@
478 478  The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
479 479  
480 480  
481 -When connecting to current sensors sold by our company, you can convert current readings to corresponding values by simply configuring the [[AT+PROBE>>||anchor="H3.3.4SettheProbeModel"]] command. If you prefer not to configure this command on the sensor, you can uniformly handle the conversion in the payload decoder instead.
482 -
483 -**Examples for decoder implementation:**
484 -
485 -~1. For AT+PROBE=0005, add the following processing in your decoder:
486 -
487 -[[image:image-20250512144042-1.png]]
488 -
489 -[[image:image-20250512144122-2.png]]
490 -
491 -2. For AT+PROBE=0102, add the following processing in your decoder(Corresponding to the position shown in the above screenshot).
492 -
493 -bytes[i]=0x01;bytes[1+i]=0x02;
494 -
495 -bytes[2]=0x01;bytes[3]=0x02;
496 -
497 -
498 498  === 2.3.5 0~~20mA value (IDC_IN) ===
499 499  
500 500  
501 -The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
469 +The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
502 502  
503 -Example:
471 +(% style="color:#037691" %)**Example**:
504 504  
505 505  27AE(H) = 10158 (D)/1000 = 10.158mA.
506 506  
... ... @@ -515,7 +515,7 @@
515 515  
516 516  Measure the voltage value. The range is 0 to 30V.
517 517  
518 -Example:
486 +(% style="color:#037691" %)**Example**:
519 519  
520 520  138E(H) = 5006(D)/1000= 5.006V
521 521  
... ... @@ -525,7 +525,7 @@
525 525  
526 526  IN1 and IN2 are used as digital input pins.
527 527  
528 -Example:
496 +(% style="color:#037691" %)**Example**:
529 529  
530 530  09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
531 531  
... ... @@ -532,9 +532,9 @@
532 532  09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
533 533  
534 534  
535 -This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
503 +This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
536 536  
537 -Example:
505 +(% style="color:#037691" %)**Example:**
538 538  
539 539  09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
540 540  
... ... @@ -583,9 +583,9 @@
583 583  
584 584  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
585 585  
586 -Step 1: Be sure that your device is programmed and properly connected to the network at this time.
554 +(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
587 587  
588 -Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
556 +(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
589 589  
590 590  [[image:1675144951092-237.png]]
591 591  
... ... @@ -593,9 +593,9 @@
593 593  [[image:1675144960452-126.png]]
594 594  
595 595  
596 -Step 3: Create an account or log in Datacake.
564 +(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
597 597  
598 -Step 4: Create PS-LB/LS product.
566 +(% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
599 599  
600 600  [[image:1675145004465-869.png]]
601 601  
... ... @@ -606,7 +606,7 @@
606 606  [[image:1675145029119-717.png]]
607 607  
608 608  
609 -Step 5: add payload decode
577 +(% style="color:blue" %)**Step 5: **(%%)add payload decode
610 610  
611 611  [[image:1675145051360-659.png]]
612 612  
... ... @@ -622,59 +622,50 @@
622 622  == 2.6 Datalog Feature (Since V1.1) ==
623 623  
624 624  
625 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, PS-LB will store the reading for future retrieving purposes.
593 +When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
626 626  
627 627  
628 -=== 2.6.1 How datalog works ===
596 +=== 2.6.1 Unix TimeStamp ===
629 629  
630 630  
631 -PS-LB will wait for ACK for every uplink, when there is no LoRaWAN network,PS-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
599 +PS-LB uses Unix TimeStamp format based on
632 632  
633 -* (((
634 -a) PS-LB will do an ACK check for data records sending to make sure every data arrive server.
635 -)))
636 -* (((
637 -b) PS-LB will send data in **CONFIRMED Mode**, but PS-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if PS-LB gets a ACK, PS-LB will consider there is a network connection and resend all NONE-ACK messages.
601 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861618065-927.png?width=705&height=109&rev=1.1||alt="1652861618065-927.png" height="109" width="705"]]
638 638  
639 -
640 -)))
603 +Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
641 641  
642 -=== 2.6.2 Enable Datalog ===
605 +Below is the converter example:
643 643  
607 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861637105-371.png?width=732&height=428&rev=1.1||alt="1652861637105-371.png"]]
644 644  
645 -User need to make sure below two settings are enable to use datalog;
646 646  
647 -* (% style="color:blue" %)**SYNCMOD=1(Default)**(%%) to enable sync time via LoRaWAN MAC command, click here ([[AT+SYNCMOD>>https://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.6Settimesynchronizationmethod28ThenetworkservermustsupportLoRaWANv1.0.329]]) for detailed instructions.
648 -* (% style="color:blue" %)**PNACKMD=1**(%%)** **to enable datalog feature, click here ([[AT+PNACKMD>>https://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.26RequesttheservertosendanACK]]) for detailed instructions.
610 +=== 2.6.2 Set Device Time ===
649 649  
650 650  
613 +There are two ways to set the device's time:
651 651  
652 -Once PS-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to PS-LB. If PS-LB fails to get the time from the server, PS-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
653 653  
654 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
616 +(% style="color:blue" %)**1. Through LoRaWAN MAC Command (Default settings)**
655 655  
618 +Users need to set SYNCMOD=1 to enable sync time via the MAC command.
656 656  
657 -=== 2.6.3 Unix TimeStamp ===
620 +Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
658 658  
622 +(% style="color:red" %)**Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.**
659 659  
660 -PS-LB uses Unix TimeStamp format based on
661 661  
662 -[[image:image-20250401163826-3.jpeg]]
625 +(% style="color:blue" %)** 2. Manually Set Time**
663 663  
664 -Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
627 +Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
665 665  
666 -Below is the converter example:
667 667  
668 -[[image:image-20250401163906-4.jpeg]]
630 +=== 2.6.3 Poll sensor value ===
669 669  
670 -
671 -=== 2.6.4 Poll sensor value ===
672 -
673 673  Users can poll sensor values based on timestamps. Below is the downlink command.
674 674  
675 675  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
676 -|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
677 -|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
635 +|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)**Downlink Command to poll Open/Close status (0x31)**
636 +|(% style="background-color:#f2f2f2; width:67px" %)**1byte**|(% style="background-color:#f2f2f2; width:145px" %)**4bytes**|(% style="background-color:#f2f2f2; width:133px" %)**4bytes**|(% style="background-color:#f2f2f2; width:163px" %)**1byte**
678 678  |(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
679 679  Timestamp end
680 680  )))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
... ... @@ -688,35 +688,41 @@
688 688  Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
689 689  
690 690  
691 -=== 2.6.5 Datalog Uplink payload (FPORT~=3) ===
650 +=== 2.6.4 Datalog Uplink payload (FPORT~=3) ===
692 692  
693 693  
694 694  The Datalog uplinks will use below payload format.
695 695  
696 -Retrieval data payload:
655 +**Retrieval data payload:**
697 697  
698 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
657 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
699 699  |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
700 -Size(bytes)
701 -)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
659 +**Size(bytes)**
660 +)))|=(% style="width: 40px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)**2**|=(% style="width: 83px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 201px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
702 702  |(% style="width:103px" %)Value|(% style="width:68px" %)(((
703 -Probe_mod
662 +Probe
663 +
664 +_mod
704 704  )))|(% style="width:104px" %)(((
705 -VDC_intput_V
666 +VDC
667 +
668 +_intput_V
706 706  )))|(% style="width:83px" %)(((
707 -IDC_intput_mA
670 +IDC
671 +
672 +_intput_mA
708 708  )))|(% style="width:201px" %)(((
709 709  IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
710 710  )))|(% style="width:86px" %)Unix Time Stamp
711 711  
712 -IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
677 +**IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:**
713 713  
714 714  [[image:image-20250117104847-4.png]]
715 715  
716 716  
717 -No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
682 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
718 718  
719 -Poll Message Flag: 1: This message is a poll message reply.
684 +**Poll Message Flag**: 1: This message is a poll message reply.
720 720  
721 721  * Poll Message Flag is set to 1.
722 722  
... ... @@ -724,17 +724,17 @@
724 724  
725 725  For example, in US915 band, the max payload for different DR is:
726 726  
727 -a) DR0: max is 11 bytes so one entry of data
692 +**a) DR0:** max is 11 bytes so one entry of data
728 728  
729 -b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
694 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
730 730  
731 -c) DR2: total payload includes 11 entries of data
696 +**c) DR2:** total payload includes 11 entries of data
732 732  
733 -d) DR3: total payload includes 22 entries of data.
698 +**d) DR3: **total payload includes 22 entries of data.
734 734  
735 735  If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
736 736  
737 -Example:
702 +**Example:**
738 738  
739 739  If PS-LB-NA has below data inside Flash:
740 740  
... ... @@ -748,48 +748,55 @@
748 748   Stop time: 6788DB63 = time 25/1/16 10:11:47
749 749  
750 750  
751 -PA-LB-NA will uplink this payload.
716 +**PA-LB-NA will uplink this payload.**
752 752  
753 753  [[image:image-20250117104827-2.png]]
754 754  
755 -
720 +(((
756 756  00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
722 +)))
757 757  
758 -
724 +(((
759 759  Where the first 11 bytes is for the first entry :
726 +)))
760 760  
761 -
728 +(((
762 762  0000  0D10  0000  40  6788DB63
730 +)))
763 763  
732 +(((
733 +**Probe_mod **= 0x0000 = 0000
734 +)))
764 764  
765 -Probe_mod = 0x0000 = 0000
736 +(((
737 +**VDC_intput_V **= 0x0D10/1000=3.344V
766 766  
739 +**IDC_intput_mA **= 0x0000/1000=0mA
740 +)))
767 767  
768 -VDC_intput_V = 0x0D10/1000=3.344V
742 +(((
743 +**IN1_pin_level **= (0x40& 0x08)? "High":"Low" = 0(Low)
769 769  
770 -IDC_intput_mA = 0x0000/1000=0mA
745 +**IN2_pin_level = (**0x40& 0x04)? "High":"Low" = 0(Low)
771 771  
747 +**Exti_pin_level = (**0x40& 0x02)? "High":"Low" = 0(Low)
772 772  
773 -IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
749 +**Exti_status = (**0x40& 0x01)? "True":"False" = 0(False)
750 +)))
774 774  
775 -IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
752 +(((
753 +**Unix time** is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
754 +)))
776 776  
777 -Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
756 +**Its data format is:**
778 778  
779 -Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
758 +[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level**, **IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level**, **IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
780 780  
760 +(% style="color:red" %)**Note: water_deep in the data needs to be converted using decoding to get it.**
781 781  
782 -Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
783 783  
784 -Its data format is:
763 +=== 2.6.5 Decoder in TTN V3 ===
785 785  
786 -[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
787 -
788 -Note: water_deep in the data needs to be converted using decoding to get it.
789 -
790 -
791 -=== 2.6.6 Decoder in TTN V3 ===
792 -
793 793  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
794 794  
795 795  Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
... ... @@ -814,47 +814,47 @@
814 814  
815 815  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
816 816  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
817 -Size(bytes)
818 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
819 -|(% style="width:98px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
789 +**Size(bytes)**
790 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
791 +|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
820 820  [[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
821 821  )))
822 822  
823 -IN1 &IN2 , Interrupt  flag , ROC_flag:
795 +(% style="color:blue" %)**IN1 &IN2 , Interrupt  flag , ROC_flag:**
824 824  
825 825  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
826 -|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
798 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:60px" %)**bit7**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit6**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:65px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:56px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit2**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**bit0**
827 827  |(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
828 828  
829 -* IDC_Roc_flagL
801 +* (% style="color:#037691" %)**IDC_Roc_flagL**
830 830  
831 -80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
803 +80 (H): (0x80&0x80)=80(H)=**1**000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
832 832  
833 833  60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
834 834  
835 835  
836 -* IDC_Roc_flagH
808 +* (% style="color:#037691" %)**IDC_Roc_flagH**
837 837  
838 -60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
810 +60 (H): (0x60&0x40)=60(H)=0**1**000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
839 839  
840 840  80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
841 841  
842 842  
843 -* VDC_Roc_flagL
815 +* (% style="color:#037691" %)**VDC_Roc_flagL**
844 844  
845 -20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
817 +20 (H): (0x20&0x20)=20(H)=00**1**0 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
846 846  
847 847  90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
848 848  
849 849  
850 -* VDC_Roc_flagH
822 +* (% style="color:#037691" %)**VDC_Roc_flagH**
851 851  
852 -90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
824 +90 (H): (0x90&0x10)=10(H)=000**1** 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
853 853  
854 854  20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
855 855  
856 856  
857 -* IN1_pin_level & IN2_pin_level
829 +* (% style="color:#037691" %)**IN1_pin_level & IN2_pin_level**
858 858  
859 859  IN1 and IN2 are used as digital input pins.
860 860  
... ... @@ -863,15 +863,15 @@
863 863  80 (H): (0x09&0x04)=0    IN2 pin is low level.
864 864  
865 865  
866 -* Exti_pin_level &Exti_status
838 +* (% style="color:#037691" %)**Exti_pin_level &Exti_status**
867 867  
868 868  This data field shows whether the packet is generated by an interrupt pin.
869 869  
870 -Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
842 +Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the **GPIO_EXTI** pin.
871 871  
872 -Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
844 +**Exti_pin_level:**  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
873 873  
874 -Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
846 +**Exti_status: **80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
875 875  
876 876  
877 877  === 2.8.2 Set the Report on Change ===
... ... @@ -882,61 +882,71 @@
882 882  
883 883  ==== 2.8.2.1 Wave alarm mode ====
884 884  
885 -
886 886  Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
887 887  
888 -* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
889 -* Comparison value: A parameter to compare with the latest ROC test.
859 +* (% style="color:#037691" %)**Change value: **(%%)The amount by which the next detection value increases/decreases relative to the previous detection value.
860 +* (% style="color:#037691" %)**Comparison value:**(%%) A parameter to compare with the latest ROC test.
890 890  
891 -AT Command: AT+ROC
862 +(% style="color:blue" %)**AT Command: AT+ROC**
892 892  
893 893  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
894 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 193px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
865 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
895 895  |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
896 896  0,0,0,0(default)
897 897  OK
898 898  )))
899 899  |(% colspan="1" rowspan="4" style="width:143px" %)(((
871 +
872 +
873 +
874 +
900 900  AT+ROC=a,b,c,d
901 901  )))|(% style="width:154px" %)(((
902 -**a:** Enable or disable the ROC
877 +
878 +
879 +
880 +
881 +
882 +
883 +**a**: Enable or disable the ROC
903 903  )))|(% style="width:197px" %)(((
904 904  **0:** off
905 905  **1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
906 -**2:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
887 +
888 +**2: **Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
907 907  )))
908 -|(% style="width:154px" %)**b:** Set the detection interval|(% style="width:197px" %)(((
890 +|(% style="width:154px" %)**b**: Set the detection interval|(% style="width:197px" %)(((
909 909  Range:  0~~65535s
910 910  )))
911 -|(% style="width:154px" %)**c:** Setting the IDC change value|(% style="width:197px" %)Unit: uA
912 -|(% style="width:154px" %)**d:** Setting the VDC change value|(% style="width:197px" %)Unit: mV
893 +|(% style="width:154px" %)**c**: Setting the IDC change value|(% style="width:197px" %)Unit: uA
894 +|(% style="width:154px" %)**d**: Setting the VDC change value|(% style="width:197px" %)Unit: mV
913 913  
914 -Example:
896 +**Example:**
915 915  
916 -* AT+ROC=0,0,0,0  ~/~/ The ROC function is not used.
898 +* AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
917 917  * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
918 918  * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
919 919  * AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
920 920  
921 -Downlink Command: 0x09 aa bb cc dd
903 +(% style="color:blue" %)**Downlink Command: 0x09 aa bb cc dd**
922 922  
923 923  Format: Function code (0x09) followed by 4 bytes.
924 924  
925 -aa: 1 byte; Set the wave alarm mode.
907 +(% style="color:blue" %)**aa: **(% style="color:#037691" %)**1 byte;**(%%) Set the wave alarm mode.
926 926  
927 -bb: 2 bytes; Set the detection interval. (second)
909 +(% style="color:blue" %)**bb: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval. (second)
928 928  
929 -cc: 2 bytes; Setting the IDC change threshold. (uA)
911 +(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the IDC change threshold. (uA)
930 930  
931 -dd: 2 bytes; Setting the VDC change threshold. (mV)
913 +(% style="color:blue" %)**dd: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the VDC change threshold. (mV)
932 932  
933 -Example:
915 +**Example:**
934 934  
935 -* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/ Equal to AT+ROC=1,60,3000, 500
936 -* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=1,60,3000,0
937 -* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=2,60,3000,0
917 +* Downlink Payload: **09 01 00 3C 0B B8 01 F4 ** ~/~/Equal to AT+ROC=1,60,3000, 500
918 +* Downlink Payload: **09 01 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=1,60,3000,0
919 +* Downlink Payload: **09 02 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=2,60,3000,0
938 938  
939 -Screenshot of parsing example in TTN:
921 +(% style="color:blue" %)**Screenshot of parsing example in TTN:**
940 940  
941 941  * AT+ROC=1,60,3000, 500.
942 942  
... ... @@ -945,67 +945,72 @@
945 945  
946 946  ==== 2.8.2.2 Over-threshold alarm mode ====
947 947  
948 -
949 949  Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
950 950  
951 -AT Command: AT+ROC=3,a,b,c,d,e
932 +(% style="color:blue" %)**AT Command: AT+ROC=3,a,b,c,d,e**
952 952  
953 953  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
954 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 187px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
935 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
955 955  |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
956 956  0,0,0,0(default)
957 957  OK
958 958  )))
959 959  |(% colspan="1" rowspan="5" style="width:143px" %)(((
960 -AT+ROC=3,a,b,c,d,e
941 +
942 +
943 +
944 +
945 +AT+ROC=(% style="color:blue" %)**3**(%%),a,b,c,d,e
961 961  )))|(% style="width:160px" %)(((
962 -**a:** Set the detection interval
947 +**a: **Set the detection interval
963 963  )))|(% style="width:185px" %)(((
964 964  Range:  0~~65535s
965 965  )))
966 -|(% style="width:160px" %)**b:** Set the IDC alarm trigger condition|(% style="width:185px" %)(((
951 +|(% style="width:160px" %)**b**: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
967 967  **0:** Less than the set IDC threshold, Alarm
953 +
968 968  **1:** Greater than the set IDC threshold, Alarm
969 969  )))
970 970  |(% style="width:160px" %)(((
971 -**c: ** IDC alarm threshold
957 +**c**:  IDC alarm threshold
972 972  )))|(% style="width:185px" %)(((
973 973  Unit: uA
974 974  )))
975 -|(% style="width:160px" %)**d:** Set the VDC alarm trigger condition|(% style="width:185px" %)(((
961 +|(% style="width:160px" %)**d**: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
976 976  **0:** Less than the set VDC threshold, Alarm
963 +
977 977  **1:** Greater than the set VDC threshold, Alarm
978 978  )))
979 979  |(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
980 980  
981 -Example:
968 +**Example:**
982 982  
983 -* AT+ROC=3,60,0,3000,0,5000  ~/~/ The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
984 -* AT+ROC=3,180,1,3000,1,5000  ~/~/ The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
985 -* AT+ROC=3,300,0,3000,1,5000  ~/~/ The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
970 +* AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
971 +* AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
972 +* AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
986 986  
987 -Downlink Command: 0x09 03 aa bb cc dd ee
974 +(% style="color:blue" %)**Downlink Command: 0x09 03 aa bb cc dd ee**
988 988  
989 989  Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
990 990  
991 -aa: 2 bytes; Set the detection interval.(second)
978 +(% style="color:blue" %)**aa: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval.(second)
992 992  
993 -bb: 1 byte; Set the IDC alarm trigger condition.
980 +(% style="color:blue" %)**bb: **(% style="color:#037691" %)**1 byte; **(%%)Set the IDC alarm trigger condition.
994 994  
995 -cc: 2 bytes; IDC alarm threshold.(uA)
982 +(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) IDC alarm threshold.(uA)
996 996  
997 997  
998 -dd: 1 byte; Set the VDC alarm trigger condition.
985 +(% style="color:blue" %)**dd: **(% style="color:#037691" %)**1 byte;**(%%) Set the VDC alarm trigger condition.
999 999  
1000 -ee: 2 bytes; VDC alarm threshold.(mV)
987 +(% style="color:blue" %)**ee: **(% style="color:#037691" %)**2 bytes; **(%%)VDC alarm threshold.(mV)
1001 1001  
1002 -Example:
989 +**Example:**
1003 1003  
1004 -* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/ Equal to AT+ROC=3,60,0,3000,0,5000
1005 -* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,1,3000,1,5000
1006 -* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,0,3000,1,5000
991 +* Downlink Payload: **09 03 00 3C 00 0B B8 00 13 38** ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
992 +* Downlink Payload: **09 03 00 b4 01 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
993 +* Downlink Payload: **09 03 01 2C 00 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
1007 1007  
1008 -Screenshot of parsing example in TTN:
995 +(% style="color:blue" %)**Screenshot of parsing example in TTN:**
1009 1009  
1010 1010  * AT+ROC=3,60,0,3000,0,5000
1011 1011  
... ... @@ -1015,7 +1015,7 @@
1015 1015  == 2.9 ​Firmware Change Log ==
1016 1016  
1017 1017  
1018 -Firmware download link:
1005 +**Firmware download link:**
1019 1019  
1020 1020  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
1021 1021  
... ... @@ -1027,7 +1027,7 @@
1027 1027  
1028 1028  PS-LB/LS supports below configure method:
1029 1029  
1030 -* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1017 +* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1031 1031  * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
1032 1032  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1033 1033  
... ... @@ -1055,10 +1055,10 @@
1055 1055  
1056 1056  Feature: Change LoRaWAN End Node Transmit Interval.
1057 1057  
1058 -AT Command: AT+TDC
1045 +(% style="color:blue" %)**AT Command: AT+TDC**
1059 1059  
1060 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1061 -|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
1047 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1048 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
1062 1062  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1063 1063  30000
1064 1064  OK
... ... @@ -1069,7 +1069,7 @@
1069 1069  Set transmit interval to 60000ms = 60 seconds
1070 1070  )))
1071 1071  
1072 -Downlink Command: 0x01
1059 +(% style="color:blue" %)**Downlink Command: 0x01**
1073 1073  
1074 1074  Format: Command Code (0x01) followed by 3 bytes time value.
1075 1075  
... ... @@ -1083,10 +1083,10 @@
1083 1083  
1084 1084  Feature, Set Interrupt mode for GPIO_EXIT.
1085 1085  
1086 -AT Command: AT+INTMOD
1073 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1087 1087  
1088 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1089 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
1075 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1076 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
1090 1090  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1091 1091  0
1092 1092  OK
... ... @@ -1100,7 +1100,7 @@
1100 1100  3. (Trigger by rising edge)
1101 1101  )))|(% style="background-color:#f2f2f2; width:157px" %)OK
1102 1102  
1103 -Downlink Command: 0x06
1090 +(% style="color:blue" %)**Downlink Command: 0x06**
1104 1104  
1105 1105  Format: Command Code (0x06) followed by 3 bytes.
1106 1106  
... ... @@ -1114,10 +1114,10 @@
1114 1114  
1115 1115  Feature, Control the output 3V3 , 5V or 12V.
1116 1116  
1117 -AT Command: AT+3V3T
1104 +(% style="color:blue" %)**AT Command: AT+3V3T**
1118 1118  
1119 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:474px" %)
1120 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1106 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
1107 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1121 1121  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1122 1122  0
1123 1123  OK
... ... @@ -1133,10 +1133,10 @@
1133 1133  OK
1134 1134  )))
1135 1135  
1136 -AT Command: AT+5VT
1123 +(% style="color:blue" %)**AT Command: AT+5VT**
1137 1137  
1138 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
1139 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1125 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1126 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1140 1140  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1141 1141  0
1142 1142  OK
... ... @@ -1152,10 +1152,10 @@
1152 1152  OK
1153 1153  )))
1154 1154  
1155 -AT Command: AT+12VT
1142 +(% style="color:blue" %)**AT Command: AT+12VT**
1156 1156  
1157 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:443px" %)
1158 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1144 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1145 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1159 1159  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1160 1160  0
1161 1161  OK
... ... @@ -1165,28 +1165,28 @@
1165 1165  OK
1166 1166  )))
1167 1167  
1168 -Downlink Command: 0x07
1155 +(% style="color:blue" %)**Downlink Command: 0x07**
1169 1169  
1170 1170  Format: Command Code (0x07) followed by 3 bytes.
1171 1171  
1172 1172  The first byte is which power, the second and third bytes are the time to turn on.
1173 1173  
1174 -* Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1175 -* Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1176 -* Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1177 -* Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1178 -* Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1179 -* Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
1161 +* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
1162 +* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
1163 +* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
1164 +* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
1165 +* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
1166 +* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1180 1180  
1181 -Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1168 +(% style="color:red" %)**Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.**
1182 1182  
1183 -Therefore, the corresponding downlink command is increased by one byte to five bytes.
1170 +(% style="color:red" %)**Therefore, the corresponding downlink command is increased by one byte to five bytes.**
1184 1184  
1185 -Example:
1172 +**Example: **
1186 1186  
1187 -* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1188 -* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1189 -* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1174 +* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 **01** 01 D4 C0  **~-~-->**  AT+3V3T=120000
1175 +* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 **02** 01 86 A0  **~-~-->**  AT+5VT=100000
1176 +* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 **03** 01 38 80  **~-~-->**  AT+12VT=80000
1190 1190  
1191 1191  === 3.3.4 Set the Probe Model ===
1192 1192  
... ... @@ -1193,7 +1193,7 @@
1193 1193  
1194 1194  Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
1195 1195  
1196 -AT Command: AT +PROBE
1183 +(% style="color:blue" %)**AT Command: AT** **+PROBE**
1197 1197  
1198 1198  AT+PROBE=aabb
1199 1199  
... ... @@ -1223,12 +1223,12 @@
1223 1223  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1224 1224  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1225 1225  
1226 -Downlink Command: 0x08
1213 +(% style="color:blue" %)**Downlink Command: 0x08**
1227 1227  
1228 1228  Format: Command Code (0x08) followed by 2 bytes.
1229 1229  
1230 -* Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1231 -* Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
1217 +* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
1218 +* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1232 1232  
1233 1233  === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1234 1234  
... ... @@ -1235,155 +1235,48 @@
1235 1235  
1236 1236  Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
1237 1237  
1238 -AT Command: AT +STDC
1225 +(% style="color:blue" %)**AT Command: AT** **+STDC**
1239 1239  
1240 -AT+STDC=aa,bb,cc
1227 +AT+STDC=aa,bb,bb
1241 1241  
1242 -aa:
1243 -0: means disable this function and use TDC to send packets.
1244 -1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1245 -2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1246 -bb: Each collection interval (s), the value is 1~~65535
1247 -cc: the number of collection times, the value is 1~~120
1229 +(% style="color:#037691" %)**aa:**(%%)
1230 +**0:** means disable this function and use TDC to send packets.
1231 +**1:** means that the function is enabled to send packets by collecting VDC data for multiple times.
1232 +**2:** means that the function is enabled to send packets by collecting IDC data for multiple times.
1233 +(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
1234 +(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1248 1248  
1249 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1236 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1250 1250  |(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1251 1251  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1252 1252  OK
1253 1253  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1254 1254  Attention:Take effect after ATZ
1242 +
1255 1255  OK
1256 1256  )))
1257 1257  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1258 -
1259 -
1260 1260  Use the TDC interval to send packets.(default)
1261 1261  
1262 1262  
1263 1263  )))|(% style="background-color:#f2f2f2" %)(((
1264 1264  Attention:Take effect after ATZ
1251 +
1265 1265  OK
1266 1266  )))
1267 1267  
1268 -Downlink Command: 0xAE
1255 +(% style="color:blue" %)**Downlink Command: 0xAE**
1269 1269  
1270 1270  Format: Command Code (0xAE) followed by 4 bytes.
1271 1271  
1272 -* Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1259 +* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1273 1273  
1274 -== 3.4 Print data entries base on page(Since v1.1.0) ==
1275 -
1276 -
1277 -Feature: Print the sector data from start page to stop page (max is 416 pages).
1278 -
1279 -(% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1280 -
1281 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1282 -|(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1283 -|(% style="width:156px" %)(((
1284 - AT+PDTA=1,1
1285 -Print page 1 to 1
1286 -)))|(% style="width:311px" %)(((
1287 -Stop Tx events when read sensor data
1288 -
1289 -8031000 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1290 -
1291 -8031010 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1292 -
1293 -8031020 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1294 -
1295 -8031030 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1296 -
1297 -8031040 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1298 -
1299 -8031050 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1300 -
1301 -8031060 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1302 -
1303 -8031070 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1304 -
1305 -Start Tx events
1306 -
1307 -
1308 -OK
1309 -)))
1310 -
1311 -(% style="color:#4f81bd" %)**Downlink Command:**
1312 -
1313 -No downlink commands for feature
1314 -
1315 -
1316 -== 3.5 Print last few data entries(Since v1.1.0) ==
1317 -
1318 -
1319 -Feature: Print the last few data entries
1320 -
1321 -
1322 -(% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1323 -
1324 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1325 -|(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1326 -|(% style="width:156px" %)(((
1327 -AT+PLDTA=10
1328 -Print last 10 entries
1329 -)))|(% style="width:311px" %)(((
1330 -Stop Tx events when read sensor data
1331 -
1332 -0001 2025/5/19 06:16:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1333 -
1334 -0002 2025/5/19 06:17:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1335 -
1336 -0003 2025/5/19 06:18:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1337 -
1338 -0004 2025/5/19 06:19:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1339 -
1340 -0005 2025/5/19 06:20:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1341 -
1342 -0006 2025/5/19 06:21:50 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1343 -
1344 -0007 2025/5/19 06:22:50 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1345 -
1346 -0008 2025/5/19 06:26:44 3276 in1:low in2:low exti:low status:false vdc:3.385 idc:0.000 proble:0000 water_deep:0.000
1347 -
1348 -0009 2025/5/19 06:27:36 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1349 -
1350 -0010 2025/5/19 06:28:36 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1351 -
1352 -Start Tx events
1353 -
1354 -OK
1355 -)))
1356 -
1357 -(% style="color:#4f81bd" %)**Downlink Command:**
1358 -
1359 -No downlink commands for feature
1360 -
1361 -
1362 -== 3.6 Clear Flash Record(Since v1.1.0) ==
1363 -
1364 -
1365 -Feature: Clear flash storage for data log feature.
1366 -
1367 -(% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1368 -
1369 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1370 -|(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1371 -|(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1372 -Clear all stored sensor data…
1373 -
1374 -OK
1375 -)))
1376 -
1377 -(% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1378 -
1379 -* Example: 0xA301  ~/~/  Same as AT+CLRDTA
1380 -
1381 1381  = 4. Battery & Power Consumption =
1382 1382  
1383 1383  
1384 1384  PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1385 1385  
1386 -[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1266 +[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1387 1387  
1388 1388  
1389 1389  = 5. OTA firmware update =
... ... @@ -1419,22 +1419,22 @@
1419 1419  Test the current values at the depth of different liquids and convert them to a linear scale.
1420 1420  Replace its ratio with the ratio of water to current in the decoder.
1421 1421  
1422 -Example:
1302 +**Example:**
1423 1423  
1424 1424  Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1425 1425  
1426 -Calculate scale factor:
1306 +**Calculate scale factor:**
1427 1427  Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1428 1428  
1429 -Calculation formula:
1309 +**Calculation formula:**
1430 1430  
1431 1431  Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1432 1432  
1433 -Actual calculations:
1313 +**Actual calculations:**
1434 1434  
1435 1435  Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1436 1436  
1437 -Error:
1317 +**Error:**
1438 1438  
1439 1439  0.009810726
1440 1440  
... ... @@ -1441,31 +1441,6 @@
1441 1441  
1442 1442  [[image:image-20240329175044-1.png]]
1443 1443  
1444 -
1445 -== 6.5 Cable & Probe Material Compatibility(Immersion type) ==
1446 -
1447 -
1448 -Since the installation method of immersion sensors requires immersion in a liquid environment, the discussion of liquids that can be safely installed is very important.
1449 -
1450 -(% style="color:blue" %)**The material of the immersed part of the immersion sensor:**
1451 -
1452 -* **Cable Jacket**: Black polyurethane (PU) – Resistant to water, oils, and mild chemicals.
1453 -* **Probe Material**: 316 stainless steel – Corrosion-resistant in most industrial/marine environments.
1454 -
1455 -(% style="color:blue" %)**Chemical Compatibility:**
1456 -
1457 -* **Polyurethane (PU) Cable:** Resists water, oils, fuels, and mild chemicals but may degrade with prolonged exposure to strong acids, bases, or solvents (e.g., acetone, chlorinated hydrocarbons).
1458 -* 3**16 Stainless Steel Probe:** Suitable for water, seawater, mild acids/alkalis, and industrial fluids. Avoid highly concentrated acids (e.g., hydrochloric acid) or chlorides at high temperatures.
1459 -
1460 -**Chemical Resistance Chart for Polyurethane (PU) Cable**
1461 -
1462 -[[image:image-20250603171424-1.png||height="429" width="625"]]
1463 -
1464 -**Chemical Resistance Chart for 316 Stainless Steel Probe**
1465 -
1466 -[[image:image-20250603171503-2.png||height="350" width="616"]]
1467 -
1468 -
1469 1469  = 7. Troubleshooting =
1470 1470  
1471 1471  == 7.1 Water Depth Always shows 0 in payload ==
... ... @@ -1482,42 +1482,19 @@
1482 1482  
1483 1483  = 8. Order Info =
1484 1484  
1485 -== 8.1 Thread Installation Type & Immersion Type Pressure Sensor ==
1486 1486  
1341 +(% style="display:none" %)
1487 1487  
1488 -Part Number: (% style="color:blue" %)**PS-LB/LS-Txx-YY  or  PS-LB/LS-Ixx-YY**
1489 -
1490 -(% style="color:blue" %)**XX:**(%%)** Pressure Range and Thread Type **
1491 -
1492 -(% style="color:blue" %)**YY:**(%%)** The default frequency band**
1493 -
1494 -* YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1495 -
1496 1496  [[image:image-20241021093209-1.png]]
1497 1497  
1498 -
1499 -== 8.2 Wireless Differential Air Pressure Sensor ==
1500 -
1501 -
1502 -Part Number: (% style="color:blue" %)**PS-LB-Dxx-YY  or  PS-LS-Dxx-YY **
1503 -
1504 -(% style="color:blue" %)**XX:**(%%)** Differential Pressure Range**
1505 -
1506 -(% style="color:blue" %)**YY:**(%%)** The default frequency band**
1507 -
1508 -* YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1509 -
1510 -[[image:image-20250401174215-1.png||height="486" width="656"]]
1511 -
1512 -
1513 1513  = 9. ​Packing Info =
1514 1514  
1515 1515  
1516 -Package Includes:
1348 +(% style="color:#037691" %)**Package Includes**:
1517 1517  
1518 -* PS-LB/LS-Txx/Ixx, PS-LB/LS-Dxx   LoRaWAN Pressure Sensor
1350 +* PS-LB or PS-LS LoRaWAN Pressure Sensor
1519 1519  
1520 -Dimension and weight:
1352 +(% style="color:#037691" %)**Dimension and weight**:
1521 1521  
1522 1522  * Device Size: cm
1523 1523  * Device Weight: g
1749540397649-875.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 KB
Content
1749540420016-961.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 KB
Content
1749540423574-437.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 KB
Content
image-20250401163906-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -181.6 KB
Content
image-20250401174215-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.3 KB
Content
image-20250419092225-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -47.6 KB
Content
image-20250419162538-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -90.3 KB
Content
image-20250512144042-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -471.4 KB
Content
image-20250512144122-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -572.9 KB
Content
image-20250603171424-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -38.7 KB
Content
image-20250603171503-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -33.7 KB
Content