Last modified by Xiaoling on 2025/07/10 16:21

From version 123.9
edited by Xiaoling
on 2025/04/01 17:02
Change comment: There is no comment for this version
To version 148.2
edited by Xiaoling
on 2025/07/10 16:19
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,8 +1,7 @@
1 1  
2 2  
3 3  
4 -(% style="text-align:center" %)
5 -[[image:image-20240109154731-4.png||height="671" width="945"]]
4 +[[image:image-20240109154731-4.png||data-xwiki-image-style-alignment="center" height="546" width="769"]]
6 6  
7 7  
8 8  
... ... @@ -48,9 +48,7 @@
48 48  Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
49 49  )))
50 50  
51 -[[image:1675071321348-194.png]]
52 52  
53 -
54 54  == 1.2 ​Features ==
55 55  
56 56  
... ... @@ -136,7 +136,7 @@
136 136  === 1.4.2 Immersion Type ===
137 137  
138 138  
139 -[[image:image-20240109160445-5.png||height="221" width="166"]]
136 +[[image:image-20240109160445-5.png||height="199" width="150"]]
140 140  
141 141  * Immersion Type, Probe IP Level: IP68
142 142  * Measuring Range: Measure range can be customized, up to 100m.
... ... @@ -144,11 +144,15 @@
144 144  * Long-Term Stability: ±0.2% F.S / Year
145 145  * Storage temperature: -30°C~~80°C
146 146  * Operating temperature: 0°C~~50°C
147 -* Material: 316 stainless steels
144 +* Probe Material: 316 stainless steels
145 +* Cable model specifications: CGYPU 5*0.2mm2
146 +* Usage characteristics of Cable
147 +1) Operating temperature:-40℃— +70℃
148 +2) -30℃ bending cable 15 times of outer diameter can work normally
148 148  
149 149  === 1.4.3 Wireless Differential Air Pressure Sensor ===
150 150  
151 -[[image:image-20240511174954-1.png||height="215" width="215"]]
152 +[[image:image-20240511174954-1.png||height="193" width="193"]]
152 152  
153 153  * Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 154  * Accuracy: 0.5% F.S, resolution is 0.05%.
... ... @@ -163,7 +163,7 @@
163 163  === 1.5.1 Thread Installation Type ===
164 164  
165 165  
166 -Application:
167 +(% style="color:blue" %)**Application:**
167 167  
168 168  * Hydraulic Pressure
169 169  * Petrochemical Industry
... ... @@ -181,7 +181,7 @@
181 181  === 1.5.2 Immersion Type ===
182 182  
183 183  
184 -Application:
185 +(% style="color:blue" %)**Application:**
185 185  
186 186  Liquid & Water Pressure / Level detect.
187 187  
... ... @@ -208,7 +208,7 @@
208 208  === 1.5.3 Wireless Differential Air Pressure Sensor ===
209 209  
210 210  
211 -Application:
212 +(% style="color:blue" %)**Application:**
212 212  
213 213  Indoor Air Control & Filter clogging Detect.
214 214  
... ... @@ -224,40 +224,36 @@
224 224  
225 225  Size of wind pressure transmitter:
226 226  
227 -[[image:image-20240513094047-2.png]]
228 +[[image:image-20240513094047-2.png||height="462" width="518"]]
228 228  
229 -Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.
230 +(% style="color:red" %)**Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.**
230 230  
231 231  
232 232  == 1.6 Sleep mode and working mode ==
233 233  
234 234  
235 -Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
236 +**Deep Sleep Mode:** Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
236 236  
237 -Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
238 +**Working Mode: **In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
238 238  
239 239  
240 240  == 1.7 Button & LEDs ==
241 241  
242 242  
243 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
244 +[[image:image-20250419092225-1.jpeg]]
244 244  
245 245  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
246 246  |=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
247 -|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
248 -
249 -
248 +|[[image:1749540420016-961.png]] 1~~3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
250 250  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
251 251  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
252 252  )))
253 -|(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
254 -
255 -
252 +|[[image:1749540423574-437.png]] >3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
256 256  Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
257 257  Green led will solidly turn on for 5 seconds after joined in network.
258 258  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
259 259  )))
260 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
257 +|[[image:1749540397649-875.png]] x5|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
261 261  
262 262  == 1.8 Pin Mapping ==
263 263  
... ... @@ -307,13 +307,13 @@
307 307  
308 308  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
309 309  
310 -[[image:1675144005218-297.png]]
307 +[[image:image-20250419162538-1.png]]
311 311  
312 312  
313 313  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
314 314  
315 315  
316 -Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
313 +(% style="color:blue" %)**Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.**
317 317  
318 318  Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
319 319  
... ... @@ -322,30 +322,45 @@
322 322  
323 323  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
324 324  
322 +**Create the application.**
325 325  
326 -Register the device
324 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
327 327  
328 -[[image:1675144099263-405.png]]
326 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
329 329  
330 330  
331 -Add APP EUI and DEV EUI
329 +**Add devices to the created Application.**
332 332  
333 -[[image:1675144117571-832.png]]
331 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
334 334  
333 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
335 335  
336 -Add APP EUI in the application
337 337  
336 +**Enter end device specifics manually.**
338 338  
339 -[[image:1675144143021-195.png]]
338 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
340 340  
341 341  
342 -Add APP KEY
341 +**Add DevEUI and AppKey. Customize a platform ID for the device.**
343 343  
344 -[[image:1675144157838-392.png]]
343 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
345 345  
346 -Step 2: Activate on PS-LB/LS
347 347  
346 +(% style="color:blue" %)**Step 2: Add decoder.**
348 348  
348 +In TTN, user can add a custom payload so it shows friendly reading.
349 +
350 +Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
351 +
352 +Below is TTN screen shot:
353 +
354 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
355 +
356 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
357 +
358 +
359 +(% style="color:blue" %)**Step 3: Activate on PS-LB/LS**
360 +
349 349  Press the button for 5 seconds to activate the PS-LB/LS.
350 350  
351 351  Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
... ... @@ -363,7 +363,7 @@
363 363  Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
364 364  
365 365  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
366 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
378 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
367 367  |(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
368 368  |(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
369 369  
... ... @@ -433,10 +433,8 @@
433 433  
434 434  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
435 435  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
436 -
437 -
438 -Size(bytes)
439 -)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
448 +**Size(bytes)**
449 +)))|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
440 440  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
441 441  
442 442  [[image:1675144608950-310.png]]
... ... @@ -457,11 +457,10 @@
457 457  
458 458  PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
459 459  
460 -
461 461  For example.
462 462  
463 463  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
464 -|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
473 +|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
465 465  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
466 466  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
467 467  |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
... ... @@ -469,6 +469,23 @@
469 469  The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
470 470  
471 471  
481 +When connecting to current sensors sold by our company, you can convert current readings to corresponding values by simply configuring the [[AT+PROBE>>||anchor="H3.3.4SettheProbeModel"]] command. If you prefer not to configure this command on the sensor, you can uniformly handle the conversion in the payload decoder instead.
482 +
483 +**Examples for decoder implementation:**
484 +
485 +~1. For AT+PROBE=0005, add the following processing in your decoder:
486 +
487 +[[image:image-20250512144042-1.png]]
488 +
489 +[[image:image-20250512144122-2.png]]
490 +
491 +2. For AT+PROBE=0102, add the following processing in your decoder(Corresponding to the position shown in the above screenshot).
492 +
493 +bytes[i]=0x01;bytes[1+i]=0x02;
494 +
495 +bytes[2]=0x01;bytes[3]=0x02;
496 +
497 +
472 472  === 2.3.5 0~~20mA value (IDC_IN) ===
473 473  
474 474  
... ... @@ -522,10 +522,8 @@
522 522  
523 523  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
524 524  |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
525 -
526 -
527 -Size(bytes)
528 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
551 +**Size(bytes)**
552 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
529 529  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
530 530  
531 531  
... ... @@ -600,45 +600,54 @@
600 600  == 2.6 Datalog Feature (Since V1.1) ==
601 601  
602 602  
603 -When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
627 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, PS-LB will store the reading for future retrieving purposes.
604 604  
605 605  
606 -=== 2.6.1 Unix TimeStamp ===
630 +=== 2.6.1 How datalog works ===
607 607  
608 608  
609 -PS-LB uses Unix TimeStamp format based on
633 +PS-LB will wait for ACK for every uplink, when there is no LoRaWAN network,PS-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
610 610  
611 -[[image:image-20250401163826-3.jpeg]]
635 +* (((
636 +a) PS-LB will do an ACK check for data records sending to make sure every data arrive server.
637 +)))
638 +* (((
639 +b) PS-LB will send data in **CONFIRMED Mode**, but PS-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if PS-LB gets a ACK, PS-LB will consider there is a network connection and resend all NONE-ACK messages.
612 612  
613 -Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
641 +
642 +)))
614 614  
615 -Below is the converter example:
644 +=== 2.6.2 Enable Datalog ===
616 616  
617 -[[image:image-20250401163906-4.jpeg]]
618 618  
647 +User need to make sure below two settings are enable to use datalog;
619 619  
620 -=== 2.6.2 Set Device Time ===
649 +* (% style="color:blue" %)**SYNCMOD=1(Default)**(%%) to enable sync time via LoRaWAN MAC command, click here ([[AT+SYNCMOD>>https://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.6Settimesynchronizationmethod28ThenetworkservermustsupportLoRaWANv1.0.329]]) for detailed instructions.
650 +* (% style="color:blue" %)**PNACKMD=1**(%%)** **to enable datalog feature, click here ([[AT+PNACKMD>>https://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.26RequesttheservertosendanACK]]) for detailed instructions.
621 621  
622 622  
623 -There are two ways to set the device's time:
624 624  
654 +Once PS-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to PS-LB. If PS-LB fails to get the time from the server, PS-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
625 625  
626 -~1. Through LoRaWAN MAC Command (Default settings)
656 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
627 627  
628 -Users need to set SYNCMOD=1 to enable sync time via the MAC command.
629 629  
630 -Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
659 +=== 2.6.3 Unix TimeStamp ===
631 631  
632 -Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
633 633  
662 +PS-LB uses Unix TimeStamp format based on
634 634  
635 - 2. Manually Set Time
664 +[[image:image-20250401163826-3.jpeg]]
636 636  
637 -Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
666 +Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
638 638  
668 +Below is the converter example:
639 639  
640 -=== 2.6.3 Poll sensor value ===
670 +[[image:image-20250401163906-4.jpeg]]
641 641  
672 +
673 +=== 2.6.4 Poll sensor value ===
674 +
642 642  Users can poll sensor values based on timestamps. Below is the downlink command.
643 643  
644 644  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
... ... @@ -657,7 +657,7 @@
657 657  Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
658 658  
659 659  
660 -=== 2.6.4 Datalog Uplink payload (FPORT~=3) ===
693 +=== 2.6.5 Datalog Uplink payload (FPORT~=3) ===
661 661  
662 662  
663 663  The Datalog uplinks will use below payload format.
... ... @@ -678,8 +678,6 @@
678 678  IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
679 679  )))|(% style="width:86px" %)Unix Time Stamp
680 680  
681 -
682 -
683 683  IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
684 684  
685 685  [[image:image-20250117104847-4.png]]
... ... @@ -759,7 +759,7 @@
759 759  Note: water_deep in the data needs to be converted using decoding to get it.
760 760  
761 761  
762 -=== 2.6.5 Decoder in TTN V3 ===
793 +=== 2.6.6 Decoder in TTN V3 ===
763 763  
764 764  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
765 765  
... ... @@ -853,6 +853,7 @@
853 853  
854 854  ==== 2.8.2.1 Wave alarm mode ====
855 855  
887 +
856 856  Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
857 857  
858 858  * Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
... ... @@ -861,7 +861,7 @@
861 861  AT Command: AT+ROC
862 862  
863 863  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
864 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
896 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 193px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
865 865  |(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
866 866  0,0,0,0(default)
867 867  OK
... ... @@ -869,22 +869,21 @@
869 869  |(% colspan="1" rowspan="4" style="width:143px" %)(((
870 870  AT+ROC=a,b,c,d
871 871  )))|(% style="width:154px" %)(((
872 -a: Enable or disable the ROC
904 +**a:** Enable or disable the ROC
873 873  )))|(% style="width:197px" %)(((
874 -0: off
875 -1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
876 -
877 -2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
906 +**0:** off
907 +**1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
908 +**2:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
878 878  )))
879 -|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)(((
910 +|(% style="width:154px" %)**b:** Set the detection interval|(% style="width:197px" %)(((
880 880  Range:  0~~65535s
881 881  )))
882 -|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA
883 -|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV
913 +|(% style="width:154px" %)**c:** Setting the IDC change value|(% style="width:197px" %)Unit: uA
914 +|(% style="width:154px" %)**d:** Setting the VDC change value|(% style="width:197px" %)Unit: mV
884 884  
885 885  Example:
886 886  
887 -* AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
918 +* AT+ROC=0,0,0,0  ~/~/ The ROC function is not used.
888 888  * AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
889 889  * AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
890 890  * AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
... ... @@ -903,9 +903,9 @@
903 903  
904 904  Example:
905 905  
906 -* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/Equal to AT+ROC=1,60,3000, 500
907 -* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=1,60,3000,0
908 -* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=2,60,3000,0
937 +* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/ Equal to AT+ROC=1,60,3000, 500
938 +* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=1,60,3000,0
939 +* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/ Equal to AT+ROC=2,60,3000,0
909 909  
910 910  Screenshot of parsing example in TTN:
911 911  
... ... @@ -916,64 +916,44 @@
916 916  
917 917  ==== 2.8.2.2 Over-threshold alarm mode ====
918 918  
950 +
919 919  Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
920 920  
921 921  AT Command: AT+ROC=3,a,b,c,d,e
922 922  
923 923  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
924 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
956 +|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 187px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
925 925  |(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
926 -
927 -
928 928  0,0,0,0(default)
929 929  OK
930 930  )))
931 931  |(% colspan="1" rowspan="5" style="width:143px" %)(((
932 -
933 -
934 -
935 -
936 -
937 937  AT+ROC=3,a,b,c,d,e
938 938  )))|(% style="width:160px" %)(((
939 -
940 -
941 -a: Set the detection interval
964 +**a:** Set the detection interval
942 942  )))|(% style="width:185px" %)(((
943 -
944 -
945 945  Range:  0~~65535s
946 946  )))
947 -|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
948 -
949 -
950 -0: Less than the set IDC threshold, Alarm
951 -
952 -1: Greater than the set IDC threshold, Alarm
968 +|(% style="width:160px" %)**b:** Set the IDC alarm trigger condition|(% style="width:185px" %)(((
969 +**0:** Less than the set IDC threshold, Alarm
970 +**1:** Greater than the set IDC threshold, Alarm
953 953  )))
954 954  |(% style="width:160px" %)(((
955 -
956 -
957 -c:  IDC alarm threshold
973 +**c: ** IDC alarm threshold
958 958  )))|(% style="width:185px" %)(((
959 -
960 -
961 961  Unit: uA
962 962  )))
963 -|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
964 -
965 -
966 -0: Less than the set VDC threshold, Alarm
967 -
968 -1: Greater than the set VDC threshold, Alarm
977 +|(% style="width:160px" %)**d:** Set the VDC alarm trigger condition|(% style="width:185px" %)(((
978 +**0:** Less than the set VDC threshold, Alarm
979 +**1:** Greater than the set VDC threshold, Alarm
969 969  )))
970 -|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV
981 +|(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
971 971  
972 972  Example:
973 973  
974 -* AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
975 -* AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
976 -* AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
985 +* AT+ROC=3,60,0,3000,0,5000  ~/~/ The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
986 +* AT+ROC=3,180,1,3000,1,5000  ~/~/ The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
987 +* AT+ROC=3,300,0,3000,1,5000  ~/~/ The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
977 977  
978 978  Downlink Command: 0x09 03 aa bb cc dd ee
979 979  
... ... @@ -992,9 +992,9 @@
992 992  
993 993  Example:
994 994  
995 -* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
996 -* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
997 -* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
1006 +* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/ Equal to AT+ROC=3,60,0,3000,0,5000
1007 +* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,1,3000,1,5000
1008 +* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/ Equal to AT+ROC=3,60,0,3000,1,5000
998 998  
999 999  Screenshot of parsing example in TTN:
1000 1000  
... ... @@ -1048,18 +1048,14 @@
1048 1048  
1049 1049  AT Command: AT+TDC
1050 1050  
1051 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1062 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1052 1052  |=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
1053 1053  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1054 -
1055 -
1056 1056  30000
1057 1057  OK
1058 1058  the interval is 30000ms = 30s
1059 1059  )))
1060 1060  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1061 -
1062 -
1063 1063  OK
1064 1064  Set transmit interval to 60000ms = 60 seconds
1065 1065  )))
... ... @@ -1080,18 +1080,14 @@
1080 1080  
1081 1081  AT Command: AT+INTMOD
1082 1082  
1083 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1090 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1084 1084  |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
1085 1085  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1086 -
1087 -
1088 1088  0
1089 1089  OK
1090 1090  the mode is 0 =Disable Interrupt
1091 1091  )))
1092 1092  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1093 -
1094 -
1095 1095  Set Transmit Interval
1096 1096  0. (Disable Interrupt),
1097 1097  ~1. (Trigger by rising and falling edge)
... ... @@ -1115,72 +1115,52 @@
1115 1115  
1116 1116  AT Command: AT+3V3T
1117 1117  
1118 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
1121 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:474px" %)
1119 1119  |=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1120 1120  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1121 -
1122 -
1123 1123  0
1124 1124  OK
1125 1125  )))
1126 1126  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1127 -
1128 -
1129 1129  OK
1130 1130  default setting
1131 1131  )))
1132 1132  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1133 -
1134 -
1135 1135  OK
1136 1136  )))
1137 1137  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1138 -
1139 -
1140 1140  OK
1141 1141  )))
1142 1142  
1143 1143  AT Command: AT+5VT
1144 1144  
1145 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1140 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
1146 1146  |=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
1147 1147  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1148 -
1149 -
1150 1150  0
1151 1151  OK
1152 1152  )))
1153 1153  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1154 -
1155 -
1156 1156  OK
1157 1157  default setting
1158 1158  )))
1159 1159  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1160 -
1161 -
1162 1162  OK
1163 1163  )))
1164 1164  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1165 -
1166 -
1167 1167  OK
1168 1168  )))
1169 1169  
1170 1170  AT Command: AT+12VT
1171 1171  
1172 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1159 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:443px" %)
1173 1173  |=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
1174 1174  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1175 -
1176 -
1177 1177  0
1178 1178  OK
1179 1179  )))
1180 1180  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1181 1181  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1182 -
1183 -
1184 1184  OK
1185 1185  )))
1186 1186  
... ... @@ -1231,13 +1231,11 @@
1231 1231  (0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1232 1232  
1233 1233  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1234 -|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1217 +|(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1235 1235  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1236 1236  OK
1237 1237  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1238 1238  |(% style="background-color:#f2f2f2; width:154px" %)(((
1239 -
1240 -
1241 1241  AT+PROBE=000A
1242 1242  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1243 1243  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -1258,7 +1258,7 @@
1258 1258  
1259 1259  AT Command: AT +STDC
1260 1260  
1261 -AT+STDC=aa,bb,bb
1242 +AT+STDC=aa,bb,cc
1262 1262  
1263 1263  aa:
1264 1264  0: means disable this function and use TDC to send packets.
... ... @@ -1267,15 +1267,12 @@
1267 1267  bb: Each collection interval (s), the value is 1~~65535
1268 1268  cc: the number of collection times, the value is 1~~120
1269 1269  
1270 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1271 -|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
1251 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1252 +|(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1272 1272  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1273 1273  OK
1274 1274  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1275 -
1276 -
1277 1277  Attention:Take effect after ATZ
1278 -
1279 1279  OK
1280 1280  )))
1281 1281  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
... ... @@ -1285,10 +1285,7 @@
1285 1285  
1286 1286  
1287 1287  )))|(% style="background-color:#f2f2f2" %)(((
1288 -
1289 -
1290 1290  Attention:Take effect after ATZ
1291 -
1292 1292  OK
1293 1293  )))
1294 1294  
... ... @@ -1298,6 +1298,113 @@
1298 1298  
1299 1299  * Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
1300 1300  
1276 +== 3.4 Print data entries base on page(Since v1.1.0) ==
1277 +
1278 +
1279 +Feature: Print the sector data from start page to stop page (max is 416 pages).
1280 +
1281 +(% style="color:#4f81bd" %)**AT Command: AT+PDTA**
1282 +
1283 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1284 +|(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1285 +|(% style="width:156px" %)(((
1286 + AT+PDTA=1,1
1287 +Print page 1 to 1
1288 +)))|(% style="width:311px" %)(((
1289 +Stop Tx events when read sensor data
1290 +
1291 +8031000 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1292 +
1293 +8031010 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1294 +
1295 +8031020 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1296 +
1297 +8031030 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1298 +
1299 +8031040 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1300 +
1301 +8031050 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1302 +
1303 +8031060 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1304 +
1305 +8031070 1970/1/1 00:00:00 0 in1:low in2:low exti:low status:false vdc:0.000 idc:0.000 proble:0000 water_deep:0.000
1306 +
1307 +Start Tx events
1308 +
1309 +
1310 +OK
1311 +)))
1312 +
1313 +(% style="color:#4f81bd" %)**Downlink Command:**
1314 +
1315 +No downlink commands for feature
1316 +
1317 +
1318 +== 3.5 Print last few data entries(Since v1.1.0) ==
1319 +
1320 +
1321 +Feature: Print the last few data entries
1322 +
1323 +
1324 +(% style="color:#4f81bd" %)**AT Command: AT+PLDTA**
1325 +
1326 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1327 +|(% style="background-color:#4f81bd; color:white; width:158px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:352px" %)**Function**
1328 +|(% style="width:156px" %)(((
1329 +AT+PLDTA=10
1330 +Print last 10 entries
1331 +)))|(% style="width:311px" %)(((
1332 +Stop Tx events when read sensor data
1333 +
1334 +0001 2025/5/19 06:16:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1335 +
1336 +0002 2025/5/19 06:17:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1337 +
1338 +0003 2025/5/19 06:18:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1339 +
1340 +0004 2025/5/19 06:19:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1341 +
1342 +0005 2025/5/19 06:20:50 3246 in1:low in2:low exti:low status:false vdc:3.352 idc:0.000 proble:0000 water_deep:0.000
1343 +
1344 +0006 2025/5/19 06:21:50 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1345 +
1346 +0007 2025/5/19 06:22:50 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1347 +
1348 +0008 2025/5/19 06:26:44 3276 in1:low in2:low exti:low status:false vdc:3.385 idc:0.000 proble:0000 water_deep:0.000
1349 +
1350 +0009 2025/5/19 06:27:36 3246 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1351 +
1352 +0010 2025/5/19 06:28:36 3240 in1:low in2:low exti:low status:false vdc:3.351 idc:0.000 proble:0000 water_deep:0.000
1353 +
1354 +Start Tx events
1355 +
1356 +OK
1357 +)))
1358 +
1359 +(% style="color:#4f81bd" %)**Downlink Command:**
1360 +
1361 +No downlink commands for feature
1362 +
1363 +
1364 +== 3.6 Clear Flash Record(Since v1.1.0) ==
1365 +
1366 +
1367 +Feature: Clear flash storage for data log feature.
1368 +
1369 +(% style="color:#4f81bd" %)**AT Command: AT+CLRDTA**
1370 +
1371 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:503px" %)
1372 +|(% style="background-color:#4f81bd; color:white; width:157px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:137px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:209px" %)**Response**
1373 +|(% style="width:155px" %)AT+CLRDTA |(% style="width:134px" %)Clear date record|(% style="width:209px" %)(((
1374 +Clear all stored sensor data…
1375 +
1376 +OK
1377 +)))
1378 +
1379 +(% style="color:#4f81bd" %)**Downlink Command: 0xA3**
1380 +
1381 +* Example: 0xA301  ~/~/  Same as AT+CLRDTA
1382 +
1301 1301  = 4. Battery & Power Consumption =
1302 1302  
1303 1303  
... ... @@ -1343,18 +1343,18 @@
1343 1343  
1344 1344  Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1345 1345  
1346 -Calculate scale factor
1428 +Calculate scale factor:
1347 1347  Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1348 1348  
1349 -Calculation formula
1431 +Calculation formula:
1350 1350  
1351 1351  Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1352 1352  
1353 -Actual calculations
1435 +Actual calculations:
1354 1354  
1355 1355  Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1356 1356  
1357 -Error
1439 +Error:
1358 1358  
1359 1359  0.009810726
1360 1360  
... ... @@ -1361,6 +1361,31 @@
1361 1361  
1362 1362  [[image:image-20240329175044-1.png]]
1363 1363  
1446 +
1447 +== 6.5 Cable & Probe Material Compatibility(Immersion type) ==
1448 +
1449 +
1450 +Since the installation method of immersion sensors requires immersion in a liquid environment, the discussion of liquids that can be safely installed is very important.
1451 +
1452 +(% style="color:blue" %)**The material of the immersed part of the immersion sensor:**
1453 +
1454 +* **Cable Jacket**: Black polyurethane (PU) – Resistant to water, oils, and mild chemicals.
1455 +* **Probe Material**: 316 stainless steel – Corrosion-resistant in most industrial/marine environments.
1456 +
1457 +(% style="color:blue" %)**Chemical Compatibility:**
1458 +
1459 +* **Polyurethane (PU) Cable:** Resists water, oils, fuels, and mild chemicals but may degrade with prolonged exposure to strong acids, bases, or solvents (e.g., acetone, chlorinated hydrocarbons).
1460 +* 3**16 Stainless Steel Probe:** Suitable for water, seawater, mild acids/alkalis, and industrial fluids. Avoid highly concentrated acids (e.g., hydrochloric acid) or chlorides at high temperatures.
1461 +
1462 +**Chemical Resistance Chart for Polyurethane (PU) Cable**
1463 +
1464 +[[image:image-20250603171424-1.png||height="429" width="625"]]
1465 +
1466 +**Chemical Resistance Chart for 316 Stainless Steel Probe**
1467 +
1468 +[[image:image-20250603171503-2.png||height="350" width="616"]]
1469 +
1470 +
1364 1364  = 7. Troubleshooting =
1365 1365  
1366 1366  == 7.1 Water Depth Always shows 0 in payload ==
... ... @@ -1377,16 +1377,40 @@
1377 1377  
1378 1378  = 8. Order Info =
1379 1379  
1487 +== 8.1 Thread Installation Type & Immersion Type Pressure Sensor ==
1380 1380  
1381 1381  
1490 +Part Number: (% style="color:blue" %)**PS-LB/LS-Txx-YY  or  PS-LB/LS-Ixx-YY**
1491 +
1492 +(% style="color:blue" %)**XX:**(%%)** Pressure Range and Thread Type **
1493 +
1494 +(% style="color:blue" %)**YY:**(%%)** The default frequency band**
1495 +
1496 +* YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1497 +
1382 1382  [[image:image-20241021093209-1.png]]
1383 1383  
1500 +
1501 +== 8.2 Wireless Differential Air Pressure Sensor ==
1502 +
1503 +
1504 +Part Number: (% style="color:blue" %)**PS-LB-Dxx-YY  or  PS-LS-Dxx-YY **
1505 +
1506 +(% style="color:blue" %)**XX:**(%%)** Differential Pressure Range**
1507 +
1508 +(% style="color:blue" %)**YY:**(%%)** The default frequency band**
1509 +
1510 +* YY: Frequency Bands, options: EU433,CN470,EU868,IN865,KR920,AS923,AU915,US915
1511 +
1512 +[[image:image-20250401174215-1.png||height="486" width="656"]]
1513 +
1514 +
1384 1384  = 9. ​Packing Info =
1385 1385  
1386 1386  
1387 1387  Package Includes:
1388 1388  
1389 -* PS-LB or PS-LS LoRaWAN Pressure Sensor
1520 +* PS-LB/LS-Txx/Ixx, PS-LB/LS-Dxx   LoRaWAN Pressure Sensor
1390 1390  
1391 1391  Dimension and weight:
1392 1392  
1749540397649-875.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.4 KB
Content
1749540420016-961.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.9 KB
Content
1749540423574-437.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.9 KB
Content
image-20250401174215-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.3 KB
Content
image-20250419092225-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +47.6 KB
Content
image-20250419162538-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +90.3 KB
Content
image-20250512144042-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +471.4 KB
Content
image-20250512144122-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +572.9 KB
Content
image-20250603171424-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +38.7 KB
Content
image-20250603171503-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +33.7 KB
Content