Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20240705094013-3.png]]
3
4
5
6
7
8 (% _mstvisible="1" %)
9 (% _msthash="315238" _msttexthash="18964465" _mstvisible="3" %)**Table of Contents:**
10
11 {{toc/}}
12
13
14
15
16
17
18
19
20 = 1.  Introduction =
21
22 == 1.1  What is the PB01 LoRaWAN Push Button? ==
23
24
25 The (% style="color:blue" %)**PB01 LoRaWAN Push Button**(%%) is a wireless LoRaWAN device equipped with (% style="color:blue" %)**a single push button**(%%). When the user presses the button, the PB01 sends an uplink to the LoRaWAN Network Server using the long-range LoRaWAN wireless protocol. Additionally, the PB01 measures (% style="color:blue" %)**environment temperature & humidity**(%%) and periodically uplinks this data to the LoRaWAN Network Server.
26
27 The PB01 is powered by (% style="color:blue" %)**2 x AAA batteries**(%%), allowing it to operate for several years.* Users can easily replace the batteries once they are drained.
28
29 The PB01 also features a built-in speaker that can produce different sounds when the button is pressed or when a reply (downlink) is received from the Network Server. The speaker can be disabled if the user prefers.
30
31 The PB01 is fully compatible with the LoRaWAN v1.0.3 protocol, and works seamlessly with standard LoRaWAN gateways.
32
33 ~* Battery life depends on the frequency of data transmission. Please refer to the [[battery analyzer>>||anchor="H4.2A0PowerConsumptionAnalyze"]] for details.
34
35
36 == 1.2  Features ==
37
38
39 * Wall-mountable
40 * LoRaWAN v1.0.3 protocol, Class A mode
41 * 1 x push button (available in different colors)
42 * Built-in temperature and humidity sensor
43 * Built-in speaker
44 * Frequency bands: CN470, EU433, KR920, US915, EU868, AS923, AU915
45 * AT commands for parameter changes
46 * Remote parameter configuration via LoRaWAN downlink
47 * Firmware upgradable via programming port
48 * Supports 2 x AAA LR03 batteries
49 * IP rating: IP52
50
51 == 1.3  Specification ==
52
53
54 (% style="color:blue" %)**Built-in Temperature Sensor:**
55
56 * **Resolution**: 0.01 °C
57 * **Accuracy Tolerance**: Typ ±0.2 °C
58 * **Long-Term Drift**: < 0.03 °C/year
59 * **Operating Range**: -10 ~~ 50 °C or -40 ~~ 60 °C (depends on battery type; see [[FAQ>>||anchor="H6.5Whyiseedifferentworkingtemperatureforthedevice3F"]])
60
61 (% style="color:blue" %)**Built-in Humidity Sensor:**
62
63 * **Resolution**: 0.01 %RH
64 * **Accuracy Tolerance**: Typ ±1.8 %RH
65 * **Long-Term Drift**: < 0.2 %RH/year
66 * **Operating Range**: 0 ~~ 99.0 %RH (no dew)
67
68 == 1.4  Power Consumption ==
69
70
71 PB01 : Idle: 5 uA, Transmit: max 110 mA
72
73
74 == 1.5  Storage & Operation Temperature ==
75
76
77 -10 ~~ 50 °C  or -40 ~~ 60 °C (depends on battery type; see [[FAQ>>||anchor="H6.5Whyiseedifferentworkingtemperatureforthedevice3F"]])
78
79
80 == 1.6  Applications ==
81
82
83 * Smart buildings & home automation
84 * Logistics & supply chain management
85 * Smart metering
86 * Smart agriculture
87 * Smart cities
88 * Smart factories
89
90 = 2.  Operation Mode =
91
92 == 2.1  How It Works? ==
93
94
95 Each PB01 is shipped with registration information that can be used to register and activate the device with a LoRaWAN Network Server using Over-The-Air Activation (OTAA), which is the most secure method for activating an end device on a LoRaWAN Network Server. It also supports Activation-By-Personalization (ABP), but this method is not recommended as it is less secure.
96
97 After registration, if the PB01 is within the LoRaWAN network's coverage area, it can join the network and start transmitting sensor data to the LoRaWAN Network Server. The default uplink interval is **20 minutes**.
98
99
100 == 2.2  How to turn on PB01? ==
101
102
103 (% style="color:red" %)** 1.  Open the enclosure from the bottom.**
104
105 [[image:image-20220621093835-1.png]]
106
107
108 (% style="color:red" %)** 2.  Insert 2 x AAA LR03 batteries to turn on the device.**
109
110 [[image:image-20220621093835-2.png]]
111
112
113 (% style="color:#ff0000" %)** 3. After **(% style="caret-color:#ff0000; color:#ff0000" %)**activating with a LoRaWAN network**(% style="color:#ff0000" %)**, you can re-join/restart the device by long pressing the ACT button as shown in the image below.**
114
115 [[image:image-20220621093835-3.png]]
116
117 You can check the [[LED Status>>||anchor="H2.8LEDIndicator"]] to determine the working state of the PB01.
118
119
120 == 2.3 Registering with a LoRaWAN network ==
121
122
123 This section explains how to register the PB01 with a LoRaWAN Network Server, such as The Things Stack Cloud. After registering, the PB01 can join the network once you long-press the ACT button.
124
125 (% _mstvisible="1" class="wikigeneratedid" %)
126 The following network diagram shows how the PB01 communicates with The Things Stack Cloud (similarly to other LoRaWAN Network Servers) end to end.
127
128
129 [[image:pb01-ttn.jpg]]
130
131
132 Each PB01 is shipped with its unique registration information printed on a sticker affixed inside the cardboard package that the device is packed in. The registration information includes the following:
133
134 * DevEUI
135 * AppEUI
136 * AppKey
137
138 This information is required to perform the OTAA (Over-the-Air Activation) of the device, which is the most secure way of activating the device with a LoRaWAN network server.
139
140 [[image:image-20230426083617-1.png||height="294" width="633"]]
141
142
143 === 2.3.1 Add PB01 to The Things Stack ===
144
145
146 PB01 currently supports only **manual **registartion with The Things Stack.
147
148
149 ==== 2.3.1.1 Creating an application ====
150
151
152 Sign up for a free account with [[The Things Stack Sandbox>>url:https://eu1.cloud.thethings.network/]] if you do not have one yet. Then, create an **application **as shown in the screenshots below.
153
154
155 ==== 2.3.1.2 Adding manually ====
156
157
158 You can refer to the screenshots below to register your PB01 using The Things Stack's manual registration option.
159
160 On The Things Stack console:
161
162 * Click **Applications**.
163 * Click <**your application**>. E.g. dragino-docs
164 * Click **End devices**.
165 * Click **+ Register end devic**e button.
166
167 [[image:5.png]]
168
169
170 * Select **Enter end device specifies manually** option.
171 * **Frequency plan**: Select the frequency plan that matches your device. E.g.: Europe 863-870 MHz (SF9 for RX2 - recommended).
172 * **LoRaWAN version**: LoRaWAN Specification 1.0.3
173 * Regional Parameters version: You can't change it and it will select automatically.
174
175 [[image:2.png]]
176
177
178 * **JoinEUI**: Enter the **AppEUI** of the device (see the registration information sticker) and Click the **Confirm** button.
179 * **DevEUI**: Enter the DevEUI of the device (see the registration information sticker).
180 * **AppKey**: Enter the AppKey of the device (see the registration information sticker).
181 * **End device ID**: Enter a name for your end device to uniquely identify it within this application.
182 * Click **View registered end device** option.
183 * Click **Register end device** button.
184
185 [[image:3.png]]
186
187
188 You will be navigated to the **Device overview **page.
189 (% style="display:none" %)
190
191
192 ==== 2.3.1.3 Activate the PB01 ====
193
194
195 Long press the **ACT** button to activate the PB01. It will then join The Things Stack. Once successfully connected, the device will begin uplinking sensor data to The Things Stack, which can be viewed on the **Live data** panel.
196
197 [[image:image-20240507143104-5.png||height="434" width="1398"]]
198
199
200 == 2.4  Uplink Payload ==
201
202
203 Uplink payloads include two types: Valid Sensor Value and other status / control command.
204
205 * Valid Sensor Value: Use FPORT=2
206 * Other control command: Use FPORT other than 2.
207
208 === 2.4.1  Uplink FPort~=5, Device Status ===
209
210
211 The 'Device Status' uplink is sent by the PB01 as its first uplink after successfully joining a LoRaWAN network. However, you can manually retrieve the device status as an uplink by sending a command as a downlink to the device. The format of the downlink command should be in hexadecimal.
212
213 (% style="color:#4472c4" %)**Downlink:  **(%%)**0x2601 **
214
215 The device uplinks its status via FPort=5, and the payload format is as follows:
216
217 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:370px" %)
218 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)(% style="display:none" %) (%%)**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**
219 |(% style="width:99px" %)Value|(% style="width:62px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:82px" %)Frequency Band|(% style="width:85px" %)Sub-band|(% style="width:46px" %)BAT
220
221 The following figure shows the decoded device status payload as displayed on The Things Stack.
222
223 [[image:image-20240507152130-12.png||height="469" width="1366"]](% style="display:none" %)
224
225
226 For example, if the device status uplink includes the payload, [[image:image-20240507152254-13.png||height="26" width="130"]]
227
228
229 (% style="color:#4472c4" %)**Sensor model**(%%): 0x35 - for PB01, this value is 0x35.
230
231 (% style="color:#4472c4" %)**Firmware version**(%%): 0x0100 - value 0x0100 means v1.0.0.
232
233 (% style="color:#4472c4" %)**Frequency band**(%%): 01 - means EU868. The following are the possible values for other frequency bands.
234
235 *0x01: EU868
236
237 *0x02: US915
238
239 *0x03: IN865
240
241 *0x04: AU915
242
243 *0x05: KZ865
244
245 *0x06: RU864
246
247 *0x07: AS923
248
249 *0x08: AS923-1
250
251 *0x09: AS923-2
252
253 *0x0A: AS923-3
254
255 (% style="color:#4472c4" %)**Sub band**(%%): 0xFF - value 0x00 ~~ 0x08 (only for CN470, AU915, US915. Others are 0x00)
256
257 (% style="color:#4472c4" %)**BAT**(%%): 0x 0CDE - represents the battery voltage for PB01. The values 0x0CDE means 3294 mV = 3.294 V
258
259
260 === 2.4.2  Uplink FPort~=2, Real time sensor values ===
261
262
263 The PB01 sends real time sensor values after the Device Status uplink. The device will continue to send this uplink periodically. The default interval is 20 minutes, but it can be changed.
264
265 This type of uplink uses FPort=2 and, by default, is sent every 20 minutes. The default uplink interval [[can be changed>>||anchor="H3.1A0DownlinkCommandSet"]] using AT commands.
266
267 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:460px" %)
268 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
269 **Size(bytes)**
270 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)2|=(% style="width: 140px;background-color:#4F81BD;color:white" %)(((
271 **1**
272 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
273 **1**
274 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
275 **2**
276 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
277 **2**
278 )))
279 |(% style="width:97px" %)(((
280 Value
281 )))|(% style="width:39px" %)Battery|(% style="width:39px" %)(((
282 Sound_ACK & Sound_key
283 )))|(% style="width:100px" %)(((
284 (((
285 Alarm
286 )))
287 )))|(% style="width:77px" %)(((
288 (((
289 Temperature
290 )))
291 )))|(% style="width:47px" %)(((
292 Humidity
293 )))
294
295 The following figure shows the decoded real time sensor values payload as displayed on The Things Stack.
296
297 [[image:image-20240507150155-11.png||height="549" width="1261"]]
298
299
300 For example, if the real time sensor values uplink includes the payload (FPort=2):  (% style="background-color:yellow" %)**0C EA 03 01 01 11 02 A8**
301
302
303 ==== (% style="color:blue" %)**Battery:**(%%) ====
304
305 Byte 1 and 2: Check the battery voltage.
306
307 * Example 1: 0x0CEA = 3306mV
308 * Example 2: 0x0D08 = 3336mV
309
310 ==== (% style="color:blue" %)**Sound_ACK & Sound_key:**(%%) ====
311
312 Byte 3: Key sound and ACK sound are enabled by default.
313
314 * Example1: 0x03
315
316 Sound_ACK: (03>>1) & 0x01=1, OPEN.
317
318 **~ ** Sound_key:  03 & 0x01=1, OPEN.
319
320 * Example 2: 0x01
321
322 Sound_ACK: (01>>1) & 0x01=0, CLOSE.
323
324 **~ ** Sound_key:  01 & 0x01=1, OPEN.
325
326
327 ==== (% style="color:blue" %)**Alarm:**(%%) ====
328
329 Byte 4: Key alarm.
330
331 * Example 1: 0x01 & 0x01=1, TRUE.
332 * Example 2: 0x00 & 0x01=0, FALSE.
333
334 ==== (% style="color:blue" %)**Temperature:**(%%) ====
335
336 Byte 5 and 6: Temperature.
337
338 * Example 1: 0x0111/10=27.3°C
339 * Example 2: (0xFF0D-65536)/10=-24.3°C
340
341 If payload is: FF0D : (FF0D & 8000 == 1) , temp = (FF0D - 65536)/100 =-24.3°C
342
343 (FF0D & 8000 : Check whether the highest bit is 1. If the highest bit is 1, the value is negative)
344
345
346 ==== (% style="color:blue" %)**Humidity:**(%%) ====
347
348 Byte 7 and 8: Humidity
349
350 * Humidity: 0x02A8/10=68.0%
351
352 === 2.4.3  Uplink FPort~=3, Datalog sensor value ===
353
354
355 PB01 stores sensor values, and you can retrieve these historical values via a downlink command. The Datalog sensor values are sent via FPort=3.
356
357 [[image:image-20240510144912-1.png||height="471" width="1178"]](% style="display:none" %)
358
359
360 Each data entry is 11 bytes. To save airtime and battery, the maximum payload size is depending on the current Date Rate and the frequency band.(% style="display:none" %) (%%) For example, in US915 band, the maximum payload for different DR is as follows:
361
362 1. **DR0**: maximum payload is 11 bytes. The device will uplink one entry of data.
363 1. **DR1**: maximum payload is 53 bytes. The device will upload 4 entries of data (total of 44 bytes)
364 1. **DR2**: A payload includes 11 entries of data
365 1. **DR3**: A payload includes 22 entries of data.
366
367 (% style="color:red" %)**Note: The PB01 will save 178 sets of historical data. If the device doesn't have any data during the polling time, it will uplink 11 bytes of 0s.**
368
369 See [[Datalog feature>>||anchor="H2.6A0DatalogFeature"]] for more information.
370
371 (% style="display:none" %) (%%)
372
373 === 2.4.4  Decoding the payload in The Things Stack Cloud ===
374
375
376 In the LoRaWAN protocol, the uplink payload uses HEX format to store data. You need to add a payload formatter or decoder in the LoRaWAN server to extract each field and convert them into readable values.
377
378 The following figure shows how to add the uplink payload formatter in The Things Stack. The uplink decoder for PB01 can be found here:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
379
380 Select your **end device**, then click the **Payload Formatters **tab, followed by the **Uplink** tab. Next, select '**Custom Javascript Formatte**r' from the '**Formatter Type**' dropdown list. Finally, paste the payload formatter in the '**Formatter Code**' box and click the '**Save Changes**' button.
381
382 [[image:image-20240507162814-16.png||height="778" width="1135"]]
383
384
385 == 2.5 Show data on Datacake ==
386
387
388 (((
389 The Datacake IoT platform contains a user-friendly interface for displaying sensor data. Once sensor data is available in The Things Stack, Datacake can be used to connect to The Things Stack and visualize the data.
390 )))
391
392 (((
393 We assume that you have successfully registered and activated your PB01 with The Things Stack Cloud. To configure your application to forward data to Datacake, you will need to add an integration. Follow the steps below:
394 )))
395
396 (((
397
398
399 **Step 1:**
400
401 * Go to The Things Stack Cloud Console ~-~-> Applications ~-~-> <your application> ~-~-> Integrations ~-~-> Webhooks.
402 )))
403
404 (((
405 * On the **Choose webhook template** page, select **Datacake**.
406 * The **Setup webhook for Datacake** page appears. Do not close this window until you complete **Step 2**. You will need this page open to continue with **Step 3**.
407
408
409 )))
410
411 (((
412
413 )))
414
415 [[image:image-20240510150924-2.png||height="612" width="1186"]]
416
417
418 **Step 2:**
419
420 * Log in to your [[**Datacake**>>https://datacake.co]] account. In the left navigation, click on **Account Settings**. On the Account Settings page, in the **API Token** tab, copy the **API token** by clicking the **Copy** button.
421
422 [[image:image-20240510151944-3.png||height="581" width="1191"]]
423
424
425 **Step 3:**
426
427 * On the **Setup webhook for Datacake** page, in the **Webhook ID** textbox, type a name to identify your webhook.
428 * Paste the **Datacake API Token** you copied in the previous step into the **Token** textbox.
429 * Click the **Create Datacake webhook** button.
430
431 [[image:image-20240510152150-4.png||height="697" width="1188"]]
432
433
434 **Step 4:**
435
436 On the **Datacake** **Devices** page, select **+ Add Device** button.
437
438 [[image:image-20240510152300-5.png||height="298" width="1191"]]
439
440
441 **Step 5:**
442
443 In the **Add Device** window, select **LoRaWAN** as the connectivity type for the **PB01**
444
445 [[image:image-20240510152355-6.png||height="782" width="1193"]]
446
447
448 **Step 6:**
449
450 * On the **Add LoRaWAN Device** window, **STEP 1 - Product** tab:
451 ** Select the **New Product** option and then provide a **name** for your device in the **Product Name**, for example, **pb01-1**.
452 ** Click on the **Next** button.
453
454 [[image:image-20240510152542-8.png||height="545" width="739"]]
455
456
457 **Step 7:**
458
459 * On the **Add LoRaWAN Device** window, **STEP 2 - Network Server** tab:
460 ** Select **The Things Stack V3**.
461 ** Click on the **Next** button.
462
463 [[image:image-20240510152634-9.png||height="748" width="740"]]
464
465
466 **Step 8:**
467
468 * On the **Add LoRaWAN Device** window, **STEP 3 - Devices** tab:
469 ** Under **Add Devices**, select the **Manual **tab if it is not selected by default.
470 ** In the **DEVEUI** box, type the **DevEUI** of your PB01.
471 ** In the **NAME** textbox, provide a name for your PB01 to identify within Datacake.
472 ** Click on the **Next** button.
473
474
475 [[image:image-20240510152809-10.png||height="607" width="732"]]
476
477
478 **Step 9:**
479
480 * The PB01 is now successfully integrated with Datacake, and you will receive all PB01 uplinks from The Things Stack.
481 * Go to **Fleet ~-~-> PB01** and then select the **Debug** tab. You can see all the uplinks from your PB01.
482
483 [[image:image-20240510153934-14.png||height="460" width="1199"]]
484
485
486 **Step 10:**
487
488 * Go to the **Configuration** tab.
489
490
491 [[image:image-20240510153435-12.png||height="428" width="1197"]]
492
493
494 **Step 11:**
495
496 * Scroll down the page and locate the **Payload Decoder **section.
497 * Copy the payload decoder for The Things Stack from [[here>>https://github.com/dragino/dragino-end-node-decoder/blob/main/PB01/PB01_TTN_decoder.txt]] and paste it in the Payload Decoder box.
498
499 [[image:image-20240510153624-13.png||height="468" width="1195"]]
500
501
502 **Step 12:**
503
504 * With Datacake, you can build **dashboards** to visualize your data on various widgets. Please read the [[Datacake documentation>>https://docs.datacake.de]] for more information.
505
506 (% style="display:none" %) (%%)
507
508 == 2.6 Show data on ThingsEye.io ==
509
510
511 The Things Stack application supports integration with **ThingsEye.io**. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
512
513
514 === 2.6.1 Configuring The Things Stack ===
515
516 We use The Things Stack Sandbox in this example:
517
518 * In **The Things Stack Sandbox**, go to the **Application **of the PB01 you added.
519 * Select **MQTT** under **Integrations** in the left menu.
520 * In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
521 * Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
522
523 {{info}}
524 The username and  password (API key) you created here are required in the next section.
525 {{/info}}
526
527 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/tts-mqtt-integration.png?rev=1.1||alt="tts-mqtt-integration.png"]]
528
529
530 === 2.6.2 Configuring ThingsEye.io ===
531
532
533 The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to [[admin@thingseye.io>>mailto:admin@thingseye.io]], and we will create an account for you.
534
535 * Login to your [[ThingsEye.io >>url:https://thingseye.io]]account.
536 * Under the **Integrations center**, click **Integrations**.
537 * Click the **Add integration** button (the button with the **+** symbol).
538
539 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/thingseye-io-step-1.png?rev=1.2||alt="thingseye-io-step-1.png"]]
540
541
542 On the **Add integration** window, configure the following:
543
544 **Basic settings:**
545
546 * Select **The Things Stack Community** from the **Integration type** list.
547 * Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
548 * Ensure the following options are turned on.
549 ** Enable integration
550 ** Debug mode
551 ** Allow creating devices or assets
552 * Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
553
554 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/thingseye-io-step-2.png?rev=1.1||alt="thingseye-io-step-2.png"]]
555
556
557 **Uplink data converter:**
558
559 * Click the **Create new** button if it is not selected by default.
560 * Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
561 * Click the **JavaScript** button.
562 * Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>url:https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
563 * Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
564
565 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/thingseye-io-step-3.png?rev=1.1||alt="thingseye-io-step-3.png"]]
566
567
568 **Downlink data converter (this is an optional step):**
569
570 * Click the **Create new** button if it is not selected by default.
571 * Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
572 * Click the **JavaScript** button.
573 * Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>url:https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
574 * Click the **Next** button. You will be navigated to the **Connection** tab.
575
576 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/thingseye-io-step-4.png?rev=1.1||alt="thingseye-io-step-4.png"]]
577
578
579 **Connection:**
580
581 * Choose **Region** from the **Host type**.
582 * Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
583 * Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (See **2.5.1 Configuring The Things Stack**).
584 * Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
585
586 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/message-1.png?rev=1.1||alt="message-1.png"]]
587
588
589 * Click the **Add** button.
590
591 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/thingseye-io-step-5.png?rev=1.1||alt="thingseye-io-step-5.png"]]
592
593
594 Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
595
596
597 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/thingseye.io_integrationsCenter_integrations.png?rev=1.2||alt="thingseye.io_integrationsCenter_integrations.png"]]
598
599
600 ==== 2.6.2.1 Viewing integration details ====
601
602
603 Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
604
605
606 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/integration-details.png?rev=1.1||alt="integration-details.png"]]
607
608
609 If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
610
611 {{info}}
612 See also [[ThingsEye documentation>>url:https://wiki.thingseye.io/xwiki/bin/view/Main/]].
613 {{/info}}
614
615 ==== 2.6.2.2 Viewing events ====
616
617
618 The **Events **tab displays all the uplink messages from the **PB01**.
619
620 * Select **Debug **from the **Event type** dropdown.
621 * Select the** time frame** from the **time window**.
622
623
624 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/thingseye-events.png?rev=1.1||alt="thingseye-events.png"]]
625
626
627 * To view the **JSON payload** of a message, click on the **three dots (...)** in the **Message** column of the desired message.
628
629 [[image:pb01-payload.png]]
630
631
632 ==== 2.6.2.3 Deleting an integration ====
633
634
635 If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
636
637
638 ==== 2.6.2.4 Viewing sensor data on a dashboard ====
639
640
641 You can create a dashboard with ThingsEye to visualize the sensor data coming from the PB01. The following image shows a dashboard created for the PB01. See **Creating a dashboard** in ThingsEye documentation for more information.
642
643
644 [[image:Screenshot 2025-01-11 at 21.15.59.png]]
645
646
647 == 2.7 Datalog Feature ==
648
649
650 (% _msthash="315262" _msttexthash="32283004" _mstvisible="1" %)
651 To retrieve a sensor value, you can send a poll command from the network server to request the sensor to send the value within the required time period.
652
653
654 === 2.7.1  Unix Timestamp ===
655
656
657 The Unix timestamp indicates the sampling time of the uplink payload, based on the following format:
658
659 [[image:image-20220523001219-11.png||_mstalt="450450" _mstvisible="3" height="97" width="627"]]
660
661 You can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/||_mstvisible="3"]] :
662
663 For example, if the Unix timestamp is in HEX format as 0x60137afd, you can convert it to decimal: 1611889405, and then convert it to the time: 2021-Jan-29, Friday, 03:03:25 (GMT).
664
665 [[image:1655782409139-256.png]]
666
667
668 === 2.7.2  Poll sensor value ===
669
670
671 (((
672 You can poll sensor values based on timestamps from the server. The start and end timestamps use the Unix timestamp format as mentioned above. The device will reply with all data logs from this time period, using the uplink interval.
673 )))
674
675 (((
676 For example, if the downlink command is: [[image:image-20220621113526-13.png]] (% _mstvisible="3" style="display:none" %)
677 )))
678
679 (((
680 **0x31 **: Prefix
681
682 **0x5FC5F350** and **0x5FC60160 **: This is equivalent to checking the stored data between **2020/12/1 07:40:00** and **2020/12/1 08:40:00**.
683
684 **0x05 **: The uplink interval is 5 seconds, which means the PB01 will send one packet every 5 seconds. The uplink interval can be mentioned in the downlink payload with a range of 5 to 255 seconds.
685 )))
686
687
688 === 2.7.3  Datalog Uplink payload ===
689
690
691 See [[Uplink FPort=3, Datalog sensor value>>||anchor="H2.4.3A0UplinkFPort3D32CDatalogsensorvalue"]]
692
693 (% style="display:none" %) (%%) (% style="display:none" %)
694
695 == 2.8 Buttons ==
696
697
698 * **ACT button**
699
700 Long press this button, and the PB01 will reset and rejoin the network.
701
702 [[image:image-20240510161626-17.png||height="192" width="224"]]
703
704
705 * **Alarm button**
706
707 Press this button to immediately send an uplink, and the alarm will be set to 'TRUE'.
708
709 [[image:image-20240705095149-5.png||height="164" width="162"]](% style="display:none" %)
710
711
712 == 2.9 LED Indicators ==
713
714
715 (((
716 The PB01 has a single LED that displays different colors to indicate various stages:
717
718 1. **Hold the ACT button:** The LED will light up GREEN. GREEN flashing indicates the node is restarting. A BLUE flash signals a request for network access, and a solid GREEN light for 5 seconds signifies successful network access.
719 1. (((
720 **Normal Working State:**
721
722 * When the node restarts, hold the ACT button, and the LED will turn GREEN. GREEN flashing indicates a restart. A BLUE flash signals a request for network access, and a solid GREEN light for 5 seconds indicates successful network access.
723 )))
724 1. (((
725 **During OTAA Join:**
726
727 * For each Join Request uplink, the LED will blink GREEN once.
728 * Once the join is successful, the LED will remain solid GREEN for 5 seconds.
729 * After joining, for each uplink, the LED will blink either BLUE or GREEN.
730 )))
731 1. (((
732 **Alarm Button:**
733
734 * When the alarm button is pressed, the LED will flash RED until the node receives an acknowledgment (ACK) from the platform, followed by the LED staying BLUE for 5 seconds.
735 )))
736 )))
737
738 (((
739
740 )))
741
742 == 2.10 Buzzer ==
743
744
745 The PB01 produces different sounds or tones for the following events, which can be turned on or off using the [[AT+SOUND>>||anchor="H3.3A0SetbuttonsoundandACKsound"]] command.
746
747 * **Button Sound:** This is the tone produced by the node after the alarm button is pressed. Users can use the [[AT+OPTION>>||anchor="H3.4A0Setbuzzermusictype2807E429"]] command to set different button sounds.
748 * **ACK Sound:** This is the notification tone emitted when the node receives an acknowledgment (ACK).
749
750 = 3.  Configure PB01 via AT command or LoRaWAN downlink =
751
752
753 You can configure PB01 via AT Commands or LoRaWAN Downlinks.
754
755 * See [[FAQ>>||anchor="H6.FAQ"]] to find out how to connect PB01 with a computer to configure it using AT commands.
756
757 * LoRaWAN Downlink instruction for different platforms can be found at: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
758
759 (% style="display:none" %)
760
761 There are two types of commands to configure the PB01:
762
763 1. (((
764 **General Commands:**
765 These commands are used to configure:
766
767 * General system settings, such as the uplink interval.
768 * LoRaWAN protocol and radio-related parameters.
769
770 These commands are the same for all Dragino devices that support the DLWS-005 LoRaWAN stack (Note~*~*). You can find these commands on the wiki: [[End Device Downlink Command>>path:#]].
771 )))
772 1. **Commands Specifically Designed for PB01:**
773 These commands are valid only for the PB01, as listed below (see Downlink Commands):
774
775 == 3.1  Downlink Commands ==
776
777
778 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
779 |=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Response**|=(% style="width: 140px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink**
780 |(% style="width:130px" %)AT+TDC=?|(% style="width:151px" %)(((
781 Get the current TDC (uplink) time
782 )))|(% style="width:92px" %)(((
783 1200000
784 OK
785 )))|(% style="width:206px" %)Default 1200000(ms)
786 |(% style="width:130px" %)AT+TDC=300000|(% style="width:151px" %)Set the TDC (uplink) time|(% style="width:92px" %)OK|(% style="width:206px" %)(((
787 (((
788 0x0100012C:
789 01: Prefix
790 00012C: 0X00012C=300(seconds)
791 )))
792
793 (((
794
795 )))
796 )))
797 |(% style="width:130px" %)ATZ|(% style="width:151px" %)Reset the node|(% style="width:92px" %) |(% style="width:206px" %)0x04FF
798 |(% style="width:130px" %)AT+FDR|(% style="width:151px" %)Restore to factory settings|(% style="width:92px" %) |(% style="width:206px" %)0x04FE
799 |(% style="width:130px" %)AT+CFM=?|(% style="width:151px" %)View the current confirmation mode status|(% style="width:92px" %)(((
800 0,7,0
801 OK
802 )))|(% style="width:206px" %)Default 0,7,0
803 |(% style="width:130px" %)AT+CFM=1,7,1|(% style="width:151px" %)(((
804 Confirmed uplink mode, the maximum number of retries is seven, and uplink fcnt increase by 1 for each retry
805 )))|(% style="width:92px" %)(((
806 OK
807 )))|(% style="width:206px" %)(((
808 05010701
809 05: fixed command
810 01:confirmed uplink
811 07: retry 7 times
812 01: fcnt count plus 1
813 )))
814 |(% style="width:130px" %)AT+NJM=?|(% style="width:151px" %)(((
815 Check the current network connection method
816 )))|(% style="width:92px" %)(((
817 1
818 OK
819 )))|(% style="width:206px" %)Default 1
820 |(% style="width:130px" %)AT+NJM=0|(% style="width:151px" %)Change the network connection method to ABP|(% style="width:92px" %)(((
821 Attention:Take effect after ATZ
822 OK
823 )))|(% style="width:206px" %)(((
824 0x2000: ABP
825 0x2001: OTAA
826 20: fixed command
827 )))
828 |(% style="width:130px" %)AT+RPL=?|(% style="width:151px" %)View current RPL settings|(% style="width:92px" %)(((
829 0
830 OK
831 )))|(% style="width:206px" %)Default 0
832 |(% style="width:130px" %)AT+RPL=1|(% style="width:151px" %)Set RPL=1    |(% style="width:92px" %)OK|(% style="width:206px" %)(((
833 0x2101:
834 21: fixed command
835 01: for details, check wiki
836 )))
837 |(% style="width:130px" %)AT+ADR=?|(% style="width:151px" %)View current ADR status|(% style="width:92px" %)(((
838 1
839 OK
840 )))|(% style="width:206px" %)Default 0
841 |(% style="width:130px" %)AT+ADR=0|(% style="width:151px" %)Set the ADR state to off|(% style="width:92px" %)OK|(% style="width:206px" %)(((
842 0x2200: close
843 0x2201: open
844 22: fixed command
845 )))
846 |(% style="width:130px" %)AT+DR=?|(% style="width:151px" %)View the current DR settings|(% style="width:92px" %)OK|(% style="width:206px" %)
847 |(% style="width:130px" %)AT+DR=1|(% style="width:151px" %)(((
848 Set DR to 1.
849 It takes effect only when ADR=0
850 )))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
851 0x22000101:
852 00: ADR=0
853 01: DR=1
854 01: TXP=1
855 22: fixed command
856 )))
857 |(% style="width:130px" %)AT+TXP=?|(% style="width:151px" %)View the current TXP|(% style="width:92px" %)OK|(% style="width:206px" %)
858 |(% style="width:130px" %)AT+TXP=1|(% style="width:151px" %)(((
859 Set TXP to 1.
860 It takes effect only when ADR=0
861 )))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
862 0x22000101:
863 00: ADR=0
864 01: DR=1
865 01: TXP=1
866 22: fixed command
867 )))
868 |(% style="width:130px" %)AT+RJTDC=10|(% style="width:151px" %)Set RJTDC time interval|(% style="width:92px" %)OK|(% style="width:206px" %)(((
869 0x26000A:
870 26: fixed command
871 000A: 0X000A=10(min)
872 for details, check wiki
873 )))
874 |(% style="width:130px" %) |(% style="width:151px" %)(((
875 (((
876 ~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_
877
878 Retrieve stored data for a specified period of time
879 )))
880
881 (((
882
883 )))
884 )))|(% style="width:92px" %) |(% style="width:206px" %)(((
885 0x3161DE7C7061DE8A800A:
886 31: fixed command
887 61DE7C70:0X61DE7C70=2022/1/12 15:00:00
888 61DE8A80:0X61DE8A80=2022/1/12 16:00:00
889 0A: 0X0A=10(second)
890 View details 2.6.2
891 )))
892 |(% style="width:130px" %)AT+DDETECT=?|(% style="width:151px" %)View the current DDETECT setting status and time|(% style="width:92px" %)(((
893 1,1440,2880
894 OK
895 )))|(% style="width:206px" %)Default 1,1440,2880(min)
896 |(% style="width:130px" %)AT+DDETECT=(((
897 1,1440,2880
898 )))|(% style="width:151px" %)(((
899 Set DDETECT setting status and time
900 ((% style="color:red" %)When the node does not receive the downlink packet within the set time, it will re-enter the network(%%))
901 )))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
902 0x320005A0: close
903 0x320105A0: open
904 32: fixed command
905 05A0: 0X05A0=1440(min)
906 )))
907
908 == 3.2  Set Password ==
909
910
911 **Feature**: Set the device password with a maximum of 9 digits.
912
913 (% style="color:#4f81bd" %)**AT command:**
914
915 (% border="2" style="width:500px" %)
916 |(% style="width:141px" %)**Command**|(% style="width:357px" %)**AT+PWORD**
917 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)**password** : maximum up to 9 digits
918 |(% style="width:141px" %)**Get**|(% style="width:357px" %)AT+PWORD=?
919 |(% style="width:141px" %)**Response**|(% style="width:357px" %)(((
920 Returns the current password
921 OK
922 )))
923 |(% style="width:141px" %)**Set**|(% style="width:357px" %)AT+PWORD=<password>
924 |(% style="width:141px" %)**Response**|(% style="width:357px" %)OK
925 |(% style="width:141px" %)**Example**|(% style="width:357px" %)(((
926 AT+PWORD=999999999
927 Set the password 999999999
928 )))
929
930 (% style="color:#4f81bd" %)**Downlink command:**
931
932 There is no downlink command for this feature.
933
934
935 == 3.3  Set button sound and ACK sound ==
936
937
938 **Feature**: Turn on/off button sound and ACK alarm.
939
940 (% style="color:#4f81bd" %)**AT command:**
941
942 (% border="2" style="width:500px" %)
943 |(% style="width:143px" %)**Command**|(% style="width:355px" %)**AT+SOUND**
944 |(% style="width:143px" %)**Parameters**|(% style="width:355px" %)(((
945 **button_sound** :
946 **0** - off
947 **1** - on
948 **ack_sound** :
949 **0** - off
950 **1** - on
951 )))
952 |(% style="width:143px" %)**Get**|(% style="width:355px" %)AT+SOUND=?
953 |(% style="width:143px" %)**Response**|(% style="width:355px" %)(((
954 Returns the current sound settings. <button_sound>,<ack_sound>
955 OK
956 )))
957 |(% style="width:143px" %)**Set**|(% style="width:355px" %)(((
958 AT+SOUND=<button_sound>,<ack_sound>
959 )))
960 |(% style="width:143px" %)**Response**|(% style="width:355px" %)OK
961 |(% style="width:143px" %)**Example**|(% style="width:355px" %)(((
962 AT+SOUND=0,1
963 This will turn off the button sound and turn on the ACK sound.
964 )))
965
966 (% style="color:#4f81bd" %)**Downlink command:**
967
968 (% border="2" style="width:500px" %)
969 |(% style="width:143px" %)**Prefix**|(% style="width:355px" %)**0xA1**
970 |(% style="width:143px" %)**Parameters**|(% style="width:355px" %)(((
971 **button_sound** : 1 byte in hexadecimal.
972 **00** - off
973 **01** - on
974 **ack_sound** : 1 byte in hexadecimal.
975 **00** - off
976 **01** - on
977 )))
978 |(% style="width:143px" %)**Payload format**|(% style="width:355px" %)<prefix><button_sound><ack_sound>
979 |(% style="width:143px" %)**Example**|(% style="width:355px" %)(((
980 A10001
981 Turn off the button sound and turn on ACK sound.
982 )))
983
984 == 3.4  Set buzzer music type (0~~4) ==
985
986
987 Feature: Set different alarm key response sounds.There are five different types of button music.
988
989 (% style="color:#4f81bd" %)**AT Command:**
990
991 (% border="2" style="width:500px" %)
992 |(% style="width:146px" %)**Command**|(% style="width:352px" %)**AT+OPTION**
993 |(% style="width:146px" %)**Parameters**|(% style="width:352px" %)(((
994 **<buzzer_music_type> :**
995 **0**
996 **1**
997 **2**
998 **3**
999 )))
1000 |(% style="width:146px" %)**Get**|(% style="width:352px" %)AT+OPTION=?
1001 |(% style="width:146px" %)**Response**|(% style="width:352px" %)(((
1002 Return the current music type.
1003 OK
1004 )))
1005 |(% style="width:146px" %)**Set**|(% style="width:352px" %)AT+OPTION=<buzzer_music_type>
1006 |(% style="width:146px" %)**Response**|(% style="width:352px" %)OK
1007 |(% style="width:146px" %)**Example**|(% style="width:352px" %)(((
1008 AT+OPTION=1
1009 Set the buzzer music to type 1
1010 )))
1011
1012 (% style="color:#4f81bd" %)**Downlink command:**
1013
1014 (% border="2" style="width:500px" %)
1015 |(% style="width:145px" %)**Prefix**|(% style="width:353px" %)**0xA3**
1016 |(% style="width:145px" %)**Parameters**|(% style="width:353px" %)(((
1017 **<buzzer_music_type> : **1 byte in hexadecimal
1018 **0**
1019 **1**
1020 **2**
1021 **3**
1022 )))
1023 |(% style="width:145px" %)**Payload format**|(% style="width:353px" %)<prefix><buzzer_music-type>
1024 |(% style="width:145px" %)**Example**|(% style="width:353px" %)(((
1025 A300
1026 Set the buzzer music to type 0.
1027 )))
1028
1029 == 3.5  Set Button Press Time ==
1030
1031
1032 **Feature**: Set the holding time for pressing the alarm button to prevent accidental activation. The values range from 0 to 1000 ms.
1033
1034 (% style="color:#4f81bd" %)**AT Command:**
1035
1036 (% border="2" style="width:500px" %)
1037 |(% style="width:145px" %)**Command**|(% style="width:353px" %)**AT+STIME**
1038 |(% style="width:145px" %)**Parameters**|(% style="width:353px" %)**button_press_duration** : in milliseconds
1039 |(% style="width:145px" %)**Get**|(% style="width:353px" %)AT+STIME=?
1040 |(% style="width:145px" %)**Response**|(% style="width:353px" %)Returns the current button press duration.
1041 |(% style="width:145px" %)**Set**|(% style="width:353px" %)(((
1042 AT+STIME=<button_press_duration>
1043 )))
1044 |(% style="width:145px" %)**Response**|(% style="width:353px" %)OK
1045 |(% style="width:145px" %)**Example**|(% style="width:353px" %)(((
1046 AT+STIME=1000
1047 Set the button sound duration to 1000 ms.
1048 )))
1049
1050 (% style="color:#4f81bd" %)**Downlink Command:**
1051
1052 (% border="2" style="width:500px" %)
1053 |(% style="width:146px" %)**Prefix**|(% style="width:352px" %)**0xA2**
1054 |(% style="width:146px" %)**Parameters**|(% style="width:352px" %)**button_press_duration** : in milliseconds, 2 bytes in hex
1055 |(% style="width:146px" %)**Payload format**|(% style="width:352px" %)<prefix><button_press_duration>
1056 |(% style="width:146px" %)**Example**|(% style="width:352px" %)(((
1057 A203E8
1058 Hold the alarm button for 10 seconds before the node sends the alarm uplink packet.
1059 )))
1060
1061 = 4.  Battery =
1062
1063
1064 PB01 uses 2xAAA LR03 (1.5V) batteries.
1065
1066
1067 == 4.1  Replacing batteries ==
1068
1069
1070 If the batteries are running low (if the battery voltage drops to 2.1V), you can use any two generic AAA batteries to replace them.
1071
1072 (% style="color:red" %)**Note: **
1073
1074 1. The PB01 doesn't have any screws; you can use a nail to open the battery cover.
1075
1076 [[image:image-20220621143535-5.png]]
1077
1078
1079 2. Make sure the direction is correct when installing the AAA batteries.
1080
1081 [[image:image-20220621143535-6.png]]
1082
1083
1084 == 4.2  Power Consumption Analysis ==
1085
1086
1087 Dragino's battery-powered products all operate in Low Power mode. We provide an updated battery calculator based on real device measurements. You can use this calculator to estimate battery life and calculate it for different transmission intervals.
1088
1089 **Instructions for use:**
1090
1091 **Step 1:** Download the latest version of the **DRAGINO_Battery_Life_Prediction_Table.xlsx** from the [[battery calculator>>https://www.dropbox.com/sh/sxrgszkac4ips0q/AAA4XjBI3HAHNpdbU3ALN1j0a/Battery%20Document/Battery_Analyze?dl=0&subfolder_nav_tracking=1]].
1092
1093 **Step 2:** Open the file and select:
1094
1095 * Product Model
1096 * Uplink Interval
1097 * Working Mode
1098
1099 The expected battery life for different scenarios will be displayed on the right.
1100
1101 [[image:image-20220621143643-7.png||height="429" width="1326"]]
1102
1103
1104 = 5.  Accessories =
1105
1106
1107 * (((
1108 **AS-02 USB Type-C Converter**
1109
1110 The AS-02 is an optional accessory. It is a USB Type-C converter that provides access to the AT console of the PB01 when used with a USB-TTL adapter. For more details, see this [[link>>||anchor="H6.1HowtouseATCommandtoconfigurePB01"]].
1111 )))
1112
1113 [[image:image-20220621141724-3.png]]
1114
1115
1116 = 6. FAQ =
1117
1118 == 6.1 How to use AT Commands to configure PB01 ==
1119
1120
1121 PB01 supports the AT Command set. Users can use a USB-to-TTL adapter along with the AS-02 USB Type-C converter to connect to the PB01 and issue AT commands, as shown below.
1122
1123 [[image:image-20240511085914-1.png||height="570" width="602"]]
1124
1125
1126 **Connection:**
1127
1128 * (% style="background-color:yellow" %)USB to TTL GND <~-~-> Program Converter GND pin
1129 * (% style="background-color:yellow" %)USB to TTL RXD  <~-~-> Program Converter D+ pin
1130 * (% style="background-color:yellow" %)USB to TTL TXD  <~-~-> Program Converter A11 pin
1131
1132 (((
1133
1134 )))
1135
1136 (((
1137 On the PC, you need to set the serial tool (such as [[PuTTY>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access the serial console for the PB01. The AT commands are disabled by default, and you need to enter the password (default: **123456**) to activate them. The timeout for entering AT commands is 5 minutes; after 5 minutes, the user will need to enter the password again.
1138
1139 Enter the password 123456 and type "ATZ" to reboot the PB01, as shown below:
1140 )))
1141
1142 [[image:image-20240510174509-18.png||height="572" width="791"]]
1143
1144
1145 == 6.2  AT Commands ==
1146
1147
1148 (((
1149 * Sending "ATZ" will reboot the device.
1150 * Sending "AT+FDR" will restore the device to factory settings.
1151 * Get the device's AT command settings by sending "AT+CFG." The following is the output after issuing the AT+CFG command.
1152 )))
1153
1154 (((
1155
1156 )))
1157
1158 (((
1159 **Sample output:**                                           
1160 )))
1161
1162 (((
1163 AT+DEUI=FA 23 45 55 55 55 55 51
1164
1165 AT+APPEUI=FF AA 23 45 42 42 41 11
1166
1167 AT+APPKEY=AC D7 35 81 63 3C B6 05 F5 69 44 99 C1 12 BA 95
1168
1169 AT+DADDR=FFFFFFFF
1170
1171 AT+APPSKEY=FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
1172
1173 AT+NWKSKEY=FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
1174
1175 AT+ADR=1
1176
1177 AT+TXP=7
1178
1179 AT+DR=5
1180
1181 AT+DCS=0
1182
1183 AT+PNM=1
1184
1185 AT+RX2FQ=869525000
1186
1187 AT+RX2DR=0
1188
1189 AT+RX1DL=5000
1190
1191 AT+RX2DL=6000
1192
1193 AT+JN1DL=5000
1194
1195 AT+JN2DL=6000
1196
1197 AT+NJM=1
1198
1199 AT+NWKID=00 00 00 13
1200
1201 AT+FCU=61
1202
1203 AT+FCD=11
1204
1205 AT+CLASS=A
1206
1207 AT+NJS=1
1208
1209 AT+RECVB=0:
1210
1211 AT+RECV=
1212
1213 AT+VER=EU868 v1.0.0
1214
1215 AT+CFM=0,7,0
1216
1217 AT+SNR=0
1218
1219 AT+RSSI=0
1220
1221 AT+TDC=1200000
1222
1223 AT+PORT=2
1224
1225 AT+PWORD=123456
1226
1227 AT+CHS=0
1228
1229 AT+RX1WTO=24
1230
1231 AT+RX2WTO=6
1232
1233 AT+DECRYPT=0
1234
1235 AT+RJTDC=20
1236
1237 AT+RPL=0
1238
1239 AT+TIMESTAMP=systime= 2024/5/11 01:10:58 (1715389858)
1240
1241 AT+LEAPSEC=18
1242
1243 AT+SYNCMOD=1
1244
1245 AT+SYNCTDC=10
1246
1247 AT+SLEEP=0
1248
1249 AT+ATDC=1
1250
1251 AT+UUID=003C0C53013259E0
1252
1253 AT+DDETECT=1,1440,2880
1254
1255 AT+SETMAXNBTRANS=1,0
1256
1257 AT+DISFCNTCHECK=0
1258
1259 AT+DISMACANS=0
1260
1261 AT+PNACKMD=0
1262
1263 AT+SOUND=0,0
1264
1265 AT+STIME=0
1266
1267 AT+OPTION=3
1268
1269
1270 )))
1271
1272 (((
1273 **Example:**
1274 )))
1275
1276 [[image:image-20240511091518-2.png||height="601" width="836"]]
1277
1278
1279 == 6.3  How to upgrade the firmware? ==
1280
1281
1282 PB01 requires a USB-to-TTL adapter along with the AS-02 USB Type-C converter to upload a new firmware image to PB01: Upgrading the device firmware,
1283
1284 * supports new features
1285 * fixes bugs
1286 * allows change the LoRaWAN frequency bands.
1287
1288 The PB01 is shipped with firmware preloaded. The firmware is divided into a bootloader and a work program.
1289
1290 If the bootloader is erased for any reason, you will need to download the firmware (which includes both the bootloader and the work program).
1291
1292 The latest firmware version for the PB01 can be downloaded from this link: [[firmware>>url:https://www.dropbox.com/scl/fo/y7pvm58wcr8319d5o4ujr/APZtqlbzRCNbHoPWTmmMMWs?rlkey=wfh93x2dhcev3ydn0846rinf0&st=kdp6lg7t&dl=0]]
1293
1294
1295 === 6.3.1 Update firmware (Assume device have bootloader) ===
1296
1297
1298 Follow the steps below only if the firmware needs to be updated and the bootloader of your device is not corrupted and is working properly.
1299
1300 (% style="color:blue" %)**Step 1**(%%):** Connect UART as per FAQ 6.1**
1301
1302 (% style="color:blue" %)**Step 2**(%%):** Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. **
1303
1304
1305 === 6.3.2 Update firmware (Assume device doesn't have bootloader) ===
1306
1307
1308 Follow the steps below if the firmware needs to be updated along with the bootloader. This method is required if the bootloader of your device is corrupted.
1309
1310 Download both the bootloader and the worker program. After updating the firmware, the device will have the bootloader installed, allowing you to use the above 6.3.1 method to update the worker program.
1311
1312
1313 (% style="color:blue" %)**Step 1**(%%):** **Install [[TremoProgrammer>>url:https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
1314
1315 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220615170542-5.png?rev=1.1||alt="image-20220615170542-5.png"]]
1316
1317 (% style="color:blue" %)**Step 2**(%%): Hardware Connection
1318
1319 Connect PC and PB01 via USB-TTL adapter .
1320
1321 (% style="color:red" %)**Note: To download firmware in this way, you need to pull the boot pin(Program Converter D- pin) high to enter the burn mode. After burning, disconnect the boot pin of the node and the 3V3 pin of the USB-TTL adapter, and reset the node to exit the burning mode.**
1322
1323 **Connection:**
1324
1325 * (% style="background-color:yellow" %)USB-TTL GND <~-~-> Program Converter GND pin
1326 * (% style="background-color:yellow" %)USB-TTL RXD  <~-~-> Program Converter D+ pin
1327 * (% style="background-color:yellow" %)USB-TTL TXD  <~-~-> Program Converter A11 pin
1328 * (% style="background-color:yellow" %)USB-TTL 3V3 <~-~-> Program Converter D- pin
1329
1330 (% style="color:blue" %)**Step 3**(%%):** **Select the device port to be connected, baud rate and bin file to be downloaded.
1331
1332 [[image:image-20240701160913-1.png]]
1333
1334 Users need to reset the node to start downloading the program.
1335 ~1. Reinstall the battery to reset the node
1336 2. Hold down the ACT button to reset the node (see [[2.7>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PB01--LoRaWAN_Button_User_Manual/#H2.7Button]] ).
1337
1338 When this interface appears, it indicates that the download has been completed.
1339
1340 [[image:image-20240701160924-2.png]]
1341
1342 Finally, Disconnect Program Converter D- pin, reset the node again , and the node exits burning mode.
1343
1344
1345 == 6.4  How to change the LoRa Frequency Bands/Region? ==
1346
1347
1348 If you want to change the frequency band/region of your device, the only way is to** upgrade its firmware** to support the desired frequency band/region. When downloading the firmware, ensure you choose the correct image that supports the required frequency band/region.
1349
1350 We have named each firmware file to make it easy for you to identify its frequency band/region. For example, for the **EU868** band, the file name is **eu868.bin.** You can follow the instructions in the section [[how to upgrade image>>||anchor="H6.3A0Howtoupgradethefirmware3F"]] to complete the process.
1351
1352
1353 == 6.5 Why i see different working temperature for the device? ==
1354
1355
1356 The working temperature range of device depends on the battery user choose.
1357
1358 * Normal AAA Battery can support -10 ~~ 50°C working range.
1359 * Special AAA battery can support -40 ~~ 60 °C working range. For example: [[Energizer L92>>https://data.energizer.com/pdfs/l92.pdf]]
1360
1361 = 7. Ordering Information =
1362
1363 == 7.1 PB01 ==
1364
1365
1366 Part Number: (% style="color:#4472c4" %)PB01-LW-XX(%%) (white button) / (% style="color:#4472c4" %)PB01-LR-XX(%%)(Red Button)
1367
1368 (% style="color:#4472c4" %)**XX **(%%): The default frequency band
1369
1370 * (% style="color:red" %)**AS923**(%%)**: **LoRaWAN AS923 band
1371 * (% style="color:red" %)**AU915**(%%)**: **LoRaWAN AU915 band
1372 * (% style="color:red" %)**EU433**(%%)**: **LoRaWAN EU433 band
1373 * (% style="color:red" %)**EU868**(%%)**:** LoRaWAN EU868 band
1374 * (% style="color:red" %)**KR920**(%%)**: **LoRaWAN KR920 band
1375 * (% style="color:red" %)**US915**(%%)**: **LoRaWAN US915 band
1376 * (% style="color:red" %)**IN865**(%%)**:  **LoRaWAN IN865 band
1377 * (% style="color:red" %)**CN470**(%%)**: **LoRaWAN CN470 band
1378
1379 = 8. Packaging Information =
1380
1381
1382 **Package Includes**:
1383
1384 * PB01 LoRaWAN Push Button x 1
1385
1386 = 9. Support =
1387
1388
1389 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
1390 * Please provide as much information as possible regarding your inquiry (e.g., product models, an accurate description of your problem, and steps to replicate it) and send an email to [[support@dragino.com>>mailto:support@dragino.com]].
1391
1392 = 10.  Reference material =
1393
1394
1395 * [[Datasheets, photos, payload decoders, firmware>>https://www.dropbox.com/scl/fo/y7pvm58wcr8319d5o4ujr/APZtqlbzRCNbHoPWTmmMMWs?rlkey=wfh93x2dhcev3ydn0846rinf0&st=kdp6lg7t&dl=0]]
1396
1397 = 11. FCC Warning =
1398
1399
1400 **This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:**
1401
1402 (1) This device may not cause harmful interference;
1403 (2) This device must accept any interference received, including interference that may cause undesired operation.
1404
1405
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0