Last modified by Xiaoling on 2025/07/10 16:21

From version 108.1
edited by Mengting Qiu
on 2025/01/16 17:42
Change comment: There is no comment for this version
To version 72.5
edited by Xiaoling
on 2024/01/09 16:37
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Xiaoling
Content
... ... @@ -25,27 +25,27 @@
25 25  
26 26  
27 27  (((
28 -The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
28 +The Dragino PS-LB series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
29 29  )))
30 30  
31 31  (((
32 -The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
32 +The PS-LB series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
33 33  )))
34 34  
35 35  (((
36 -The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +The LoRa wireless technology used in PS-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
37 37  )))
38 38  
39 39  (((
40 -PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use.
40 +PS-LB supports BLE configure and wireless OTA update which make user easy to use.
41 41  )))
42 42  
43 43  (((
44 -PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery **(%%), it is designed for long term use up to 5 years.
44 +PS-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or **solar powered + li-on battery **, it is designed for long term use up to 5 years.
45 45  )))
46 46  
47 47  (((
48 -Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
48 +Each PS-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
49 49  )))
50 50  
51 51  [[image:1675071321348-194.png]]
... ... @@ -67,7 +67,7 @@
67 67  * Downlink to change configure
68 68  * Controllable 3.3v,5v and 12v output to power external sensor
69 69  * 8500mAh Li/SOCl2 Battery (PS-LB)
70 -* Solar panel + 3000mAh Li-ion battery (PS-LS)
70 +* Solar panel + 3000mAh Li-on battery (PS-LS)
71 71  
72 72  == 1.3 Specification ==
73 73  
... ... @@ -136,28 +136,20 @@
136 136  === 1.4.2 Immersion Type ===
137 137  
138 138  
139 -[[image:image-20240109160445-5.png||height="221" width="166"]]
139 +[[image:image-20240109160445-5.png||height="284" width="214"]]
140 140  
141 141  * Immersion Type, Probe IP Level: IP68
142 142  * Measuring Range: Measure range can be customized, up to 100m.
143 143  * Accuracy: 0.2% F.S
144 144  * Long-Term Stability: ±0.2% F.S / Year
145 -* Storage temperature: -30°C~~80°C
146 -* Operating temperature: 0°C~~50°C
145 +* Storage temperature: -30~~80
146 +* Operating temperature: 0~~50
147 147  * Material: 316 stainless steels
148 148  
149 -=== 1.4.3 Wireless Differential Air Pressure Sensor ===
149 +
150 150  
151 -[[image:image-20240511174954-1.png]]
151 +
152 152  
153 -* Measuring Range: -100KPa~~0~~100KPa(Optional measuring range).
154 -* Accuracy: 0.5% F.S, resolution is 0.05%.
155 -* Overload: 300% F.S
156 -* Zero temperature drift: ±0.03%F.S/°C
157 -* Operating temperature: -20°C~~60°C
158 -* Storage temperature:  -20°C~~60°C
159 -* Compensation temperature: 0~~50°C
160 -
161 161  == 1.5 Application and Installation ==
162 162  
163 163  === 1.5.1 Thread Installation Type ===
... ... @@ -188,13 +188,9 @@
188 188  [[image:1675071725288-579.png]]
189 189  
190 190  
191 -Below is the wiring to for connect the probe to the device.
183 +The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
192 192  
193 -The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
194 194  
195 -* Cable Length: 10 Meters
196 -* Water Detect Range: 0 ~~ 10 Meters.
197 -
198 198  [[image:1675071736646-450.png]]
199 199  
200 200  
... ... @@ -201,31 +201,6 @@
201 201  [[image:1675071776102-240.png]]
202 202  
203 203  
204 -
205 -=== 1.5.3 Wireless Differential Air Pressure Sensor ===
206 -
207 -
208 -(% style="color:blue" %)**Application:**
209 -
210 -Indoor Air Control & Filter clogging Detect.
211 -
212 -[[image:image-20240513100129-6.png]]
213 -
214 -[[image:image-20240513100135-7.png]]
215 -
216 -
217 -Below is the wiring to for connect the probe to the device.
218 -
219 -[[image:image-20240513093957-1.png]]
220 -
221 -
222 -Size of wind pressure transmitter:
223 -
224 -[[image:image-20240513094047-2.png]]
225 -
226 -Note: The above dimensions are measured by hand, and the numerical error of the shell is within ±0.2mm.
227 -
228 -
229 229  == 1.6 Sleep mode and working mode ==
230 230  
231 231  
... ... @@ -240,7 +240,7 @@
240 240  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
241 241  
242 242  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
243 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
206 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
244 244  |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
245 245  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
246 246  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -261,7 +261,7 @@
261 261  == 1.9 BLE connection ==
262 262  
263 263  
264 -PS-LB/LS support BLE remote configure.
227 +PS-LB support BLE remote configure.
265 265  
266 266  
267 267  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -275,12 +275,13 @@
275 275  
276 276  == 1.10 Mechanical ==
277 277  
278 -=== 1.10.1 for LB version ===
241 +=== 1.10.1 for LB version(% style="display:none" %) (%%) ===
279 279  
280 280  
281 281  [[image:image-20240109160800-6.png]]
282 282  
283 283  
247 +
284 284  === 1.10.2 for LS version ===
285 285  
286 286  
... ... @@ -287,12 +287,12 @@
287 287  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
288 288  
289 289  
290 -= 2. Configure PS-LB/LS to connect to LoRaWAN network =
254 += 2. Configure PS-LB to connect to LoRaWAN network =
291 291  
292 292  == 2.1 How it works ==
293 293  
294 294  
295 -The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
259 +The PS-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
296 296  
297 297  
298 298  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -300,6 +300,7 @@
300 300  
301 301  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
302 302  
267 +
303 303  [[image:1675144005218-297.png]]
304 304  
305 305  
... ... @@ -306,9 +306,9 @@
306 306  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
307 307  
308 308  
309 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
274 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB.
310 310  
311 -Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
276 +Each PS-LB is shipped with a sticker with the default device EUI as below:
312 312  
313 313  [[image:image-20230426085320-1.png||height="234" width="504"]]
314 314  
... ... @@ -336,10 +336,10 @@
336 336  
337 337  [[image:1675144157838-392.png]]
338 338  
339 -(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
304 +(% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB
340 340  
341 341  
342 -Press the button for 5 seconds to activate the PS-LB/LS.
307 +Press the button for 5 seconds to activate the PS-LB.
343 343  
344 344  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
345 345  
... ... @@ -351,12 +351,13 @@
351 351  === 2.3.1 Device Status, FPORT~=5 ===
352 352  
353 353  
354 -Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server.
319 +Include device configure status. Once PS-LB Joined the network, it will uplink this message to the server.
355 355  
356 -Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
321 +Users can also use the downlink command(0x26 01) to ask PS-LB to resend this uplink.
357 357  
323 +
358 358  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
359 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
325 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
360 360  |(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
361 361  |(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
362 362  
... ... @@ -365,7 +365,7 @@
365 365  [[image:1675144504430-490.png]]
366 366  
367 367  
368 -(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
334 +(% style="color:#037691" %)**Sensor Model**(%%): For PS-LB, this value is 0x16
369 369  
370 370  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
371 371  
... ... @@ -425,9 +425,9 @@
425 425  
426 426  
427 427  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
428 -|(% style="background-color:#4f81bd; color:white; width:97px" %)(((
394 +|(% style="background-color:#d9e2f3; color:#0070c0; width:97px" %)(((
429 429  **Size(bytes)**
430 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
396 +)))|(% style="background-color:#d9e2f3; color:#0070c0; width:48px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:71px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:98px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:73px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:122px" %)**1**
431 431  |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
432 432  
433 433  [[image:1675144608950-310.png]]
... ... @@ -436,7 +436,7 @@
436 436  === 2.3.3 Battery Info ===
437 437  
438 438  
439 -Check the battery voltage for PS-LB/LS.
405 +Check the battery voltage for PS-LB.
440 440  
441 441  Ex1: 0x0B45 = 2885mV
442 442  
... ... @@ -446,16 +446,16 @@
446 446  === 2.3.4 Probe Model ===
447 447  
448 448  
449 -PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
415 +PS-LB has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
450 450  
451 451  
452 452  **For example.**
453 453  
454 454  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
455 -|(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
456 -|(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
457 -|(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
458 -|(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
421 +|(% style="background-color:#d9e2f3; color:#0070c0" %)**Part Number**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Probe Used**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4~~20mA scale**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Example: 12mA meaning**
422 +|(% style="background-color:#f2f2f2" %)PS-LB-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
423 +|(% style="background-color:#f2f2f2" %)PS-LB-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
424 +|(% style="background-color:#f2f2f2" %)PS-LB-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
459 459  
460 460  The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
461 461  
... ... @@ -475,7 +475,7 @@
475 475  [[image:image-20230225154759-1.png||height="408" width="741"]]
476 476  
477 477  
478 -=== 2.3.6 0~~30V value (pin VDC_IN) ===
444 +=== 2.3.6 0~~30V value ( pin VDC_IN) ===
479 479  
480 480  
481 481  Measure the voltage value. The range is 0 to 30V.
... ... @@ -508,13 +508,13 @@
508 508  0x01: Interrupt Uplink Packet.
509 509  
510 510  
511 -=== 2.3.8 Sensor value, FPORT~=7 ===
477 +=== (% style="color:inherit; font-family:inherit; font-size:23px" %)2.3.8 Sensor value, FPORT~=7(%%) ===
512 512  
513 513  
514 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
515 -|(% style="background-color:#4f81bd; color:white; width:65px" %)(((
480 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:508.222px" %)
481 +|(% style="background-color:#d9e2f3; color:#0070c0; width:94px" %)(((
516 516  **Size(bytes)**
517 -)))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
483 +)))|(% style="background-color:#d9e2f3; color:#0070c0; width:43px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:367px" %)**n**
518 518  |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
519 519  Voltage value, each 2 bytes is a set of voltage values.
520 520  )))
... ... @@ -531,16 +531,17 @@
531 531  
532 532  While using TTN network, you can add the payload format to decode the payload.
533 533  
500 +
534 534  [[image:1675144839454-913.png]]
535 535  
536 536  
537 -PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
504 +PS-LB TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
538 538  
539 539  
540 540  == 2.4 Uplink Interval ==
541 541  
542 542  
543 -The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
510 +The PS-LB by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
544 544  
545 545  
546 546  == 2.5 Show Data in DataCake IoT Server ==
... ... @@ -548,10 +548,12 @@
548 548  
549 549  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
550 550  
518 +
551 551  (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
552 552  
553 553  (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
554 554  
523 +
555 555  [[image:1675144951092-237.png]]
556 556  
557 557  
... ... @@ -560,7 +560,7 @@
560 560  
561 561  (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
562 562  
563 -(% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
532 +(% style="color:blue" %)**Step 4:** (%%)Create PS-LB product.
564 564  
565 565  [[image:1675145004465-869.png]]
566 566  
... ... @@ -568,6 +568,7 @@
568 568  [[image:1675145018212-853.png]]
569 569  
570 570  
540 +
571 571  [[image:1675145029119-717.png]]
572 572  
573 573  
... ... @@ -581,328 +581,32 @@
581 581  
582 582  After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
583 583  
554 +
584 584  [[image:1675145081239-376.png]]
585 585  
586 586  
587 -== 2.6 Datalog Feature (Since V1.1) ==
558 +== 2.6 Frequency Plans ==
588 588  
589 589  
590 -When a user wants to retrieve sensor value, he can send a poll command from the IoT platform to ask the sensor to send value in the required time slot.
561 +The PS-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
591 591  
563 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
592 592  
593 -=== 2.6.1 Unix TimeStamp ===
594 594  
566 +== 2.7 ​Firmware Change Log ==
595 595  
596 -PS-LB uses Unix TimeStamp format based on
597 597  
598 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861618065-927.png?width=705&height=109&rev=1.1||alt="1652861618065-927.png" height="109" width="705"]]
599 -
600 -Users can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
601 -
602 -Below is the converter example:
603 -
604 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652861637105-371.png?width=732&height=428&rev=1.1||alt="1652861637105-371.png"]]
605 -
606 -
607 -=== 2.6.2 Set Device Time ===
608 -
609 -
610 -There are two ways to set the device's time:
611 -
612 -
613 -(% style="color:blue" %)**1. Through LoRaWAN MAC Command (Default settings)**
614 -
615 -Users need to set SYNCMOD=1 to enable sync time via the MAC command.
616 -
617 -Once CPL01 Joined the LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to CPL01. If CPL01 fails to get the time from the server, CPL01 will use the internal time and wait for the next time request ~[[[via Device Status (FPORT=5)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/#H2.3.1DeviceStatus2CFPORT3D5]]].
618 -
619 -(% style="color:red" %)**Note: LoRaWAN Server needs to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature.**
620 -
621 -
622 -(% style="color:blue" %)** 2. Manually Set Time**
623 -
624 -Users need to set SYNCMOD=0 to manual time, otherwise, the user set time will be overwritten by the time set by the server.
625 -
626 -
627 -=== 2.6.3 Poll sensor value ===
628 -
629 -
630 -Users can poll sensor values based on timestamps. Below is the downlink command.
631 -
632 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
633 -|=(% colspan="4" style="width: 154px;background-color:#4F81BD;color:white" %)**Downlink Command to poll Open/Close status (0x31)**
634 -|(% style="background-color:#f2f2f2; width:70px" %)**1byte**|(% style="background-color:#f2f2f2; width:140px" %)**4bytes**|(% style="background-color:#f2f2f2; width:140px" %)(((
635 -(((
636 -**4bytes**
637 -)))
638 -
639 -
640 -
641 -)))|(% style="background-color:#f2f2f2; width:150px" %)**1byte**
642 -|(% style="background-color:#f2f2f2; width:70px" %)31|(% style="background-color:#f2f2f2; width:140px" %)Timestamp start|(% style="background-color:#f2f2f2; width:140px" %)Timestamp end|(% style="background-color:#f2f2f2; width:150px" %)Uplink Interval
643 -
644 -Timestamp start and Timestamp end-use Unix TimeStamp format as mentioned above. Devices will reply with all data logs during this period, using the uplink interval.
645 -
646 -For example, downlink command[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/image-20220518162852-1.png?rev=1.1||alt="image-20220518162852-1.png"]]
647 -
648 -Is to check 2021/11/12 12:00:00 to 2021/11/12 15:00:00's data
649 -
650 -Uplink Internal =5s,means PS-LB will send one packet every 5s. range 5~~255s.
651 -
652 -
653 -=== 2.6.4 Decoder in TTN V3 ===
654 -
655 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CPL01%20LoRaWAN%20Outdoor%20PulseContact%20%20Sensor%20Manual/WebHome/1652862574387-195.png?width=722&height=359&rev=1.1||alt="1652862574387-195.png" height="359" width="722"]]
656 -
657 -Please check the decoder from this link: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
658 -
659 -
660 -== 2.7 Frequency Plans ==
661 -
662 -
663 -The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
664 -
665 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/a>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
666 -
667 -
668 -== 2.8 Report on Change Feature (Since firmware V1.2) ==
669 -
670 -=== 2.8.1 Uplink payload(Enable ROC) ===
671 -
672 -
673 -Used to Monitor the IDC and VDC increments, and send ROC uplink when the IDC or VDC changes exceed.
674 -
675 -With ROC enabled, the payload is as follows:
676 -
677 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
678 -|(% style="background-color:#4f81bd; color:white; width:97px" %)(((
679 -**Size(bytes)**
680 -)))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
681 -|(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)(((
682 -[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]] & ROC_flag
683 -)))
684 -
685 -(% style="color:blue" %)**IN1 &IN2 , Interrupt  flag , ROC_flag:**
686 -
687 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
688 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bit)**|(% style="background-color:#4f81bd; color:white; width:60px" %)**bit7**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit6**|(% style="background-color:#4f81bd; color:white; width:62px" %)**bit5**|(% style="background-color:#4f81bd; color:white; width:65px" %)**bit4**|(% style="background-color:#4f81bd; color:white; width:56px" %)**bit3**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit2**|(% style="background-color:#4f81bd; color:white; width:55px" %)**bit1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**bit0**
689 -|(% style="width:75px" %)Value|(% style="width:89px" %)IDC_Roc_flagL|(% style="width:46.5834px" %)IDC_Roc_flagH|(% style="width:1px" %)VDC_Roc_flagL|(% style="width:89px" %)VDC_Roc_flagH|(% style="width:89px" %)IN1_pin_level|(% style="width:103px" %)IN2_pin_level|(% style="width:103px" %)Exti_pin_level|(% style="width:103px" %)Exti_status
690 -
691 -* (% style="color:#037691" %)**IDC_Roc_flagL**
692 -
693 -80 (H): (0x80&0x80)=80(H)=**1**000 0000(B)  bit7=1, "TRUE", This uplink is triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
694 -
695 -60 (H): (0x60&0x80)=0  bit7=0, "FALSE", This uplink is not triggered when the decrease in the IDC compared to the last ROC refresh exceeds the set threshold.
696 -
697 -
698 -* (% style="color:#037691" %)**IDC_Roc_flagH**
699 -
700 -60 (H): (0x60&0x40)=60(H)=0**1**000 0000(B)  bit6=1, "TRUE", This uplink is triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
701 -
702 -80 (H): (0x80&0x40)=0  bit6=0, "FALSE", This uplink is not triggered when the increase in the value of the IDC compared to the last ROC refresh exceeds the set threshold.
703 -
704 -
705 -* (% style="color:#037691" %)**VDC_Roc_flagL**
706 -
707 -20 (H): (0x20&0x20)=20(H)=00**1**0 0000(B)  bit5=1, "TRUE", This uplink is triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
708 -
709 -90 (H): (0x90&0x20)=0  bit5=0, "FALSE", This uplink is not triggered when the decrease in the VDC compared to the last ROC refresh exceeds the set threshold.
710 -
711 -
712 -* (% style="color:#037691" %)**VDC_Roc_flagH**
713 -
714 -90 (H): (0x90&0x10)=10(H)=000**1** 0000(B)  bit4=1, "TRUE", This uplink is triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
715 -
716 -20 (H): (0x20&0x10)=0  bit4=0, "FALSE", This uplink is not triggered when the increase in the value of the VDC compared to the last ROC refresh exceeds the set threshold.
717 -
718 -
719 -* (% style="color:#037691" %)**IN1_pin_level & IN2_pin_level**
720 -
721 -IN1 and IN2 are used as digital input pins.
722 -
723 -80 (H): (0x80&0x08)=0  IN1 pin is low level.
724 -
725 -80 (H): (0x09&0x04)=0    IN2 pin is low level.
726 -
727 -
728 -* (% style="color:#037691" %)**Exti_pin_level &Exti_status**
729 -
730 -This data field shows whether the packet is generated by an interrupt pin.
731 -
732 -Note: The Internet pin of the old motherboard is a separate pin in the screw terminal, and the interrupt pin of the new motherboard(SIB V1.3) is the **GPIO_EXTI** pin.
733 -
734 -**Exti_pin_level:**  80 (H): (0x80&0x02)=0  "low", The level of the interrupt pin.
735 -
736 -**Exti_status: **80 (H): (0x80&0x01)=0  "False", Normal uplink packet.
737 -
738 -
739 -=== 2.8.2 Set the Report on Change ===
740 -
741 -
742 -Feature: Get or Set the Report on Change.
743 -
744 -
745 -==== 2.8.2.1 Wave alarm mode ====
746 -
747 -Feature: By setting the detection period and a change value, the IDC/VDC variable is monitored whether it exceeds the set change value. If this change value is exceeded, the ROC uplink is sent and the comparison value is flushed.
748 -
749 -* (% style="color:#037691" %)**Change value: **(%%)The amount by which the next detection value increases/decreases relative to the previous detection value.
750 -* (% style="color:#037691" %)**Comparison value:**(%%) A parameter to compare with the latest ROC test.
751 -
752 -(% style="color:blue" %)**AT Command: AT+ROC**
753 -
754 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
755 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 154px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 197px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
756 -|(% style="width:143px" %)AT+ROC=?|(% style="width:154px" %)Show current ROC setting|(% style="width:197px" %)(((
757 -0,0,0,0(default)
758 -OK
759 -)))
760 -|(% colspan="1" rowspan="4" style="width:143px" %)(((
761 -
762 -
763 -
764 -
765 -AT+ROC=a,b,c,d
766 -)))|(% style="width:154px" %)(((
767 -
768 -
769 -
770 -
771 -
772 -
773 -**a**: Enable or disable the ROC
774 -)))|(% style="width:197px" %)(((
775 -**0:** off
776 -**1:** Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value.
777 -
778 -**2: **Turn on the wave alarm mode, send the ROC uplink when the increment exceeds the set parameter and refresh the comparison value. In addition, the comparison value is refreshed when the device sends packets ([[TDC>>||anchor="H3.3.1SetTransmitIntervalTime"]] or [[ACT>>||anchor="H1.7Button26LEDs"]]).
779 -)))
780 -|(% style="width:154px" %)**b**: Set the detection interval|(% style="width:197px" %)(((
781 -Range:  0~~65535s
782 -)))
783 -|(% style="width:154px" %)**c**: Setting the IDC change value|(% style="width:197px" %)Unit: uA
784 -|(% style="width:154px" %)**d**: Setting the VDC change value|(% style="width:197px" %)Unit: mV
785 -
786 -**Example:**
787 -
788 -* AT+ROC=0,0,0,0  ~/~/The ROC function is not used.
789 -* AT+ROC=1,60,3000, 500  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA) or VDC (>500mV), sends an ROC uplink, and the comparison value is refreshed.
790 -* AT+ROC=1,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage.
791 -* AT+ROC=2,60,3000,0  ~/~/ Check value every 60 seconds. lf there is change in IDC (>3mA), send an ROC uplink and the comparison value of IDC is refreshed. dd=0 Means doesn't monitor Voltage. In addition, if the change in the IDC does not exceed 3mA, then the ROC uplink is not sent, and the comparison value is not refreshed by the ROC uplink packet. However, if the device TDC time arrives, or if the user manually sends packets, then the IDC comparison value is also refreshed.
792 -
793 -(% style="color:blue" %)**Downlink Command: 0x09 aa bb cc dd**
794 -
795 -Format: Function code (0x09) followed by 4 bytes.
796 -
797 -(% style="color:blue" %)**aa: **(% style="color:#037691" %)**1 byte;**(%%) Set the wave alarm mode.
798 -
799 -(% style="color:blue" %)**bb: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval. (second)
800 -
801 -(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the IDC change threshold. (uA)
802 -
803 -(% style="color:blue" %)**dd: **(% style="color:#037691" %)**2 bytes;**(%%) Setting the VDC change threshold. (mV)
804 -
805 -**Example:**
806 -
807 -* Downlink Payload: **09 01 00 3C 0B B8 01 F4 ** ~/~/Equal to AT+ROC=1,60,3000, 500
808 -* Downlink Payload: **09 01 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=1,60,3000,0
809 -* Downlink Payload: **09 02 00 3C 0B B8 00 00 ** ~/~/Equal to AT+ROC=2,60,3000,0
810 -
811 -(% style="color:blue" %)**Screenshot of parsing example in TTN:**
812 -
813 -* AT+ROC=1,60,3000, 500.
814 -
815 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB-NA--LoRaWAN_Analog_Sensor_User_Manual/WebHome/image-20241019170902-1.png?width=1454&height=450&rev=1.1||alt="image-20241019170902-1.png"]]
816 -
817 -
818 -==== 2.8.2.2 Over-threshold alarm mode ====
819 -
820 -Feature: Monitors whether the IDC/VDC exceeds the threshold by setting the detection period and threshold. Alarm if the threshold is exceeded.
821 -
822 -(% style="color:blue" %)**AT Command: AT+ROC=3,a,b,c,d,e**
823 -
824 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
825 -|=(% style="width: 163px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 160px; background-color: rgb(79, 129, 189); color: white;" %)**Parameters**|=(% style="width: 185px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation**
826 -|(% style="width:143px" %)AT+ROC=?|(% style="width:160px" %)Show current ROC setting|(% style="width:185px" %)(((
827 -0,0,0,0(default)
828 -OK
829 -)))
830 -|(% colspan="1" rowspan="5" style="width:143px" %)(((
831 -
832 -
833 -
834 -
835 -AT+ROC=(% style="color:blue" %)**3**(%%),a,b,c,d,e
836 -)))|(% style="width:160px" %)(((
837 -**a: **Set the detection interval
838 -)))|(% style="width:185px" %)(((
839 -Range:  0~~65535s
840 -)))
841 -|(% style="width:160px" %)**b**: Set the IDC alarm trigger condition|(% style="width:185px" %)(((
842 -**0:** Less than the set IDC threshold, Alarm
843 -
844 -**1:** Greater than the set IDC threshold, Alarm
845 -)))
846 -|(% style="width:160px" %)(((
847 -**c**:  IDC alarm threshold
848 -)))|(% style="width:185px" %)(((
849 -Unit: uA
850 -)))
851 -|(% style="width:160px" %)**d**: Set the VDC alarm trigger condition|(% style="width:185px" %)(((
852 -**0:** Less than the set VDC threshold, Alarm
853 -
854 -**1:** Greater than the set VDC threshold, Alarm
855 -)))
856 -|(% style="width:160px" %)**e:** VDC alarm threshold|(% style="width:185px" %)Unit: mV
857 -
858 -**Example:**
859 -
860 -* AT+ROC=3,60,0,3000,0,5000  ~/~/The data is checked every 60 seconds. If the IDC is less than 3mA or the VDC is less than 5000mV, an alarm is generated.
861 -* AT+ROC=3,180,1,3000,1,5000  ~/~/The data is checked every 180 seconds. If the IDC is greater than 3mA or the VDC is greater than 5000mV, an alarm is generated.
862 -* AT+ROC=3,300,0,3000,1,5000  ~/~/The data is checked every 300 seconds. If the IDC is less than 3mA or the VDC is greater than 5000mV, an alarm is generated.
863 -
864 -(% style="color:blue" %)**Downlink Command: 0x09 03 aa bb cc dd ee**
865 -
866 -Format: Function code (0x09) followed by 03 and the remaining 5 bytes.
867 -
868 -(% style="color:blue" %)**aa: **(% style="color:#037691" %)**2 bytes;**(%%) Set the detection interval.(second)
869 -
870 -(% style="color:blue" %)**bb: **(% style="color:#037691" %)**1 byte; **(%%)Set the IDC alarm trigger condition.
871 -
872 -(% style="color:blue" %)**cc: **(% style="color:#037691" %)**2 bytes;**(%%) IDC alarm threshold.(uA)
873 -
874 -
875 -(% style="color:blue" %)**dd: **(% style="color:#037691" %)**1 byte;**(%%) Set the VDC alarm trigger condition.
876 -
877 -(% style="color:blue" %)**ee: **(% style="color:#037691" %)**2 bytes; **(%%)VDC alarm threshold.(mV)
878 -
879 -**Example:**
880 -
881 -* Downlink Payload: **09 03 00 3C 00 0B B8 00 13 38** ~/~/Equal to AT+ROC=3,60,0,3000,0,5000
882 -* Downlink Payload: **09 03 00 b4 01 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,1,3000,1,5000
883 -* Downlink Payload: **09 03 01 2C 00 0B B8 01 13 38**  ~/~/Equal to AT+ROC=3,60,0,3000,1,5000
884 -
885 -(% style="color:blue" %)**Screenshot of parsing example in TTN:**
886 -
887 -* AT+ROC=3,60,0,3000,0,5000
888 -
889 -
890 -
891 -
892 -== 2.9 ​Firmware Change Log ==
893 -
894 -
895 895  **Firmware download link:**
896 896  
897 897  [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
898 898  
899 899  
900 -= 3. Configure PS-LB/LS =
574 += 3. Configure PS-LB =
901 901  
902 902  == 3.1 Configure Methods ==
903 903  
904 904  
905 -PS-LB/LS supports below configure method:
579 +PS-LB supports below configure method:
906 906  
907 907  * AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
908 908  * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
... ... @@ -921,10 +921,10 @@
921 921  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
922 922  
923 923  
924 -== 3.3 Commands special design for PS-LB/LS ==
598 +== 3.3 Commands special design for PS-LB ==
925 925  
926 926  
927 -These commands only valid for PS-LB/LS, as below:
601 +These commands only valid for PS-LB, as below:
928 928  
929 929  
930 930  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -935,7 +935,7 @@
935 935  (% style="color:blue" %)**AT Command: AT+TDC**
936 936  
937 937  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
938 -|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
612 +|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 160px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Response**
939 939  |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
940 940  30000
941 941  OK
... ... @@ -963,7 +963,7 @@
963 963  (% style="color:blue" %)**AT Command: AT+INTMOD**
964 964  
965 965  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
966 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
640 +|=(% style="width: 154px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Response**
967 967  |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
968 968  0
969 969  OK
... ... @@ -994,7 +994,7 @@
994 994  (% style="color:blue" %)**AT Command: AT+3V3T**
995 995  
996 996  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
997 -|=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
671 +|=(% style="width: 154px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 201px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 119px;background-color:#D9E2F3;color:#0070C0" %)**Response**
998 998  |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
999 999  0
1000 1000  OK
... ... @@ -1013,7 +1013,7 @@
1013 1013  (% style="color:blue" %)**AT Command: AT+5VT**
1014 1014  
1015 1015  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
1016 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
690 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 119px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1017 1017  |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
1018 1018  0
1019 1019  OK
... ... @@ -1032,7 +1032,7 @@
1032 1032  (% style="color:blue" %)**AT Command: AT+12VT**
1033 1033  
1034 1034  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
1035 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
709 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 199px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1036 1036  |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
1037 1037  0
1038 1038  OK
... ... @@ -1055,16 +1055,6 @@
1055 1055  * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
1056 1056  * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
1057 1057  
1058 -(% style="color:red" %)**Note: Before v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 65535 milliseconds. After v1.2, the maximum settable time of 3V3T, 5VT and 12VT is 180 seconds.**
1059 -
1060 -(% style="color:red" %)**Therefore, the corresponding downlink command is increased by one byte to five bytes.**
1061 -
1062 -**Example: **
1063 -
1064 -* 120s=120000ms(D) =0x01D4C0(H), Downlink Payload: 07 **01** 01 D4 C0  **~-~-->**  AT+3V3T=120000
1065 -* 100s=100000ms(D) =0x0186A0(H), Downlink Payload: 07 **02** 01 86 A0  **~-~-->**  AT+5VT=100000
1066 -* 80s=80000ms(D) =0x013880(H), Downlink Payload: 07 **03** 01 38 80  **~-~-->**  AT+12VT=80000
1067 -
1068 1068  === 3.3.4 Set the Probe Model ===
1069 1069  
1070 1070  
... ... @@ -1082,14 +1082,8 @@
1082 1082  
1083 1083  (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
1084 1084  
1085 -When aa=02, it is the Differential Pressure Sensor , which converts the current into a pressure value;
1086 -
1087 -bb represents which type of pressure sensor it is.
1088 -
1089 -(0~~100Pa->01,0~~200Pa->02,0~~300Pa->03,0~~1KPa->04,0~~2KPa->05,0~~3KPa->06,0~~4KPa->07,0~~5KPa->08,0~~10KPa->09,-100~~ 100Pa->0A,-200~~ 200Pa->0B,-1~~ 1KPa->0C)
1090 -
1091 1091  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1092 -|(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
750 +|(% style="background-color:#d9e2f3; color:#0070c0; width:154px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:269px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**
1093 1093  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
1094 1094  OK
1095 1095  |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
... ... @@ -1107,10 +1107,10 @@
1107 1107  * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
1108 1108  * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
1109 1109  
1110 -=== 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
768 +=== 3.3.5 Multiple collections are one uplinkSince firmware V1.1 ===
1111 1111  
1112 1112  
1113 -Added AT+STDC command to collect the voltage of VDC_INPUT/IDC_INPUT multiple times and upload it at one time.
771 +Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
1114 1114  
1115 1115  (% style="color:blue" %)**AT Command: AT** **+STDC**
1116 1116  
... ... @@ -1118,13 +1118,12 @@
1118 1118  
1119 1119  (% style="color:#037691" %)**aa:**(%%)
1120 1120  **0:** means disable this function and use TDC to send packets.
1121 -**1:** means that the function is enabled to send packets by collecting VDC data for multiple times.
1122 -**2:** means that the function is enabled to send packets by collecting IDC data for multiple times.
779 +**1:** means enable this function, use the method of multiple acquisitions to send packets.
1123 1123  (% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
1124 1124  (% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
1125 1125  
1126 1126  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1127 -|(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
784 +|(% style="background-color:#d9e2f3; color:#0070c0; width:160px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:215px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Response**
1128 1128  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
1129 1129  OK
1130 1130  |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
... ... @@ -1144,7 +1144,7 @@
1144 1144  
1145 1145  (% style="color:blue" %)**Downlink Command: 0xAE**
1146 1146  
1147 -Format: Command Code (0xAE) followed by 4 bytes.
804 +Format: Command Code (0x08) followed by 5 bytes.
1148 1148  
1149 1149  * Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
1150 1150  
... ... @@ -1183,34 +1183,6 @@
1183 1183  When downloading the images, choose the required image file for download. ​
1184 1184  
1185 1185  
1186 -== 6.4 How to measure the depth of other liquids other than water? ==
1187 -
1188 -
1189 -Test the current values at the depth of different liquids and convert them to a linear scale.
1190 -Replace its ratio with the ratio of water to current in the decoder.
1191 -
1192 -**Example:**
1193 -
1194 -Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
1195 -
1196 -**Calculate scale factor:**
1197 -Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
1198 -
1199 -**Calculation formula:**
1200 -
1201 -Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
1202 -
1203 -**Actual calculations:**
1204 -
1205 -Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
1206 -
1207 -**Error:**
1208 -
1209 -0.009810726
1210 -
1211 -
1212 -[[image:image-20240329175044-1.png]]
1213 -
1214 1214  = 7. Troubleshooting =
1215 1215  
1216 1216  == 7.1 Water Depth Always shows 0 in payload ==
... ... @@ -1228,9 +1228,8 @@
1228 1228  = 8. Order Info =
1229 1229  
1230 1230  
1231 -(% style="display:none" %)
860 +[[image:image-20230131153105-4.png]]
1232 1232  
1233 -[[image:image-20241021093209-1.png]]
1234 1234  
1235 1235  = 9. ​Packing Info =
1236 1236  
... ... @@ -1252,3 +1252,5 @@
1252 1252  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1253 1253  
1254 1254  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
883 +
884 +
image-20240109172423-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -62.3 KB
Content
image-20240329175044-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -55.2 KB
Content
image-20240511174954-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -65.9 KB
Content
image-20240513093957-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -320.4 KB
Content
image-20240513094047-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -62.7 KB
Content
image-20240513094054-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -201.1 KB
Content
image-20240513095921-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -130.4 KB
Content
image-20240513095927-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20240513100129-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -130.4 KB
Content
image-20240513100135-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20240817150702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -38.4 KB
Content
image-20241021093209-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -52.1 KB
Content