Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20240705094013-3.png]]
3
4
5
6
7
8 (% _mstvisible="1" %)
9 (% _msthash="315238" _msttexthash="18964465" _mstvisible="3" %)**Table of Contents:**
10
11 {{toc/}}
12
13
14
15
16
17
18
19
20 = 1.  Introduction =
21
22 == 1.1  What is the PB01 LoRaWAN Push Button? ==
23
24
25 The (% style="color:blue" %)**PB01 LoRaWAN Push Button**(%%) is a wireless LoRaWAN device equipped with (% style="color:blue" %)**a single push button**(%%). When the user presses the button, the PB01 sends an uplink to the LoRaWAN Network Server using the long-range LoRaWAN wireless protocol. Additionally, the PB01 measures (% style="color:blue" %)**environment temperature & humidity**(%%) and periodically uplinks this data to the LoRaWAN Network Server.
26
27 The PB01 is powered by (% style="color:blue" %)**2 x AAA batteries**(%%), allowing it to operate for several years.* Users can easily replace the batteries once they are drained.
28
29 The PB01 also features a built-in speaker that can produce different sounds when the button is pressed or when a reply (downlink) is received from the Network Server. The speaker can be disabled if the user prefers.
30
31 The PB01 is fully compatible with the LoRaWAN v1.0.3 protocol, and works seamlessly with standard LoRaWAN gateways.
32
33 ~* Battery life depends on the frequency of data transmission. Please refer to the [[battery analyzer>>||anchor="H4.2A0PowerConsumptionAnalyze"]] for details.
34
35
36 == 1.2  Features ==
37
38
39 * Wall-mountable
40 * LoRaWAN v1.0.3 protocol, Class A mode
41 * 1 x push button (available in different colors)
42 * Built-in temperature and humidity sensor
43 * Built-in speaker
44 * Frequency bands: CN470, EU433, KR920, US915, EU868, AS923, AU915
45 * AT commands for parameter changes
46 * Remote parameter configuration via LoRaWAN downlink
47 * Firmware upgradable via programming port
48 * Supports 2 x AAA LR03 batteries
49 * IP rating: IP52
50
51 == 1.3  Specification ==
52
53
54 (% style="color:blue" %)**Built-in Temperature Sensor:**
55
56 * **Resolution**: 0.01 °C
57 * **Accuracy Tolerance**: Typ ±0.2 °C
58 * **Long-Term Drift**: < 0.03 °C/year
59 * **Operating Range**: -10 ~~ 50 °C or -40 ~~ 60 °C (depends on battery type; see [[FAQ>>||anchor="H6.5Whyiseedifferentworkingtemperatureforthedevice3F"]])
60
61 (% style="color:blue" %)**Built-in Humidity Sensor:**
62
63 * **Resolution**: 0.01 %RH
64 * **Accuracy Tolerance**: Typ ±1.8 %RH
65 * **Long-Term Drift**: < 0.2 %RH/year
66 * **Operating Range**: 0 ~~ 99.0 %RH (no dew)
67
68 == 1.4  Power Consumption ==
69
70
71 PB01 : Idle: 5 uA, Transmit: max 110 mA
72
73
74 == 1.5  Storage & Operation Temperature ==
75
76
77 -10 ~~ 50 °C  or -40 ~~ 60 °C (depends on battery type; see [[FAQ>>||anchor="H6.5Whyiseedifferentworkingtemperatureforthedevice3F"]])
78
79
80 == 1.6  Applications ==
81
82
83 * Smart buildings & home automation
84 * Logistics & supply chain management
85 * Smart metering
86 * Smart agriculture
87 * Smart cities
88 * Smart factories
89
90 = 2.  Operation Mode =
91
92 == 2.1  How It Works? ==
93
94
95 Each PB01 is shipped with registration information that can be used to register and activate the device with a LoRaWAN Network Server using Over-The-Air Activation (OTAA), which is the most secure method for activating an end device on a LoRaWAN Network Server. It also supports Activation-By-Personalization (ABP), but this method is not recommended as it is less secure.
96
97 After registration, if the PB01 is within the LoRaWAN network's coverage area, it can join the network and start transmitting sensor data to the LoRaWAN Network Server. The default uplink interval is **20 minutes**.
98
99
100 == 2.2  How to turn on PB01? ==
101
102
103 (% style="color:red" %)** 1.  Open the enclosure from the bottom.**
104
105 [[image:image-20220621093835-1.png]]
106
107
108 (% style="color:red" %)** 2.  Insert 2 x AAA LR03 batteries to turn on the device.**
109
110 [[image:image-20220621093835-2.png]]
111
112
113 (% style="color:#ff0000" %)** 3. After **(% style="caret-color:#ff0000; color:#ff0000" %)**activating with a LoRaWAN network**(% style="color:#ff0000" %)**, you can re-join/restart the device by long pressing the ACT button as shown in the image below.**
114
115 [[image:image-20220621093835-3.png]]
116
117 You can check the [[LED Status>>||anchor="H2.8LEDIndicator"]] to determine the working state of the PB01.
118
119
120 == 2.3 Registering with a LoRaWAN network ==
121
122
123 This section explains how to register the PB01 with a LoRaWAN Network Server, such as The Things Stack Cloud. After registering, the PB01 can join the network once you long-press the ACT button.
124
125 (% _mstvisible="1" class="wikigeneratedid" %)
126 The following network diagram shows how the PB01 communicates with The Things Stack Cloud (similarly to other LoRaWAN Network Servers) end to end.
127
128
129 [[image:pb01-ttn.jpg]]
130
131
132 Each PB01 is shipped with its unique registration information printed on a sticker affixed inside the cardboard package that the device is packed in. The registration information includes the following:
133
134 * DevEUI
135 * AppEUI
136 * AppKey
137
138 This information is required to perform the OTAA (Over-the-Air Activation) of the device, which is the most secure way of activating the device with a LoRaWAN network server.
139
140 [[image:image-20230426083617-1.png||height="294" width="633"]]
141
142
143 === 2.3.1 Add PB01 to The Things Stack ===
144
145
146 PB01 currently supports only **manual **registartion with The Things Stack.
147
148
149 ==== 2.3.1.1 Creating an application ====
150
151
152 Sign up for a free account with [[The Things Stack Sandbox>>url:https://eu1.cloud.thethings.network/]] if you do not have one yet. Then, create an **application **as shown in the screenshots below.
153
154
155 ==== 2.3.1.2 Adding manually ====
156
157
158 You can refer to the screenshots below to register your PB01 using The Things Stack's manual registration option.
159
160 On The Things Stack console:
161
162 * Click **Applications**.
163 * Click <**your application**>. E.g. dragino-docs
164 * Click **End devices**.
165 * Click **+ Register end devic**e button.
166
167 [[image:5.png]]
168
169
170 * Select **Enter end device specifies manually** option.
171 * **Frequency plan**: Select the frequency plan that matches your device. E.g.: Europe 863-870 MHz (SF9 for RX2 - recommended).
172 * **LoRaWAN version**: LoRaWAN Specification 1.0.3
173 * Regional Parameters version: You can't change it and it will select automatically.
174
175 [[image:2.png]]
176
177
178 * **JoinEUI**: Enter the **AppEUI** of the device (see the registration information sticker) and Click the **Confirm** button.
179 * **DevEUI**: Enter the DevEUI of the device (see the registration information sticker).
180 * **AppKey**: Enter the AppKey of the device (see the registration information sticker).
181 * **End device ID**: Enter a name for your end device to uniquely identify it within this application.
182 * Click **View registered end device** option.
183 * Click **Register end device** button.
184
185 [[image:3.png]]
186
187
188 You will be navigated to the **Device overview **page.
189 (% style="display:none" %)
190
191
192 ==== 2.3.1.3 Activate the PB01 ====
193
194
195 Long press the **ACT** button to activate the PB01. It will then join The Things Stack. Once successfully connected, the device will begin uplinking sensor data to The Things Stack, which can be viewed on the **Live data** panel.
196
197 [[image:image-20240507143104-5.png||height="434" width="1398"]]
198
199
200 == 2.4  Uplink Payload ==
201
202
203 Uplink payloads include two types: Valid Sensor Value and other status / control command.
204
205 * Valid Sensor Value: Use FPORT=2
206 * Other control command: Use FPORT other than 2.
207
208 === 2.4.1  Uplink FPort~=5, Device Status ===
209
210
211 The 'Device Status' uplink is sent by the PB01 as its first uplink after successfully joining a LoRaWAN network. However, you can manually retrieve the device status as an uplink by sending a command as a downlink to the device. The format of the downlink command should be in hexadecimal.
212
213 (% style="color:#4472c4" %)**Downlink:  **(%%)**0x2601 **
214
215 The device uplinks its status via FPort=5, and the payload format is as follows:
216
217 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:370px" %)
218 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)(% style="display:none" %) (%%)**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**
219 |(% style="width:99px" %)Value|(% style="width:62px" %)Sensor Model|(% style="width:80px" %)Firmware Version|(% style="width:82px" %)Frequency Band|(% style="width:85px" %)Sub-band|(% style="width:46px" %)BAT
220
221 The following figure shows the decoded device status payload as displayed on The Things Stack.
222
223 [[image:image-20240507152130-12.png||height="469" width="1366"]](% style="display:none" %)
224
225
226 For example, if the device status uplink includes the payload, [[image:image-20240507152254-13.png||height="26" width="130"]]
227
228
229 (% style="color:#4472c4" %)**Sensor model**(%%): 0x35 - for PB01, this value is 0x35.
230
231 (% style="color:#4472c4" %)**Firmware version**(%%): 0x0100 - value 0x0100 means v1.0.0.
232
233 (% style="color:#4472c4" %)**Frequency band**(%%): 01 - means EU868. The following are the possible values for other frequency bands.
234
235 *0x01: EU868
236
237 *0x02: US915
238
239 *0x03: IN865
240
241 *0x04: AU915
242
243 *0x05: KZ865
244
245 *0x06: RU864
246
247 *0x07: AS923
248
249 *0x08: AS923-1
250
251 *0x09: AS923-2
252
253 *0x0A: AS923-3
254
255 (% style="color:#4472c4" %)**Sub band**(%%): 0xFF - value 0x00 ~~ 0x08 (only for CN470, AU915, US915. Others are 0x00)
256
257 (% style="color:#4472c4" %)**BAT**(%%): 0x 0CDE - represents the battery voltage for PB01. The values 0x0CDE means 3294 mV = 3.294 V
258
259
260 === 2.4.2  Uplink FPort~=2, Real time sensor values ===
261
262
263 The PB01 sends real time sensor values after the Device Status uplink. The device will continue to send this uplink periodically. The default interval is 20 minutes, but it can be changed.
264
265 This type of uplink uses FPort=2 and, by default, is sent every 20 minutes. The default uplink interval [[can be changed>>||anchor="H3.1A0DownlinkCommandSet"]] using AT commands.
266
267 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:460px" %)
268 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
269 **Size(bytes)**
270 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)2|=(% style="width: 140px;background-color:#4F81BD;color:white" %)(((
271 **1**
272 )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
273 **1**
274 )))|=(% style="width: 90px;background-color:#4F81BD;color:white" %)(((
275 **2**
276 )))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
277 **2**
278 )))
279 |(% style="width:97px" %)(((
280 Value
281 )))|(% style="width:39px" %)Battery|(% style="width:39px" %)(((
282 Sound_ACK & Sound_key
283 )))|(% style="width:100px" %)(((
284 (((
285 Alarm
286 )))
287 )))|(% style="width:77px" %)(((
288 (((
289 Temperature
290 )))
291 )))|(% style="width:47px" %)(((
292 Humidity
293 )))
294
295 The following figure shows the decoded real time sensor values payload as displayed on The Things Stack.
296
297 [[image:image-20240507150155-11.png||height="549" width="1261"]]
298
299
300 For example, if the real time sensor values uplink includes the payload (FPort=2):  (% style="background-color:yellow" %)**0C EA 03 01 01 11 02 A8**
301
302
303 ==== (% style="color:blue" %)**Battery:**(%%) ====
304
305 Byte 1 and 2: Check the battery voltage.
306
307 * Example 1: 0x0CEA = 3306mV
308 * Example 2: 0x0D08 = 3336mV
309
310 ==== (% style="color:blue" %)**Sound_ACK & Sound_key:**(%%) ====
311
312 Byte 3: Key sound and ACK sound are enabled by default.
313
314 * Example1: 0x03
315
316 Sound_ACK: (03>>1) & 0x01=1, OPEN.
317
318 **~ ** Sound_key:  03 & 0x01=1, OPEN.
319
320 * Example 2: 0x01
321
322 Sound_ACK: (01>>1) & 0x01=0, CLOSE.
323
324 **~ ** Sound_key:  01 & 0x01=1, OPEN.
325
326
327 ==== (% style="color:blue" %)**Alarm:**(%%) ====
328
329 Byte 4: Key alarm.
330
331 * Example 1: 0x01 & 0x01=1, TRUE.
332 * Example 2: 0x00 & 0x01=0, FALSE.
333
334 ==== (% style="color:blue" %)**Temperature:**(%%) ====
335
336 Byte 5 and 6: Temperature.
337
338 * Example 1: 0x0111/10=27.3°C
339 * Example 2: (0xFF0D-65536)/10=-24.3°C
340
341 If payload is: FF0D : (FF0D & 8000 == 1) , temp = (FF0D - 65536)/100 =-24.3°C
342
343 (FF0D & 8000 : Check whether the highest bit is 1. If the highest bit is 1, the value is negative)
344
345
346 ==== (% style="color:blue" %)**Humidity:**(%%) ====
347
348 Byte 7 and 8: Humidity
349
350 * Humidity: 0x02A8/10=68.0%
351
352 === 2.4.3  Uplink FPort~=3, Datalog sensor value ===
353
354
355 PB01 stores sensor values, and you can retrieve these historical values via a downlink command. The Datalog sensor values are sent via FPort=3.
356
357 [[image:image-20240510144912-1.png||height="471" width="1178"]](% style="display:none" %)
358
359
360 Each data entry is 11 bytes. To save airtime and battery, the maximum payload size is depending on the current Date Rate and the frequency band.(% style="display:none" %) (%%) For example, in US915 band, the maximum payload for different DR is as follows:
361
362 1. **DR0**: maximum payload is 11 bytes. The device will uplink one entry of data.
363 1. **DR1**: maximum payload is 53 bytes. The device will upload 4 entries of data (total of 44 bytes)
364 1. **DR2**: A payload includes 11 entries of data
365 1. **DR3**: A payload includes 22 entries of data.
366
367 (% style="color:red" %)**Note: The PB01 will save 178 sets of historical data. If the device doesn't have any data during the polling time, it will uplink 11 bytes of 0s.**
368
369 See [[Datalog feature>>||anchor="H2.6A0DatalogFeature"]] for more information.
370
371 (% style="display:none" %) (%%)
372
373 === 2.4.4  Decoding the payload in The Things Stack Cloud ===
374
375
376 In the LoRaWAN protocol, the uplink payload uses HEX format to store data. You need to add a payload formatter or decoder in the LoRaWAN server to extract each field and convert them into readable values.
377
378 The following figure shows how to add the uplink payload formatter in The Things Stack. The uplink decoder for PB01 can be found here:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
379
380 Select your **end device**, then click the **Payload Formatters **tab, followed by the **Uplink** tab. Next, select '**Custom Javascript Formatte**r' from the '**Formatter Type**' dropdown list. Finally, paste the payload formatter in the '**Formatter Code**' box and click the '**Save Changes**' button.
381
382 [[image:image-20240507162814-16.png||height="778" width="1135"]]
383
384
385 == 2.5 Show data on Datacake ==
386
387
388 (((
389 The Datacake IoT platform contains a user-friendly interface for displaying sensor data. Once sensor data is available in The Things Stack, Datacake can be used to connect to The Things Stack and visualize the data.
390 )))
391
392 (((
393 We assume that you have successfully registered and activated your PB01 with The Things Stack Cloud. To configure your application to forward data to Datacake, you will need to add an integration. Follow the steps below:
394 )))
395
396 (((
397
398
399 Go to The Things Stack Cloud Console ~-~-> Applications ~-~-> Integrations ~-~-> Webhooks.
400 )))
401
402 (((
403 ~1. Select Datacake:
404 )))
405
406 (((
407 2. Select default key as Access Key:
408 )))
409
410 (((
411 3. In Datacake console ([[https:~~/~~/datacake.co/>>url:https://datacake.co/]]) , add PB01:
412 )))
413
414 (((
415 Please refer to the figure below.
416 )))
417
418 [[image:image-20240510150924-2.png||height="612" width="1186"]]
419
420
421
422 Log in to DATACAKE, copy the API under the account.
423
424 [[image:image-20240510151944-3.png||height="581" width="1191"]]
425
426
427 In the **Webhook ID** textbox, type a name to identify your webhook.
428
429 Paste the **Datacake API Token** in the **Token** textbox.
430
431 Click **Create Datacake webhook** button.
432
433 [[image:image-20240510152150-4.png||height="697" width="1188"]]
434
435
436 In the Datacake Device page, select **+ Add Device** button.
437
438 [[image:image-20240510152300-5.png||height="298" width="1191"]]
439
440
441 In the Add Device window, select **LoRaWAN** as the connectivity type for the PB01
442
443 [[image:image-20240510152355-6.png||height="782" width="1193"]]
444
445 [[image:image-20240510152542-8.png||height="545" width="739"]]
446
447 [[image:image-20240510152634-9.png||height="748" width="740"]]
448
449
450 [[image:image-20240510152809-10.png||height="607" width="732"]]
451
452 [[image:image-20240510153934-14.png||height="460" width="1199"]]
453
454
455 [[image:image-20240510153435-12.png||height="428" width="1197"]]
456
457
458 Copy and paste the [[TTN decoder>>https://github.com/dragino/dragino-end-node-decoder]] here and save.
459
460 [[image:image-20240510153624-13.png||height="468" width="1195"]]
461
462 Visual widgets please read the DATACAKE documentation.
463
464 (% style="display:none" %) (%%)
465
466 == 2.6  Datalog Feature ==
467
468
469 (% _msthash="315262" _msttexthash="32283004" _mstvisible="1" %)
470 To retrieve a sensor value, you can send a poll command from the network server to request the sensor to send the value within the required time period.
471
472
473 === 2.6.1  Unix Timestamp ===
474
475
476 The Unix timestamp indicates the sampling time of the uplink payload, based on the following format:
477
478 [[image:image-20220523001219-11.png||_mstalt="450450" _mstvisible="3" height="97" width="627"]]
479
480 You can get this time from the link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/||_mstvisible="3"]] :
481
482 For example, if the Unix timestamp is in HEX format as 0x60137afd, you can convert it to decimal: 1611889405, and then convert it to the time: 2021-Jan-29, Friday, 03:03:25 (GMT).
483
484 [[image:1655782409139-256.png]]
485
486
487 === 2.6.2  Poll sensor value ===
488
489
490 (((
491 You can poll sensor values based on timestamps from the server. The start and end timestamps use the Unix timestamp format as mentioned above. The device will reply with all data logs from this time period, using the uplink interval.
492 )))
493
494 (((
495 For example, if the downlink command is: [[image:image-20220621113526-13.png]] (% _mstvisible="3" style="display:none" %)
496 )))
497
498 (((
499 **0x31 **: Prefix
500
501 **0x5FC5F350** and **0x5FC60160 **: This is equivalent to checking the stored data between **2020/12/1 07:40:00** and **2020/12/1 08:40:00**.
502
503 **0x05 **: The uplink interval is 5 seconds, which means the PB01 will send one packet every 5 seconds. The uplink interval can be mentioned in the downlink payload with a range of 5 to 255 seconds.
504 )))
505
506
507 === 2.6.3  Datalog Uplink payload ===
508
509
510 See [[Uplink FPort=3, Datalog sensor value>>||anchor="H2.4.3A0UplinkFPort3D32CDatalogsensorvalue"]]
511
512 (% style="display:none" %) (%%) (% style="display:none" %)
513
514 == 2.7 Buttons ==
515
516
517 * **ACT button**
518
519 Long press this button, and the PB01 will reset and rejoin the network.
520
521 [[image:image-20240510161626-17.png||height="192" width="224"]]
522
523
524 * **Alarm button**
525
526 Press this button to immediately send an uplink, and the alarm will be set to 'TRUE'.
527
528 [[image:image-20240705095149-5.png||height="164" width="162"]](% style="display:none" %)
529
530
531 == 2.8 LED Indicators ==
532
533
534 (((
535 The PB01 has a single LED that displays different colors to indicate various stages:
536
537 1. **Hold the ACT button:** The LED will light up GREEN. GREEN flashing indicates the node is restarting. A BLUE flash signals a request for network access, and a solid GREEN light for 5 seconds signifies successful network access.
538 1. (((
539 **Normal Working State:**
540
541 * When the node restarts, hold the ACT button, and the LED will turn GREEN. GREEN flashing indicates a restart. A BLUE flash signals a request for network access, and a solid GREEN light for 5 seconds indicates successful network access.
542 )))
543 1. (((
544 **During OTAA Join:**
545
546 * For each Join Request uplink, the LED will blink GREEN once.
547 * Once the join is successful, the LED will remain solid GREEN for 5 seconds.
548 * After joining, for each uplink, the LED will blink either BLUE or GREEN.
549 )))
550 1. (((
551 **Alarm Button:**
552
553 * When the alarm button is pressed, the LED will flash RED until the node receives an acknowledgment (ACK) from the platform, followed by the LED staying BLUE for 5 seconds.
554 )))
555 )))
556
557 (((
558
559 )))
560
561 == 2.9 Buzzer ==
562
563
564 The PB01 produces different sounds or tones for the following events, which can be turned on or off using the [[AT+SOUND>>||anchor="H3.3A0SetbuttonsoundandACKsound"]] command.
565
566 * **Button Sound:** This is the tone produced by the node after the alarm button is pressed. Users can use the [[AT+OPTION>>||anchor="H3.4A0Setbuzzermusictype2807E429"]] command to set different button sounds.
567 * **ACK Sound:** This is the notification tone emitted when the node receives an acknowledgment (ACK).
568
569 = 3.  Configure PB01 via AT command or LoRaWAN downlink =
570
571
572 You can configure PB01 via AT Commands or LoRaWAN Downlinks.
573
574 * See [[FAQ>>||anchor="H6.FAQ"]] to find out how to connect PB01 with a computer to configure it using AT commands.
575
576 * LoRaWAN Downlink instruction for different platforms can be found at: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
577
578 (% style="display:none" %)
579
580 There are two types of commands to configure the PB01:
581
582 1. (((
583 **General Commands:**
584 These commands are used to configure:
585
586 * General system settings, such as the uplink interval.
587 * LoRaWAN protocol and radio-related parameters.
588
589 These commands are the same for all Dragino devices that support the DLWS-005 LoRaWAN stack (Note~*~*). You can find these commands on the wiki: [[End Device Downlink Command>>path:#]].
590 )))
591 1. **Commands Specifically Designed for PB01:**
592 These commands are valid only for the PB01, as listed below (see Downlink Commands):
593
594 == 3.1  Downlink Commands ==
595
596
597 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
598 |=(% style="width: 130px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 150px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 90px; background-color: rgb(79, 129, 189); color: white;" %)**Response**|=(% style="width: 140px; background-color: rgb(79, 129, 189); color: white;" %)**Downlink**
599 |(% style="width:130px" %)AT+TDC=?|(% style="width:151px" %)(((
600 Get the current TDC (uplink) time
601 )))|(% style="width:92px" %)(((
602 1200000
603 OK
604 )))|(% style="width:206px" %)Default 1200000(ms)
605 |(% style="width:130px" %)AT+TDC=300000|(% style="width:151px" %)Set the TDC (uplink) time|(% style="width:92px" %)OK|(% style="width:206px" %)(((
606 (((
607 0x0100012C:
608 01: Prefix
609 00012C: 0X00012C=300(seconds)
610 )))
611
612 (((
613
614 )))
615 )))
616 |(% style="width:130px" %)ATZ|(% style="width:151px" %)Reset the node|(% style="width:92px" %) |(% style="width:206px" %)0x04FF
617 |(% style="width:130px" %)AT+FDR|(% style="width:151px" %)Restore to factory settings|(% style="width:92px" %) |(% style="width:206px" %)0x04FE
618 |(% style="width:130px" %)AT+CFM=?|(% style="width:151px" %)View the current confirmation mode status|(% style="width:92px" %)(((
619 0,7,0
620 OK
621 )))|(% style="width:206px" %)Default 0,7,0
622 |(% style="width:130px" %)AT+CFM=1,7,1|(% style="width:151px" %)(((
623 Confirmed uplink mode, the maximum number of retries is seven, and uplink fcnt increase by 1 for each retry
624 )))|(% style="width:92px" %)(((
625 OK
626 )))|(% style="width:206px" %)(((
627 05010701
628 05: fixed command
629 01:confirmed uplink
630 07: retry 7 times
631 01: fcnt count plus 1
632 )))
633 |(% style="width:130px" %)AT+NJM=?|(% style="width:151px" %)(((
634 Check the current network connection method
635 )))|(% style="width:92px" %)(((
636 1
637 OK
638 )))|(% style="width:206px" %)Default 1
639 |(% style="width:130px" %)AT+NJM=0|(% style="width:151px" %)Change the network connection method to ABP|(% style="width:92px" %)(((
640 Attention:Take effect after ATZ
641 OK
642 )))|(% style="width:206px" %)(((
643 0x2000: ABP
644 0x2001: OTAA
645 20: fixed command
646 )))
647 |(% style="width:130px" %)AT+RPL=?|(% style="width:151px" %)View current RPL settings|(% style="width:92px" %)(((
648 0
649 OK
650 )))|(% style="width:206px" %)Default 0
651 |(% style="width:130px" %)AT+RPL=1|(% style="width:151px" %)Set RPL=1    |(% style="width:92px" %)OK|(% style="width:206px" %)(((
652 0x2101:
653 21: fixed command
654 01: for details, check wiki
655 )))
656 |(% style="width:130px" %)AT+ADR=?|(% style="width:151px" %)View current ADR status|(% style="width:92px" %)(((
657 1
658 OK
659 )))|(% style="width:206px" %)Default 0
660 |(% style="width:130px" %)AT+ADR=0|(% style="width:151px" %)Set the ADR state to off|(% style="width:92px" %)OK|(% style="width:206px" %)(((
661 0x2200: close
662 0x2201: open
663 22: fixed command
664 )))
665 |(% style="width:130px" %)AT+DR=?|(% style="width:151px" %)View the current DR settings|(% style="width:92px" %)OK|(% style="width:206px" %)
666 |(% style="width:130px" %)AT+DR=1|(% style="width:151px" %)(((
667 Set DR to 1.
668 It takes effect only when ADR=0
669 )))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
670 0x22000101:
671 00: ADR=0
672 01: DR=1
673 01: TXP=1
674 22: fixed command
675 )))
676 |(% style="width:130px" %)AT+TXP=?|(% style="width:151px" %)View the current TXP|(% style="width:92px" %)OK|(% style="width:206px" %)
677 |(% style="width:130px" %)AT+TXP=1|(% style="width:151px" %)(((
678 Set TXP to 1.
679 It takes effect only when ADR=0
680 )))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
681 0x22000101:
682 00: ADR=0
683 01: DR=1
684 01: TXP=1
685 22: fixed command
686 )))
687 |(% style="width:130px" %)AT+RJTDC=10|(% style="width:151px" %)Set RJTDC time interval|(% style="width:92px" %)OK|(% style="width:206px" %)(((
688 0x26000A:
689 26: fixed command
690 000A: 0X000A=10(min)
691 for details, check wiki
692 )))
693 |(% style="width:130px" %) |(% style="width:151px" %)(((
694 (((
695 ~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_
696
697 Retrieve stored data for a specified period of time
698 )))
699
700 (((
701
702 )))
703 )))|(% style="width:92px" %) |(% style="width:206px" %)(((
704 0x3161DE7C7061DE8A800A:
705 31: fixed command
706 61DE7C70:0X61DE7C70=2022/1/12 15:00:00
707 61DE8A80:0X61DE8A80=2022/1/12 16:00:00
708 0A: 0X0A=10(second)
709 View details 2.6.2
710 )))
711 |(% style="width:130px" %)AT+DDETECT=?|(% style="width:151px" %)View the current DDETECT setting status and time|(% style="width:92px" %)(((
712 1,1440,2880
713 OK
714 )))|(% style="width:206px" %)Default 1,1440,2880(min)
715 |(% style="width:130px" %)AT+DDETECT=(((
716 1,1440,2880
717 )))|(% style="width:151px" %)(((
718 Set DDETECT setting status and time
719 ((% style="color:red" %)When the node does not receive the downlink packet within the set time, it will re-enter the network(%%))
720 )))|(% style="width:92px" %)OK|(% style="width:206px" %)(((
721 0x320005A0: close
722 0x320105A0: open
723 32: fixed command
724 05A0: 0X05A0=1440(min)
725 )))
726
727 == 3.2  Set Password ==
728
729
730 **Feature**: Set the device password with a maximum of 9 digits.
731
732 (% style="color:#4f81bd" %)**AT command:**
733
734 (% border="2" style="width:500px" %)
735 |(% style="width:141px" %)**Command**|(% style="width:357px" %)**AT+PWORD**
736 |(% style="width:141px" %)**Parameters**|(% style="width:357px" %)**password** : maximum up to 9 digits
737 |(% style="width:141px" %)**Get**|(% style="width:357px" %)AT+PWORD=?
738 |(% style="width:141px" %)**Response**|(% style="width:357px" %)(((
739 Returns the current password
740 OK
741 )))
742 |(% style="width:141px" %)**Set**|(% style="width:357px" %)AT+PWORD=<password>
743 |(% style="width:141px" %)**Response**|(% style="width:357px" %)OK
744 |(% style="width:141px" %)**Example**|(% style="width:357px" %)(((
745 AT+PWORD=999999999
746 Set the password 999999999
747 )))
748
749 (% style="color:#4f81bd" %)**Downlink command:**
750
751 There is no downlink command for this feature.
752
753
754 == 3.3  Set button sound and ACK sound ==
755
756
757 **Feature**: Turn on/off button sound and ACK alarm.
758
759 (% style="color:#4f81bd" %)**AT command:**
760
761 (% border="2" style="width:500px" %)
762 |(% style="width:143px" %)**Command**|(% style="width:355px" %)**AT+SOUND**
763 |(% style="width:143px" %)**Parameters**|(% style="width:355px" %)(((
764 **button_sound** :
765 **0** - off
766 **1** - on
767 **ack_sound** :
768 **0** - off
769 **1** - on
770 )))
771 |(% style="width:143px" %)**Get**|(% style="width:355px" %)AT+SOUND=?
772 |(% style="width:143px" %)**Response**|(% style="width:355px" %)(((
773 Returns the current sound settings. <button_sound>,<ack_sound>
774 OK
775 )))
776 |(% style="width:143px" %)**Set**|(% style="width:355px" %)(((
777 AT+SOUND=<button_sound>,<ack_sound>
778 )))
779 |(% style="width:143px" %)**Response**|(% style="width:355px" %)OK
780 |(% style="width:143px" %)**Example**|(% style="width:355px" %)(((
781 AT+SOUND=0,1
782 This will turn off the button sound and turn on the ACK sound.
783 )))
784
785 (% style="color:#4f81bd" %)**Downlink command:**
786
787 (% border="2" style="width:500px" %)
788 |(% style="width:143px" %)**Prefix**|(% style="width:355px" %)**0xA1**
789 |(% style="width:143px" %)**Parameters**|(% style="width:355px" %)(((
790 **button_sound** : 1 byte in hexadecimal.
791 **00** - off
792 **01** - on
793 **ack_sound** : 1 byte in hexadecimal.
794 **00** - off
795 **01** - on
796 )))
797 |(% style="width:143px" %)**Payload format**|(% style="width:355px" %)<prefix><button_sound><ack_sound>
798 |(% style="width:143px" %)**Example**|(% style="width:355px" %)(((
799 A10001
800 Turn off the button sound and turn on ACK sound.
801 )))
802
803 == 3.4  Set buzzer music type (0~~4) ==
804
805
806 Feature: Set different alarm key response sounds.There are five different types of button music.
807
808 (% style="color:#4f81bd" %)**AT Command:**
809
810 (% border="2" style="width:500px" %)
811 |(% style="width:146px" %)**Command**|(% style="width:352px" %)**AT+OPTION**
812 |(% style="width:146px" %)**Parameters**|(% style="width:352px" %)(((
813 **<buzzer_music_type> :**
814 **0**
815 **1**
816 **2**
817 **3**
818 )))
819 |(% style="width:146px" %)**Get**|(% style="width:352px" %)AT+OPTION=?
820 |(% style="width:146px" %)**Response**|(% style="width:352px" %)(((
821 Return the current music type.
822 OK
823 )))
824 |(% style="width:146px" %)**Set**|(% style="width:352px" %)AT+OPTION=<buzzer_music_type>
825 |(% style="width:146px" %)**Response**|(% style="width:352px" %)OK
826 |(% style="width:146px" %)**Example**|(% style="width:352px" %)(((
827 AT+OPTION=1
828 Set the buzzer music to type 1
829 )))
830
831 (% style="color:#4f81bd" %)**Downlink command:**
832
833 (% border="2" style="width:500px" %)
834 |(% style="width:145px" %)**Prefix**|(% style="width:353px" %)**0xA3**
835 |(% style="width:145px" %)**Parameters**|(% style="width:353px" %)(((
836 **<buzzer_music_type> : **1 byte in hexadecimal
837 **0**
838 **1**
839 **2**
840 **3**
841 )))
842 |(% style="width:145px" %)**Payload format**|(% style="width:353px" %)<prefix><buzzer_music-type>
843 |(% style="width:145px" %)**Example**|(% style="width:353px" %)(((
844 A300
845 Set the buzzer music to type 0.
846 )))
847
848 == 3.5  Set Button Press Time ==
849
850
851 **Feature**: Set the holding time for pressing the alarm button to prevent accidental activation. The values range from 0 to 1000 ms.
852
853 (% style="color:#4f81bd" %)**AT Command:**
854
855 (% border="2" style="width:500px" %)
856 |(% style="width:145px" %)**Command**|(% style="width:353px" %)**AT+STIME**
857 |(% style="width:145px" %)**Parameters**|(% style="width:353px" %)**button_press_duration** : in milliseconds
858 |(% style="width:145px" %)**Get**|(% style="width:353px" %)AT+STIME=?
859 |(% style="width:145px" %)**Response**|(% style="width:353px" %)Returns the current button press duration.
860 |(% style="width:145px" %)**Set**|(% style="width:353px" %)(((
861 AT+STIME=<button_press_duration>
862 )))
863 |(% style="width:145px" %)**Response**|(% style="width:353px" %)OK
864 |(% style="width:145px" %)**Example**|(% style="width:353px" %)(((
865 AT+STIME=1000
866 Set the button sound duration to 1000 ms.
867 )))
868
869 (% style="color:#4f81bd" %)**Downlink Command:**
870
871 (% border="2" style="width:500px" %)
872 |(% style="width:146px" %)**Prefix**|(% style="width:352px" %)**0xA2**
873 |(% style="width:146px" %)**Parameters**|(% style="width:352px" %)**button_press_duration** : in milliseconds, 2 bytes in hex
874 |(% style="width:146px" %)**Payload format**|(% style="width:352px" %)<prefix><button_press_duration>
875 |(% style="width:146px" %)**Example**|(% style="width:352px" %)(((
876 A203E8
877 Hold the alarm button for 10 seconds before the node sends the alarm uplink packet.
878 )))
879
880 = 4.  Battery =
881
882
883 PB01 uses 2xAAA LR03 (1.5V) batteries.
884
885
886 == 4.1  Replacing batteries ==
887
888
889 If the batteries are running low (if the battery voltage drops to 2.1V), you can use any two generic AAA batteries to replace them.
890
891 (% style="color:red" %)**Note: **
892
893 1. The PB01 doesn't have any screws; you can use a nail to open the battery cover.
894
895 [[image:image-20220621143535-5.png]]
896
897
898 2. Make sure the direction is correct when installing the AAA batteries.
899
900 [[image:image-20220621143535-6.png]]
901
902
903 == 4.2  Power Consumption Analysis ==
904
905
906 Dragino's battery-powered products all operate in Low Power mode. We provide an updated battery calculator based on real device measurements. You can use this calculator to estimate battery life and calculate it for different transmission intervals.
907
908 **Instructions for use:**
909
910 **Step 1:** Download the latest version of the **DRAGINO_Battery_Life_Prediction_Table.xlsx** from the [[battery calculator>>https://www.dropbox.com/sh/sxrgszkac4ips0q/AAA4XjBI3HAHNpdbU3ALN1j0a/Battery%20Document/Battery_Analyze?dl=0&subfolder_nav_tracking=1]].
911
912 **Step 2:** Open the file and select:
913
914 * Product Model
915 * Uplink Interval
916 * Working Mode
917
918 The expected battery life for different scenarios will be displayed on the right.
919
920 [[image:image-20220621143643-7.png||height="429" width="1326"]]
921
922
923 = 5.  Accessories =
924
925
926 * (((
927 **AS-02 USB Type-C Converter**
928
929 The AS-02 is an optional accessory. It is a USB Type-C converter that provides access to the AT console of the PB01 when used with a USB-TTL adapter. For more details, see this [[link>>||anchor="H6.1HowtouseATCommandtoconfigurePB01"]].
930 )))
931
932 [[image:image-20220621141724-3.png]]
933
934
935 = 6. FAQ =
936
937 == 6.1 How to use AT Commands to configure PB01 ==
938
939
940 PB01 supports the AT Command set. Users can use a USB-to-TTL adapter along with the AS-02 USB Type-C converter to connect to the PB01 and issue AT commands, as shown below.
941
942 [[image:image-20240511085914-1.png||height="570" width="602"]]
943
944
945 **Connection:**
946
947 * (% style="background-color:yellow" %)USB to TTL GND <~-~-> Program Converter GND pin
948 * (% style="background-color:yellow" %)USB to TTL RXD  <~-~-> Program Converter D+ pin
949 * (% style="background-color:yellow" %)USB to TTL TXD  <~-~-> Program Converter A11 pin
950
951 (((
952
953 )))
954
955 (((
956 On the PC, you need to set the serial tool (such as [[PuTTY>>https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access the serial console for the PB01. The AT commands are disabled by default, and you need to enter the password (default: **123456**) to activate them. The timeout for entering AT commands is 5 minutes; after 5 minutes, the user will need to enter the password again.
957
958 Enter the password 123456 and type "ATZ" to reboot the PB01, as shown below:
959 )))
960
961 [[image:image-20240510174509-18.png||height="572" width="791"]]
962
963
964 == 6.2  AT Commands ==
965
966
967 (((
968 * Sending "ATZ" will reboot the device.
969 * Sending "AT+FDR" will restore the device to factory settings.
970 * Get the device's AT command settings by sending "AT+CFG." The following is the output after issuing the AT+CFG command.
971 )))
972
973 (((
974
975 )))
976
977 (((
978 **Sample output:**                                           
979 )))
980
981 (((
982 AT+DEUI=FA 23 45 55 55 55 55 51
983
984 AT+APPEUI=FF AA 23 45 42 42 41 11
985
986 AT+APPKEY=AC D7 35 81 63 3C B6 05 F5 69 44 99 C1 12 BA 95
987
988 AT+DADDR=FFFFFFFF
989
990 AT+APPSKEY=FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
991
992 AT+NWKSKEY=FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
993
994 AT+ADR=1
995
996 AT+TXP=7
997
998 AT+DR=5
999
1000 AT+DCS=0
1001
1002 AT+PNM=1
1003
1004 AT+RX2FQ=869525000
1005
1006 AT+RX2DR=0
1007
1008 AT+RX1DL=5000
1009
1010 AT+RX2DL=6000
1011
1012 AT+JN1DL=5000
1013
1014 AT+JN2DL=6000
1015
1016 AT+NJM=1
1017
1018 AT+NWKID=00 00 00 13
1019
1020 AT+FCU=61
1021
1022 AT+FCD=11
1023
1024 AT+CLASS=A
1025
1026 AT+NJS=1
1027
1028 AT+RECVB=0:
1029
1030 AT+RECV=
1031
1032 AT+VER=EU868 v1.0.0
1033
1034 AT+CFM=0,7,0
1035
1036 AT+SNR=0
1037
1038 AT+RSSI=0
1039
1040 AT+TDC=1200000
1041
1042 AT+PORT=2
1043
1044 AT+PWORD=123456
1045
1046 AT+CHS=0
1047
1048 AT+RX1WTO=24
1049
1050 AT+RX2WTO=6
1051
1052 AT+DECRYPT=0
1053
1054 AT+RJTDC=20
1055
1056 AT+RPL=0
1057
1058 AT+TIMESTAMP=systime= 2024/5/11 01:10:58 (1715389858)
1059
1060 AT+LEAPSEC=18
1061
1062 AT+SYNCMOD=1
1063
1064 AT+SYNCTDC=10
1065
1066 AT+SLEEP=0
1067
1068 AT+ATDC=1
1069
1070 AT+UUID=003C0C53013259E0
1071
1072 AT+DDETECT=1,1440,2880
1073
1074 AT+SETMAXNBTRANS=1,0
1075
1076 AT+DISFCNTCHECK=0
1077
1078 AT+DISMACANS=0
1079
1080 AT+PNACKMD=0
1081
1082 AT+SOUND=0,0
1083
1084 AT+STIME=0
1085
1086 AT+OPTION=3
1087
1088
1089 )))
1090
1091 (((
1092 **Example:**
1093 )))
1094
1095 [[image:image-20240511091518-2.png||height="601" width="836"]]
1096
1097
1098 == 6.3  How to upgrade the firmware? ==
1099
1100
1101 PB01 requires a USB-to-TTL adapter along with the AS-02 USB Type-C converter to upload a new firmware image to PB01: Upgrading the device firmware,
1102
1103 * supports new features
1104 * fixes bugs
1105 * allows change the LoRaWAN frequency bands.
1106
1107 The PB01 is shipped with firmware preloaded. The firmware is divided into a bootloader and a work program.
1108
1109 If the bootloader is erased for any reason, you will need to download the firmware (which includes both the bootloader and the work program).
1110
1111 The latest firmware version for the PB01 can be downloaded from this link: [[firmware>>url:https://www.dropbox.com/scl/fo/y7pvm58wcr8319d5o4ujr/APZtqlbzRCNbHoPWTmmMMWs?rlkey=wfh93x2dhcev3ydn0846rinf0&st=kdp6lg7t&dl=0]]
1112
1113
1114 === 6.3.1 Update firmware (Assume device have bootloader) ===
1115
1116
1117 Follow the steps below only if the firmware needs to be updated and the bootloader of your device is not corrupted and is working properly.
1118
1119 (% style="color:blue" %)**Step 1**(%%):** Connect UART as per FAQ 6.1**
1120
1121 (% style="color:blue" %)**Step 2**(%%):** Update follow [[Instruction for update via DraginoSensorManagerUtility.exe>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H3.2.1UpdateafirmwareviaDraginoSensorManagerUtility.exe]]. **
1122
1123
1124 === 6.3.2 Update firmware (Assume device doesn't have bootloader) ===
1125
1126
1127 Follow the steps below if the firmware needs to be updated along with the bootloader. This method is required if the bootloader of your device is corrupted.
1128
1129 Download both the bootloader and the worker program. After updating the firmware, the device will have the bootloader installed, allowing you to use the above 6.3.1 method to update the worker program.
1130
1131
1132 (% style="color:blue" %)**Step 1**(%%):** **Install [[TremoProgrammer>>url:https://www.dropbox.com/scl/fo/gk1rb5pnnjw4kv5m5cs0z/h?rlkey=906ouvgbvif721f9bj795vfrh&dl=0]]  first.
1133
1134 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220615170542-5.png?rev=1.1||alt="image-20220615170542-5.png"]]
1135
1136 (% style="color:blue" %)**Step 2**(%%): Hardware Connection
1137
1138 Connect PC and PB01 via USB-TTL adapter .
1139
1140 (% style="color:red" %)**Note: To download firmware in this way, you need to pull the boot pin(Program Converter D- pin) high to enter the burn mode. After burning, disconnect the boot pin of the node and the 3V3 pin of the USB-TTL adapter, and reset the node to exit the burning mode.**
1141
1142 **Connection:**
1143
1144 * (% style="background-color:yellow" %)USB-TTL GND <~-~-> Program Converter GND pin
1145 * (% style="background-color:yellow" %)USB-TTL RXD  <~-~-> Program Converter D+ pin
1146 * (% style="background-color:yellow" %)USB-TTL TXD  <~-~-> Program Converter A11 pin
1147 * (% style="background-color:yellow" %)USB-TTL 3V3 <~-~-> Program Converter D- pin
1148
1149 (% style="color:blue" %)**Step 3**(%%):** **Select the device port to be connected, baud rate and bin file to be downloaded.
1150
1151 [[image:image-20240701160913-1.png]]
1152
1153 Users need to reset the node to start downloading the program.
1154 ~1. Reinstall the battery to reset the node
1155 2. Hold down the ACT button to reset the node (see [[2.7>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PB01--LoRaWAN_Button_User_Manual/#H2.7Button]] ).
1156
1157 When this interface appears, it indicates that the download has been completed.
1158
1159 [[image:image-20240701160924-2.png]]
1160
1161 Finally, Disconnect Program Converter D- pin, reset the node again , and the node exits burning mode.
1162
1163
1164 == 6.4  How to change the LoRa Frequency Bands/Region? ==
1165
1166
1167 If you want to change the frequency band/region of your device, the only way is to** upgrade its firmware** to support the desired frequency band/region. When downloading the firmware, ensure you choose the correct image that supports the required frequency band/region.
1168
1169 We have named each firmware file to make it easy for you to identify its frequency band/region. For example, for the **EU868** band, the file name is **eu868.bin.** You can follow the instructions in the section [[how to upgrade image>>||anchor="H6.3A0Howtoupgradethefirmware3F"]] to complete the process.
1170
1171
1172 == 6.5 Why i see different working temperature for the device? ==
1173
1174
1175 The working temperature range of device depends on the battery user choose.
1176
1177 * Normal AAA Battery can support -10 ~~ 50°C working range.
1178 * Special AAA battery can support -40 ~~ 60 °C working range. For example: [[Energizer L92>>https://data.energizer.com/pdfs/l92.pdf]]
1179
1180 = 7. Ordering Information =
1181
1182 == 7.1 PB01 ==
1183
1184
1185 Part Number: (% style="color:#4472c4" %)PB01-LW-XX(%%) (white button) / (% style="color:#4472c4" %)PB01-LR-XX(%%)(Red Button)
1186
1187 (% style="color:#4472c4" %)**XX **(%%): The default frequency band
1188
1189 * (% style="color:red" %)**AS923**(%%)**: **LoRaWAN AS923 band
1190 * (% style="color:red" %)**AU915**(%%)**: **LoRaWAN AU915 band
1191 * (% style="color:red" %)**EU433**(%%)**: **LoRaWAN EU433 band
1192 * (% style="color:red" %)**EU868**(%%)**:** LoRaWAN EU868 band
1193 * (% style="color:red" %)**KR920**(%%)**: **LoRaWAN KR920 band
1194 * (% style="color:red" %)**US915**(%%)**: **LoRaWAN US915 band
1195 * (% style="color:red" %)**IN865**(%%)**:  **LoRaWAN IN865 band
1196 * (% style="color:red" %)**CN470**(%%)**: **LoRaWAN CN470 band
1197
1198 = 8. Packaging Information =
1199
1200
1201 **Package Includes**:
1202
1203 * PB01 LoRaWAN Push Button x 1
1204
1205 = 9. Support =
1206
1207
1208 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
1209 * Please provide as much information as possible regarding your inquiry (e.g., product models, an accurate description of your problem, and steps to replicate it) and send an email to [[support@dragino.com>>mailto:support@dragino.com]].
1210
1211 = 10.  Reference material =
1212
1213
1214 * [[Datasheets, photos, payload decoders, firmware>>https://www.dropbox.com/scl/fo/y7pvm58wcr8319d5o4ujr/APZtqlbzRCNbHoPWTmmMMWs?rlkey=wfh93x2dhcev3ydn0846rinf0&st=kdp6lg7t&dl=0]]
1215
1216 = 11. FCC Warning =
1217
1218
1219 **This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:**
1220
1221 (1) This device may not cause harmful interference;
1222 (2) This device must accept any interference received, including interference that may cause undesired operation.
1223
1224
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0