Last modified by Xiaoling on 2025/07/10 16:21

From version 123.7
edited by Xiaoling
on 2025/04/01 17:00
Change comment: There is no comment for this version
To version 85.1
edited by Mengting Qiu
on 2024/05/13 09:59
Change comment: Uploaded new attachment "image-20240513095927-5.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.ting
Content
... ... @@ -41,7 +41,7 @@
41 41  )))
42 42  
43 43  (((
44 -PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years.
44 +PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + li-on battery **(%%), it is designed for long term use up to 5 years.
45 45  )))
46 46  
47 47  (((
... ... @@ -67,7 +67,7 @@
67 67  * Downlink to change configure
68 68  * Controllable 3.3v,5v and 12v output to power external sensor
69 69  * 8500mAh Li/SOCl2 Battery (PS-LB)
70 -* Solar panel + 3000mAh Li-ion battery (PS-LS)
70 +* Solar panel + 3000mAh Li-on battery (PS-LS)
71 71  
72 72  == 1.3 Specification ==
73 73  
... ... @@ -136,34 +136,36 @@
136 136  === 1.4.2 Immersion Type ===
137 137  
138 138  
139 -[[image:image-20240109160445-5.png||height="221" width="166"]]
139 +[[image:image-20240109160445-5.png||height="284" width="214"]]
140 140  
141 141  * Immersion Type, Probe IP Level: IP68
142 142  * Measuring Range: Measure range can be customized, up to 100m.
143 143  * Accuracy: 0.2% F.S
144 144  * Long-Term Stability: ±0.2% F.S / Year
145 -* Storage temperature: -30°C~~80°C
146 -* Operating temperature: 0°C~~50°C
145 +* Storage temperature: -30~~80
146 +* Operating temperature: 0~~50
147 147  * Material: 316 stainless steels
148 148  
149 +
149 149  === 1.4.3 Wireless Differential Air Pressure Sensor ===
150 150  
151 -[[image:image-20240511174954-1.png||height="215" width="215"]]
152 +[[image:image-20240511174954-1.png]]
152 152  
153 -* Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 +* Measuring Range: -100KPa~~0~~100KPa,Intermediate range is optional.
154 154  * Accuracy: 0.5% F.S, resolution is 0.05%.
155 155  * Overload: 300% F.S
156 156  * Zero temperature drift: ±0.03%F.S/°C
157 -* Operating temperature: -20°C~~60°C
158 -* Storage temperature:  -20°C~~60°C
158 +* Operating temperature: -40℃~~85℃
159 159  * Compensation temperature: 0~~50°C
160 160  
161 +
162 +
161 161  == 1.5 Application and Installation ==
162 162  
163 163  === 1.5.1 Thread Installation Type ===
164 164  
165 165  
166 -Application:
168 +(% style="color:blue" %)**Application:**
167 167  
168 168  * Hydraulic Pressure
169 169  * Petrochemical Industry
... ... @@ -181,7 +181,7 @@
181 181  === 1.5.2 Immersion Type ===
182 182  
183 183  
184 -Application:
186 +(% style="color:blue" %)**Application:**
185 185  
186 186  Liquid & Water Pressure / Level detect.
187 187  
... ... @@ -188,7 +188,7 @@
188 188  [[image:1675071725288-579.png]]
189 189  
190 190  
191 -Below is the wiring to for connect the probe to the device.
193 +The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
192 192  
193 193  The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
194 194  
... ... @@ -200,64 +200,32 @@
200 200  
201 201  [[image:1675071776102-240.png]]
202 202  
203 -Size of immersion type water depth sensor:
204 204  
205 -[[image:image-20250401102131-1.png||height="268" width="707"]]
206 -
207 -
208 -=== 1.5.3 Wireless Differential Air Pressure Sensor ===
209 -
210 -
211 -Application:
212 -
213 -Indoor Air Control & Filter clogging Detect.
214 -
215 -[[image:image-20240513100129-6.png]]
216 -
217 -[[image:image-20240513100135-7.png]]
218 -
219 -
220 -Below is the wiring to for connect the probe to the device.
221 -
222 -[[image:image-20240513093957-1.png]]
223 -
224 -
225 -Size of wind pressure transmitter:
226 -
227 -[[image:image-20240513094047-2.png]]
228 -
229 -Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.
230 -
231 -
232 232  == 1.6 Sleep mode and working mode ==
233 233  
234 234  
235 -Deep Sleep Mode: Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
209 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
236 236  
237 -Working Mode: In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
211 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
238 238  
239 239  
240 240  == 1.7 Button & LEDs ==
241 241  
242 242  
243 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
217 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
244 244  
245 245  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
246 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)Behavior on ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 226px;background-color:#4F81BD;color:white" %)Action
220 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
247 247  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
248 -
249 -
250 -If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
222 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
251 251  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
252 252  )))
253 253  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
254 -
255 -
256 -Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
257 -Green led will solidly turn on for 5 seconds after joined in network.
226 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
227 +(% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
258 258  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
259 259  )))
260 -|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)Red led will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
230 +|(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
261 261  
262 262  == 1.8 Pin Mapping ==
263 263  
... ... @@ -282,16 +282,16 @@
282 282  
283 283  == 1.10 Mechanical ==
284 284  
285 -=== 1.10.1 for LB version ===
255 +=== 1.10.1 for LB version(% style="display:none" %) (%%) ===
286 286  
287 287  
288 -[[image:image-20250401163530-1.jpeg]]
258 +[[image:image-20240109160800-6.png]]
289 289  
290 290  
291 291  === 1.10.2 for LS version ===
292 292  
293 293  
294 -[[image:image-20250401163539-2.jpeg]]
264 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
295 295  
296 296  
297 297  = 2. Configure PS-LB/LS to connect to LoRaWAN network =
... ... @@ -299,7 +299,7 @@
299 299  == 2.1 How it works ==
300 300  
301 301  
302 -The PS-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
272 +The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
303 303  
304 304  
305 305  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -307,6 +307,7 @@
307 307  
308 308  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
309 309  
280 +
310 310  [[image:1675144005218-297.png]]
311 311  
312 312  
... ... @@ -313,7 +313,7 @@
313 313  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
314 314  
315 315  
316 -Step 1: Create a device in TTN with the OTAA keys from PS-LB/LS.
287 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
317 317  
318 318  Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
319 319  
... ... @@ -323,32 +323,32 @@
323 323  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
324 324  
325 325  
326 -Register the device
297 +(% style="color:blue" %)**Register the device**
327 327  
328 328  [[image:1675144099263-405.png]]
329 329  
330 330  
331 -Add APP EUI and DEV EUI
302 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
332 332  
333 333  [[image:1675144117571-832.png]]
334 334  
335 335  
336 -Add APP EUI in the application
307 +(% style="color:blue" %)**Add APP EUI in the application**
337 337  
338 338  
339 339  [[image:1675144143021-195.png]]
340 340  
341 341  
342 -Add APP KEY
313 +(% style="color:blue" %)**Add APP KEY**
343 343  
344 344  [[image:1675144157838-392.png]]
345 345  
346 -Step 2: Activate on PS-LB/LS
317 +(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
347 347  
348 348  
349 349  Press the button for 5 seconds to activate the PS-LB/LS.
350 350  
351 -Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network. Green led will solidly turn on for 5 seconds after joined in network.
322 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
352 352  
353 353  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
354 354  
... ... @@ -362,10 +362,11 @@
362 362  
363 363  Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
364 364  
336 +
365 365  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
366 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)Device Status (FPORT=5)
367 -|(% style="background-color:#f2f2f2; width:103px" %)Size (bytes)|(% style="background-color:#f2f2f2; width:72px" %)1|(% style="background-color:#f2f2f2" %)2|(% style="background-color:#f2f2f2; width:91px" %)1|(% style="background-color:#f2f2f2; width:86px" %)1|(% style="background-color:#f2f2f2; width:44px" %)2
368 -|(% style="background-color:#f2f2f2; width:103px" %)Value|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
338 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
339 +|(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
340 +|(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
369 369  
370 370  Example parse in TTNv3
371 371  
... ... @@ -372,11 +372,11 @@
372 372  [[image:1675144504430-490.png]]
373 373  
374 374  
375 -Sensor Model: For PS-LB/LS, this value is 0x16
347 +(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
376 376  
377 -Firmware Version: 0x0100, Means: v1.0.0 version
349 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
378 378  
379 -Frequency Band:
351 +(% style="color:#037691" %)**Frequency Band**:
380 380  
381 381  *0x01: EU868
382 382  
... ... @@ -407,7 +407,7 @@
407 407  *0x0e: MA869
408 408  
409 409  
410 -Sub-Band:
382 +(% style="color:#037691" %)**Sub-Band**:
411 411  
412 412  AU915 and US915:value 0x00 ~~ 0x08
413 413  
... ... @@ -416,7 +416,7 @@
416 416  Other Bands: Always 0x00
417 417  
418 418  
419 -Battery Info:
391 +(% style="color:#037691" %)**Battery Info**:
420 420  
421 421  Check the battery voltage.
422 422  
... ... @@ -431,12 +431,10 @@
431 431  Uplink payload includes in total 9 bytes.
432 432  
433 433  
434 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
406 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
435 435  |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
436 -
437 -
438 -Size(bytes)
439 -)))|(% style="background-color:#4f81bd; color:white; width:50px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
408 +**Size(bytes)**
409 +)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
440 440  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
441 441  
442 442  [[image:1675144608950-310.png]]
... ... @@ -458,10 +458,10 @@
458 458  PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
459 459  
460 460  
461 -For example.
431 +**For example.**
462 462  
463 463  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
464 -|(% style="background-color:#4f81bd; color:white" %)Part Number|(% style="background-color:#4f81bd; color:white" %)Probe Used|(% style="background-color:#4f81bd; color:white" %)4~~20mA scale|(% style="background-color:#4f81bd; color:white" %)Example: 12mA meaning
434 +|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
465 465  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
466 466  |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
467 467  |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
... ... @@ -472,9 +472,9 @@
472 472  === 2.3.5 0~~20mA value (IDC_IN) ===
473 473  
474 474  
475 -The output value from Pressure Probe, use together with Probe Model to get the pressure value or water level.
445 +The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
476 476  
477 -Example:
447 +(% style="color:#037691" %)**Example**:
478 478  
479 479  27AE(H) = 10158 (D)/1000 = 10.158mA.
480 480  
... ... @@ -484,12 +484,12 @@
484 484  [[image:image-20230225154759-1.png||height="408" width="741"]]
485 485  
486 486  
487 -=== 2.3.6 0~~30V value (pin VDC_IN) ===
457 +=== 2.3.6 0~~30V value ( pin VDC_IN) ===
488 488  
489 489  
490 490  Measure the voltage value. The range is 0 to 30V.
491 491  
492 -Example:
462 +(% style="color:#037691" %)**Example**:
493 493  
494 494  138E(H) = 5006(D)/1000= 5.006V
495 495  
... ... @@ -499,7 +499,7 @@
499 499  
500 500  IN1 and IN2 are used as digital input pins.
501 501  
502 -Example:
472 +(% style="color:#037691" %)**Example**:
503 503  
504 504  09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
505 505  
... ... @@ -506,9 +506,9 @@
506 506  09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
507 507  
508 508  
509 -This data field shows if this packet is generated by Interrupt Pin or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
479 +This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
510 510  
511 -Example:
481 +(% style="color:#037691" %)**Example:**
512 512  
513 513  09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
514 514  
... ... @@ -522,13 +522,9 @@
522 522  
523 523  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
524 524  |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
525 -
526 -
527 -Size(bytes)
528 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)2|(% style="background-color:#4f81bd; color:white; width:400px" %)n
495 +**Size(bytes)**
496 +)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
529 529  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
530 -
531 -
532 532  Voltage value, each 2 bytes is a set of voltage values.
533 533  )))
534 534  
... ... @@ -544,6 +544,7 @@
544 544  
545 545  While using TTN network, you can add the payload format to decode the payload.
546 546  
513 +
547 547  [[image:1675144839454-913.png]]
548 548  
549 549  
... ... @@ -561,10 +561,12 @@
561 561  
562 562  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
563 563  
564 -Step 1: Be sure that your device is programmed and properly connected to the network at this time.
565 565  
566 -Step 2: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
532 +(% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
567 567  
534 +(% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
535 +
536 +
568 568  [[image:1675144951092-237.png]]
569 569  
570 570  
... ... @@ -571,9 +571,9 @@
571 571  [[image:1675144960452-126.png]]
572 572  
573 573  
574 -Step 3: Create an account or log in Datacake.
543 +(% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
575 575  
576 -Step 4: Create PS-LB/LS product.
545 +(% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
577 577  
578 578  [[image:1675145004465-869.png]]
579 579  
... ... @@ -581,10 +581,11 @@
581 581  [[image:1675145018212-853.png]]
582 582  
583 583  
553 +
584 584  [[image:1675145029119-717.png]]
585 585  
586 586  
587 -Step 5: add payload decode
557 +(% style="color:blue" %)**Step 5: **(%%)add payload decode
588 588  
589 589  [[image:1675145051360-659.png]]
590 590  
... ... @@ -594,429 +594,23 @@
594 594  
595 595  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
596 596  
567 +
597 597  [[image:1675145081239-376.png]]
598 598  
599 599  
600 -== 2.6 Datalog Feature (Since V1.1) ==
571 +== 2.6 Frequency Plans ==
601 601  
602 602  
603 -When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
604 -
605 -
606 -=== 2.6.1 Unix TimeStamp ===
607 -
608 -
609 -PS-LB uses Unix TimeStamp format based on
610 -
611 -[[image:image-20250401163826-3.jpeg]]
612 -
613 -Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
614 -
615 -Below is the converter example:
616 -
617 -[[image:image-20250401163906-4.jpeg]]
618 -
619 -
620 -=== 2.6.2 Set Device Time ===
621 -
622 -
623 -There are two ways to set the device's time:
624 -
625 -
626 -~1. Through LoRaWAN MAC Command (Default settings)
627 -
628 -Users need to set SYNCMOD=1 to enable sync time via the MAC command.
629 -
630 -Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
631 -
632 -Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.
633 -
634 -
635 - 2. Manually Set Time
636 -
637 -Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
638 -
639 -
640 -=== 2.6.3 Poll sensor value ===
641 -
642 -Users can poll sensor values based on timestamps. Below is the downlink command.
643 -
644 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:470px" %)
645 -|=(% colspan="4" style="width: 160px; background-color:#4F81BD;color:white" %)Downlink Command to poll Open/Close status (0x31)
646 -|(% style="background-color:#f2f2f2; width:67px" %)1byte|(% style="background-color:#f2f2f2; width:145px" %)4bytes|(% style="background-color:#f2f2f2; width:133px" %)4bytes|(% style="background-color:#f2f2f2; width:163px" %)1byte
647 -|(% style="background-color:#f2f2f2; width:67px" %)31|(% style="background-color:#f2f2f2; width:145px" %)Timestamp start|(% style="background-color:#f2f2f2; width:133px" %)(((
648 -Timestamp end
649 -)))|(% style="background-color:#f2f2f2; width:163px" %)Uplink Interval
650 -
651 -Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
652 -
653 -For example, downlink command[[image:image-20250117104812-1.png]]
654 -
655 -Is to check 2024/12/20 09:34:59 to 2024/12/20 14:34:59's data
656 -
657 -Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
658 -
659 -
660 -=== 2.6.4 Datalog Uplink payload (FPORT~=3) ===
661 -
662 -
663 -The Datalog uplinks will use below payload format.
664 -
665 -Retrieval data payload:
666 -
667 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
668 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
669 -Size(bytes)
670 -)))|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 70px; background-color:#4F81BD;color:white" %)2|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)2|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)1|=(% style="width: 80px; background-color: rgb(79, 129, 189); color: white;" %)4
671 -|(% style="width:103px" %)Value|(% style="width:68px" %)(((
672 -Probe_mod
673 -)))|(% style="width:104px" %)(((
674 -VDC_intput_V
675 -)))|(% style="width:83px" %)(((
676 -IDC_intput_mA
677 -)))|(% style="width:201px" %)(((
678 -IN1_pin_level& IN2_pin_level& Exti_pin_level&Exti_status
679 -)))|(% style="width:86px" %)Unix Time Stamp
680 -
681 -
682 -
683 -IN1_pin_level & IN2_pin_level & Exti_pin_level & Exti_status:
684 -
685 -[[image:image-20250117104847-4.png]]
686 -
687 -
688 -No ACK Message:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for PNACKMD=1 feature)
689 -
690 -Poll Message Flag: 1: This message is a poll message reply.
691 -
692 -* Poll Message Flag is set to 1.
693 -
694 -* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
695 -
696 -For example, in US915 band, the max payload for different DR is:
697 -
698 -a) DR0: max is 11 bytes so one entry of data
699 -
700 -b) DR1: max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
701 -
702 -c) DR2: total payload includes 11 entries of data
703 -
704 -d) DR3: total payload includes 22 entries of data.
705 -
706 -If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
707 -
708 -Example:
709 -
710 -If PS-LB-NA has below data inside Flash:
711 -
712 -[[image:image-20250117104837-3.png]]
713 -
714 -
715 -If user sends below downlink command: 316788D9BF6788DB6305
716 -
717 -Where : Start time: 6788D9BF = time 25/1/16 10:04:47
718 -
719 - Stop time: 6788DB63 = time 25/1/16 10:11:47
720 -
721 -
722 -PA-LB-NA will uplink this payload.
723 -
724 -[[image:image-20250117104827-2.png]]
725 -
726 -
727 -00001B620000406788D9BF  00000D130000406788D9FB  00000D120000406788DA37  00000D110000406788DA73  00000D100000406788DAAF  00000D100000406788DAEB  00000D0F0000406788DB27  00000D100000406788DB63
728 -
729 -
730 -Where the first 11 bytes is for the first entry :
731 -
732 -
733 -0000  0D10  0000  40  6788DB63
734 -
735 -
736 -Probe_mod = 0x0000 = 0000
737 -
738 -
739 -VDC_intput_V = 0x0D10/1000=3.344V
740 -
741 -IDC_intput_mA = 0x0000/1000=0mA
742 -
743 -
744 -IN1_pin_level = (0x40& 0x08)? "High":"Low" = 0(Low)
745 -
746 -IN2_pin_level = (0x40& 0x04)? "High":"Low" = 0(Low)
747 -
748 -Exti_pin_level = (0x40& 0x02)? "High":"Low" = 0(Low)
749 -
750 -Exti_status = (0x40& 0x01)? "True":"False" = 0(False)
751 -
752 -
753 -Unix time is 0x6788DB63 = 1737022307s = 2025/1/16 10:11:47
754 -
755 -Its data format is:
756 -
757 -[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],[Probe_mod, VDC_intput_V, IDC_intput_mA, IN1_pin_level, IN2_pin_level, Exti_pin_level, water_deep, Data_time],...
758 -
759 -Note: water_deep in the data needs to be converted using decoding to get it.
760 -
761 -
762 -=== 2.6.5 Decoder in TTN V3 ===
763 -
764 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
765 -
766 -Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
767 -
768 -
769 -== 2.7 Frequency Plans ==
770 -
771 -
772 772  The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
773 773  
774 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
576 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
775 775  
776 776  
777 -== 2.8 Report on Change Feature (Since firmware V1.2) ==
579 +== 2.7 Firmware Change Log ==
778 778  
779 -=== 2.8.1 Uplink payload(Enable ROC) ===
780 780  
582 +**Firmware download link:**
781 781  
782 -Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed.
783 -
784 -With ROC enabled, the payload is as follows:
785 -
786 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
787 -|(% style="background-color:#4f81bd; color:white; width:97px" %)(((
788 -Size(bytes)
789 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)2|(% style="background-color:#4f81bd; color:white; width:71px" %)2|(% style="background-color:#4f81bd; color:white; width:98px" %)2|(% style="background-color:#4f81bd; color:white; width:73px" %)2|(% style="background-color:#4f81bd; color:white; width:122px" %)1
790 -|(% style="width:98px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
791 -[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
792 -)))
793 -
794 -IN1 &IN2 , Interrupt  flag , ROC_flag:
795 -
796 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
797 -|(% style="background-color:#4f81bd; color:white; width:50px" %)Size(bit)|(% style="background-color:#4f81bd; color:white; width:60px" %)bit7|(% style="background-color:#4f81bd; color:white; width:62px" %)bit6|(% style="background-color:#4f81bd; color:white; width:62px" %)bit5|(% style="background-color:#4f81bd; color:white; width:65px" %)bit4|(% style="background-color:#4f81bd; color:white; width:56px" %)bit3|(% style="background-color:#4f81bd; color:white; width:55px" %)bit2|(% style="background-color:#4f81bd; color:white; width:55px" %)bit1|(% style="background-color:#4f81bd; color:white; width:50px" %)bit0
798 -|(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
799 -
800 -* IDC_Roc_flagL
801 -
802 -80 (H): (0x80&0x80)=80(H)=1000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
803 -
804 -60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
805 -
806 -
807 -* IDC_Roc_flagH
808 -
809 -60 (H): (0x60&0x40)=60(H)=01000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
810 -
811 -80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
812 -
813 -
814 -* VDC_Roc_flagL
815 -
816 -20 (H): (0x20&0x20)=20(H)=0010 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
817 -
818 -90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
819 -
820 -
821 -* VDC_Roc_flagH
822 -
823 -90 (H): (0x90&0x10)=10(H)=0001 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
824 -
825 -20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
826 -
827 -
828 -* IN1_pin_level & IN2_pin_level
829 -
830 -IN1 and IN2 are used as digital input pins.
831 -
832 -80 (H): (0x80&0x08)=0  IN1 pin is low level.
833 -
834 -80 (H): (0x09&0x04)=0    IN2 pin is low level.
835 -
836 -
837 -* Exti_pin_level &Exti_status
838 -
839 -This data field shows whether the packet is generated by an interrupt pin.
840 -
841 -Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the GPIO_EXTI pin.
842 -
843 -Exti_pin_level:  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
844 -
845 -Exti_status: 80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
846 -
847 -
848 -=== 2.8.2 Set the Report on Change ===
849 -
850 -
851 -Feature: Get or Set the Report on Change.
852 -
853 -
854 -==== 2.8.2.1 Wave alarm mode ====
855 -
856 -Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
857 -
858 -* Change value: The amount by which the next detection value increases/decreases relative to the previous detection value.
859 -* Comparison value: A parameter to compare with the latest ROC test.
860 -
861 -AT Command: AT+ROC
862 -
863 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
864 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
865 -|(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
866 -0,0,0,0(default)
867 -OK
868 -)))
869 -|(% colspan="1" rowspan="4" style="width:143px" %)(((
870 -AT+ROC=a,b,c,d
871 -)))|(% style="width:154px" %)(((
872 -
873 -
874 -
875 -
876 -
877 -
878 -
879 -a: Enable or disable the ROC
880 -)))|(% style="width:197px" %)(((
881 -0: off
882 -1: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
883 -
884 -2: Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
885 -)))
886 -|(% style="width:154px" %)b: Set the detection interval|(% style="width:197px" %)(((
887 -
888 -
889 -Range:  0~~65535s
890 -)))
891 -|(% style="width:154px" %)c: Setting the IDC change value|(% style="width:197px" %)Unit: uA
892 -|(% style="width:154px" %)d: Setting the VDC change value|(% style="width:197px" %)Unit: mV
893 -
894 -Example:
895 -
896 -* AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
897 -* AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
898 -* AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
899 -* AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
900 -
901 -Downlink Command: 0x09 aa bb cc dd
902 -
903 -Format: Function code (0x09) followed by 4 bytes.
904 -
905 -aa: 1 byte; Set the wave alarm mode.
906 -
907 -bb: 2 bytes; Set the detection interval. (second)
908 -
909 -cc: 2 bytes; Setting the IDC change threshold. (uA)
910 -
911 -dd: 2 bytes; Setting the VDC change threshold. (mV)
912 -
913 -Example:
914 -
915 -* Downlink Payload: 09 01 00 3C 0B B8 01 F4  ~/~/Equal to AT+ROC=1,60,3000, 500
916 -* Downlink Payload: 09 01 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=1,60,3000,0
917 -* Downlink Payload: 09 02 00 3C 0B B8 00 00  ~/~/Equal to AT+ROC=2,60,3000,0
918 -
919 -Screenshot of parsing example in TTN:
920 -
921 -* AT+ROC=1,60,3000, 500.
922 -
923 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]]
924 -
925 -
926 -==== 2.8.2.2 Over-threshold alarm mode ====
927 -
928 -Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
929 -
930 -AT Command: AT+ROC=3,a,b,c,d,e
931 -
932 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
933 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)Command Example|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)Parameters|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)Response/Explanation
934 -|(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
935 -
936 -
937 -0,0,0,0(default)
938 -OK
939 -)))
940 -|(% colspan="1" rowspan="5" style="width:143px" %)(((
941 -
942 -
943 -
944 -
945 -
946 -AT+ROC=3,a,b,c,d,e
947 -)))|(% style="width:160px" %)(((
948 -
949 -
950 -a: Set the detection interval
951 -)))|(% style="width:185px" %)(((
952 -
953 -
954 -Range:  0~~65535s
955 -)))
956 -|(% style="width:160px" %)b: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
957 -
958 -
959 -0: Less than the set IDC threshold, Alarm
960 -
961 -1: Greater than the set IDC threshold, Alarm
962 -)))
963 -|(% style="width:160px" %)(((
964 -
965 -
966 -c:  IDC alarm threshold
967 -)))|(% style="width:185px" %)(((
968 -
969 -
970 -Unit: uA
971 -)))
972 -|(% style="width:160px" %)d: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
973 -
974 -
975 -0: Less than the set VDC threshold, Alarm
976 -
977 -1: Greater than the set VDC threshold, Alarm
978 -)))
979 -|(% style="width:160px" %)e: VDC alarm threshold|(% style="width:185px" %)Unit: mV
980 -
981 -Example:
982 -
983 -* AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
984 -* AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
985 -* AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
986 -
987 -Downlink Command: 0x09 03 aa bb cc dd ee
988 -
989 -Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
990 -
991 -aa: 2 bytes; Set the detection interval.(second)
992 -
993 -bb: 1 byte; Set the IDC alarm trigger condition.
994 -
995 -cc: 2 bytes; IDC alarm threshold.(uA)
996 -
997 -
998 -dd: 1 byte; Set the VDC alarm trigger condition.
999 -
1000 -ee: 2 bytes; VDC alarm threshold.(mV)
1001 -
1002 -Example:
1003 -
1004 -* Downlink Payload: 09 03 00 3C 00 0B B8 00 13 38 ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
1005 -* Downlink Payload: 09 03 00 b4 01 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
1006 -* Downlink Payload: 09 03 01 2C 00 0B B8 01 13 38  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
1007 -
1008 -Screenshot of parsing example in TTN:
1009 -
1010 -* AT+ROC=3,60,0,3000,0,5000
1011 -
1012 -[[image:image-20250116180030-2.png]]
1013 -
1014 -
1015 -== 2.9 ​Firmware Change Log ==
1016 -
1017 -
1018 -Firmware download link:
1019 -
1020 1020  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
1021 1021  
1022 1022  
... ... @@ -1027,7 +1027,7 @@
1027 1027  
1028 1028  PS-LB/LS supports below configure method:
1029 1029  
1030 -* AT Command via Bluetooth Connection (Recommand Way): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
594 +* AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1031 1031  * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
1032 1032  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1033 1033  
... ... @@ -1055,25 +1055,21 @@
1055 1055  
1056 1056  Feature: Change LoRaWAN End Node Transmit Interval.
1057 1057  
1058 -AT Command: AT+TDC
622 +(% style="color:blue" %)**AT Command: AT+TDC**
1059 1059  
1060 1060  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1061 -|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 160px; background-color:#4F81BD;color:white" %)Function|=(% style="width: 190px;background-color:#4F81BD;color:white" %)Response
625 +|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
1062 1062  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
1063 -
1064 -
1065 1065  30000
1066 1066  OK
1067 1067  the interval is 30000ms = 30s
1068 1068  )))
1069 1069  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
1070 -
1071 -
1072 1072  OK
1073 1073  Set transmit interval to 60000ms = 60 seconds
1074 1074  )))
1075 1075  
1076 -Downlink Command: 0x01
636 +(% style="color:blue" %)**Downlink Command: 0x01**
1077 1077  
1078 1078  Format: Command Code (0x01) followed by 3 bytes time value.
1079 1079  
... ... @@ -1087,20 +1087,16 @@
1087 1087  
1088 1088  Feature, Set Interrupt mode for GPIO_EXIT.
1089 1089  
1090 -AT Command: AT+INTMOD
650 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1091 1091  
1092 1092  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1093 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 160px;background-color:#4F81BD;color:white" %)Response
653 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
1094 1094  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
1095 -
1096 -
1097 1097  0
1098 1098  OK
1099 1099  the mode is 0 =Disable Interrupt
1100 1100  )))
1101 1101  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
1102 -
1103 -
1104 1104  Set Transmit Interval
1105 1105  0. (Disable Interrupt),
1106 1106  ~1. (Trigger by rising and falling edge)
... ... @@ -1108,7 +1108,7 @@
1108 1108  3. (Trigger by rising edge)
1109 1109  )))|(% style="background-color:#f2f2f2; width:157px" %)OK
1110 1110  
1111 -Downlink Command: 0x06
667 +(% style="color:blue" %)**Downlink Command: 0x06**
1112 1112  
1113 1113  Format: Command Code (0x06) followed by 3 bytes.
1114 1114  
... ... @@ -1122,106 +1122,76 @@
1122 1122  
1123 1123  Feature, Control the output 3V3 , 5V or 12V.
1124 1124  
1125 -AT Command: AT+3V3T
681 +(% style="color:blue" %)**AT Command: AT+3V3T**
1126 1126  
1127 1127  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
1128 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 201px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
684 +|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1129 1129  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
1130 -
1131 -
1132 1132  0
1133 1133  OK
1134 1134  )))
1135 1135  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1136 -
1137 -
1138 1138  OK
1139 1139  default setting
1140 1140  )))
1141 1141  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
1142 -
1143 -
1144 1144  OK
1145 1145  )))
1146 1146  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
1147 -
1148 -
1149 1149  OK
1150 1150  )))
1151 1151  
1152 -AT Command: AT+5VT
700 +(% style="color:blue" %)**AT Command: AT+5VT**
1153 1153  
1154 1154  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1155 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 196px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 119px;background-color:#4F81BD;color:white" %)Response
703 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
1156 1156  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1157 -
1158 -
1159 1159  0
1160 1160  OK
1161 1161  )))
1162 1162  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1163 -
1164 -
1165 1165  OK
1166 1166  default setting
1167 1167  )))
1168 1168  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
1169 -
1170 -
1171 1171  OK
1172 1172  )))
1173 1173  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
1174 -
1175 -
1176 1176  OK
1177 1177  )))
1178 1178  
1179 -AT Command: AT+12VT
719 +(% style="color:blue" %)**AT Command: AT+12VT**
1180 1180  
1181 1181  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1182 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)Command Example|=(% style="width: 199px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 88px;background-color:#4F81BD;color:white" %)Response
722 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
1183 1183  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1184 -
1185 -
1186 1186  0
1187 1187  OK
1188 1188  )))
1189 1189  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
1190 1190  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
1191 -
1192 -
1193 1193  OK
1194 1194  )))
1195 1195  
1196 -Downlink Command: 0x07
732 +(% style="color:blue" %)**Downlink Command: 0x07**
1197 1197  
1198 1198  Format: Command Code (0x07) followed by 3 bytes.
1199 1199  
1200 1200  The first byte is which power, the second and third bytes are the time to turn on.
1201 1201  
1202 -* Example 1: Downlink Payload: 070101F4  ~-~-->  AT+3V3T=500
1203 -* Example 2: Downlink Payload: 0701FFFF   ~-~-->  AT+3V3T=65535
1204 -* Example 3: Downlink Payload: 070203E8  ~-~-->  AT+5VT=1000
1205 -* Example 4: Downlink Payload: 07020000  ~-~-->  AT+5VT=0
1206 -* Example 5: Downlink Payload: 070301F4  ~-~-->  AT+12VT=500
1207 -* Example 6: Downlink Payload: 07030000  ~-~-->  AT+12VT=0
738 +* Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
739 +* Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
740 +* Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
741 +* Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
742 +* Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
743 +* Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1208 1208  
1209 -Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.
1210 -
1211 -Therefore, the corresponding downlink command is increased by one byte to five bytes.
1212 -
1213 -Example:
1214 -
1215 -* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 01 01 D4 C0  ~-~-->  AT+3V3T=120000
1216 -* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 02 01 86 A0  ~-~-->  AT+5VT=100000
1217 -* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 03 01 38 80  ~-~-->  AT+12VT=80000
1218 -
1219 1219  === 3.3.4 Set the Probe Model ===
1220 1220  
1221 1221  
1222 1222  Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
1223 1223  
1224 -AT Command: AT +PROBE
750 +(% style="color:blue" %)**AT Command: AT** **+PROBE**
1225 1225  
1226 1226  AT+PROBE=aabb
1227 1227  
... ... @@ -1233,20 +1233,12 @@
1233 1233  
1234 1234  (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
1235 1235  
1236 -When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value;
1237 -
1238 -bb represents which type of pressure sensor it is.
1239 -
1240 -(0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1241 -
1242 1242  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1243 -|(% style="background-color:#4f81bd; color:white; width:154px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:269px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
763 +|(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1244 1244  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1245 1245  OK
1246 1246  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
1247 1247  |(% style="background-color:#f2f2f2; width:154px" %)(((
1248 -
1249 -
1250 1250  AT+PROBE=000A
1251 1251  )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
1252 1252  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -1253,59 +1253,52 @@
1253 1253  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
1254 1254  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
1255 1255  
1256 -Downlink Command: 0x08
774 +(% style="color:blue" %)**Downlink Command: 0x08**
1257 1257  
1258 1258  Format: Command Code (0x08) followed by 2 bytes.
1259 1259  
1260 -* Example 1: Downlink Payload: 080003  ~-~-->  AT+PROBE=0003
1261 -* Example 2: Downlink Payload: 080101  ~-~-->  AT+PROBE=0101
778 +* Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
779 +* Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1262 1262  
1263 1263  === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
1264 1264  
1265 1265  
1266 -Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
784 +Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
1267 1267  
1268 -AT Command: AT +STDC
786 +(% style="color:blue" %)**AT Command: AT** **+STDC**
1269 1269  
1270 1270  AT+STDC=aa,bb,bb
1271 1271  
1272 -aa:
1273 -0: means disable this function and use TDC to send packets.
1274 -1: means that the function is enabled to send packets by collecting VDC data for multiple times.
1275 -2: means that the function is enabled to send packets by collecting IDC data for multiple times.
1276 -bb: Each collection interval (s), the value is 1~~65535
1277 -cc: the number of collection times, the value is 1~~120
790 +(% style="color:#037691" %)**aa:**(%%)
791 +**0:** means disable this function and use TDC to send packets.
792 +**1:** means enable this function, use the method of multiple acquisitions to send packets.
793 +(% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
794 +(% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1278 1278  
1279 1279  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1280 -|(% style="background-color:#4f81bd; color:white; width:160px" %)Command Example|(% style="background-color:#4f81bd; color:white; width:215px" %)Function|(% style="background-color:#4f81bd; color:white" %)Response
797 +|(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
1281 1281  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1282 1282  OK
1283 1283  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
1284 -
1285 -
1286 1286  Attention:Take effect after ATZ
1287 1287  
1288 1288  OK
1289 1289  )))
1290 1290  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
1291 -
1292 -
1293 1293  Use the TDC interval to send packets.(default)
1294 1294  
1295 1295  
1296 1296  )))|(% style="background-color:#f2f2f2" %)(((
1297 -
1298 -
1299 1299  Attention:Take effect after ATZ
1300 1300  
1301 1301  OK
1302 1302  )))
1303 1303  
1304 -Downlink Command: 0xAE
815 +(% style="color:blue" %)**Downlink Command: 0xAE**
1305 1305  
1306 -Format: Command Code (0xAE) followed by 4 bytes.
817 +Format: Command Code (0x08) followed by 5 bytes.
1307 1307  
1308 -* Example 1: Downlink Payload: AE 01 02 58 12 ~-~-->  AT+STDC=1,600,18
819 +* Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1309 1309  
1310 1310  = 4. Battery & Power Consumption =
1311 1311  
... ... @@ -1312,7 +1312,7 @@
1312 1312  
1313 1313  PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1314 1314  
1315 -[[Battery Info & Power Consumption Analyze>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
826 +[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1316 1316  
1317 1317  
1318 1318  = 5. OTA firmware update =
... ... @@ -1348,22 +1348,22 @@
1348 1348  Test the current values at the depth of different liquids and convert them to a linear scale.
1349 1349  Replace its ratio with the ratio of water to current in the decoder.
1350 1350  
1351 -Example:
862 +**Example:**
1352 1352  
1353 1353  Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1354 1354  
1355 -Calculate scale factor:
866 +**Calculate scale factor:**
1356 1356  Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1357 1357  
1358 -Calculation formula:
869 +**Calculation formula:**
1359 1359  
1360 1360  Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1361 1361  
1362 -Actual calculations:
873 +**Actual calculations:**
1363 1363  
1364 1364  Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1365 1365  
1366 -Error:
877 +**Error:**
1367 1367  
1368 1368  0.009810726
1369 1369  
... ... @@ -1387,17 +1387,17 @@
1387 1387  = 8. Order Info =
1388 1388  
1389 1389  
901 +[[image:image-20240109172423-7.png]](% style="display:none" %)
1390 1390  
1391 -[[image:image-20241021093209-1.png]]
1392 1392  
1393 1393  = 9. ​Packing Info =
1394 1394  
1395 1395  
1396 -Package Includes:
907 +(% style="color:#037691" %)**Package Includes**:
1397 1397  
1398 1398  * PS-LB or PS-LS LoRaWAN Pressure Sensor
1399 1399  
1400 -Dimension and weight:
911 +(% style="color:#037691" %)**Dimension and weight**:
1401 1401  
1402 1402  * Device Size: cm
1403 1403  * Device Weight: g
... ... @@ -1410,3 +1410,5 @@
1410 1410  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1411 1411  
1412 1412  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
924 +
925 +
image-20240513100129-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -130.4 KB
Content
image-20240513100135-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20240817150702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -38.4 KB
Content
image-20241021093209-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.1 KB
Content
image-20250116175954-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -68.6 KB
Content
image-20250116180030-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -69.2 KB
Content
image-20250117104812-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -1.7 KB
Content
image-20250117104827-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -74.6 KB
Content
image-20250117104837-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -38.7 KB
Content
image-20250117104847-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 KB
Content
image-20250401102131-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -64.7 KB
Content
image-20250401163530-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -44.9 KB
Content
image-20250401163539-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20250401163826-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -18.9 KB
Content
image-20250401163906-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -181.6 KB
Content