Changes for page NSPH01-NB-IoT Soil pH Sensor User Manual
Last modified by Bei Jinggeng on 2024/03/30 17:53
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 3 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Edwin - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:)YK]Y_LZJIO]J2~~VA}OQJM2.png ||height="442" width="410"]]2 +[[image:)YK]Y_LZJIO]J2~~VA}OQJM2.png]] 3 3 4 4 **Table of Contents:** 5 5 ... ... @@ -7,32 +7,27 @@ 7 7 8 8 9 9 10 -= 1. 10 += 1. Introduction = 11 11 12 +== 1.1 What is NSPH01 Soil pH Sensor == 12 12 13 - == 1.1 WhatisNSPH01Soil pHSensor==14 +The Dragino NSPH01 is a **NB-IoT soil pH sensor** for IoT of Agriculture. It is designed to measure the soil pH and soil temperature, so to send to the platform to analyze the soil acid or alkali level. The probe is IP68 waterproof. 14 14 16 +NSPH01 probe is made by Solid AgCl reference electrode and Pure metal pH sensitive electrode. It can detect soil's** pH **with high accuracy and stable value. The NSPH01 probe can be buried into soil for long time use. 15 15 16 -The Dragino NSPH01 is a (% style="color:blue" %)**NB-IoT soil pH sensor**(%%) for IoT of Agriculture. It is designed to measure the soil pH and soil temperature, so to send to the platform to analyze the soil acid or alkali level. The probe is IP68 waterproof. 17 - 18 -NSPH01 probe is made by Solid AgCl reference electrode and Pure metal pH sensitive electrode. It can detect soil's** (% style="color:blue" %)pH (%%)**with high accuracy and stable value. The NSPH01 probe can be buried into soil for long time use. 19 - 20 20 NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 21 -\\NSPH01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP **(%%)for different application requirement.22 -\\NSPH01 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)23 -\\To use NSPH01, user needs to check if there is NB-IoT coverage in the installation area and with the bands NSPH01 supports. If the local operator supports it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%)from local operator and install NSPH01 to get NB-IoT network connection.19 +\\NSPH01 supports different uplink methods include **TCP,MQTT,UDP and CoAP **for different application requirement. 20 +\\NSPH01 is powered by **8500mAh Li-SOCI2 battery**, It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 21 +\\To use NSPH01, user needs to check if there is NB-IoT coverage in the installation area and with the bands NSPH01 supports. If the local operator supports it, user needs to get a **NB-IoT SIM card** from local operator and install NSPH01 to get NB-IoT network connection. 24 24 25 - 23 +(% style="text-align:center" %) 26 26 [[image:image-20220907153151-1.png]] 27 27 28 - 26 +(% style="text-align:center" %) 29 29 [[image:M_K`YF9`CAYAE\@}3T]FHT$9.png]] 30 30 29 +== 1.2 Features == 31 31 32 - 33 -== 1.2 Features == 34 - 35 - 36 36 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 37 37 * Monitor soil pH with temperature compensation. 38 38 * Monitor soil temperature ... ... @@ -48,16 +48,14 @@ 48 48 * Micro SIM card slot 49 49 * 8500mAh Battery for long term use 50 50 51 - 52 52 == 1.3 Specification == 53 53 48 +**Common DC Characteristics:** 54 54 55 -(% style="color:#037691" %)**Common DC Characteristics:** 56 - 57 57 * Supply Voltage: 2.1v ~~ 3.6v 58 58 * Operating Temperature: -40 ~~ 85°C 59 59 60 - (% style="color:#037691" %)**NB-IoT Spec:**53 +**NB-IoT Spec:** 61 61 62 62 * - B1 @H-FDD: 2100MHz 63 63 * - B3 @H-FDD: 1800MHz ... ... @@ -66,12 +66,10 @@ 66 66 * - B20 @H-FDD: 800MHz 67 67 * - B28 @H-FDD: 700MHz 68 68 62 +== 1.4 Probe Specification == 69 69 70 - == 1.4 ProbeSpecification==64 +**Soil pH:** 71 71 72 - 73 -(% style="color:#037691" %)**Soil pH:** 74 - 75 75 * Range: 3 ~~ 10 pH 76 76 * Resolution: 0.01 pH 77 77 * Accuracy: ±2% under (0~~50 ℃, Accuracy will poor under 0 due to frozen) ... ... @@ -79,7 +79,7 @@ 79 79 * IP68 Protection 80 80 * Length: 3.5 meters 81 81 82 - (% style="color:#037691" %)**Soil Temperature:**73 +**Soil Temperature:** 83 83 84 84 * Range -40℃~85℃ 85 85 * Resolution: 0.1℃ ... ... @@ -87,41 +87,31 @@ 87 87 * IP68 Protection 88 88 * Length: 3.5 meters 89 89 81 +== 1.5 Applications == 90 90 91 -== 1.5 Applications == 92 - 93 - 94 94 * Smart Agriculture 95 95 85 +== 1.6 Pin mapping and power on == 96 96 97 -== 1.6 Pin mapping and power on == 98 - 99 - 87 +(% style="text-align:center" %) 100 100 [[image:image-20220907153300-2.png]] 101 101 102 102 103 - 104 104 = 2. Use NSPH01 to communicate with IoT Server = 105 105 106 - 107 107 == 2.1 How it works == 108 108 109 - 110 110 The NSPH01 is equipped with a NB-IoT module, the pre-loaded firmware in NSPH01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSPH01. 111 111 112 112 The diagram below shows the working flow in default firmware of NSPH01: 113 113 114 - 99 +(% style="text-align:center" %) 115 115 [[image:image-20220907153416-3.png]] 116 116 117 - 118 - 119 119 == 2.2 Configure the NSPH01 == 120 120 121 - 122 122 === 2.2.1 Test Requirement === 123 123 124 - 125 125 To use NSPH01 in the field, make sure meet below requirements: 126 126 127 127 * Your local operator has already distributed a NB-IoT Network there. ... ... @@ -128,215 +128,163 @@ 128 128 * The local NB-IoT network used the band that NSPH01 supports. 129 129 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 130 130 131 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSPH01 will use **CoAP(120.24.4.116:5683)**or raw**UDP(120.24.4.116:5601)**or**MQTT(120.24.4.116:1883)**or**TCP(120.24.4.116:5600)**protocol to send data to the test server.112 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSPH01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server. 132 132 133 - 114 +(% style="text-align:center" %) 134 134 [[image:image-20220907153445-4.png]] 135 135 136 136 137 - 138 138 === 2.2.2 Insert SIM card === 139 139 140 - 141 141 User need to take out the NB-IoT module and insert the SIM card like below. ((% style="color:red" %) Pay attention to the direction(%%)) 142 142 143 - 122 +(% style="text-align:center" %) 144 144 [[image:image-20220907153505-5.png]] 145 145 146 - 147 - 148 148 === 2.2.3 Connect USB – TTL to NSPH01 to configure it === 149 149 127 +User need to configure NSPH01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NSPH01 support AT Commands, user can use a USB to TTL adapter to connect to NSPH01 and use AT Commands to configure it, as below. 150 150 151 - User need to configure NSPH01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic**(%%) to define where and how-to uplink packets. NSPH01 support ATCommands, user canusea USB to TTL adapter toconnectto NSPH01 and use AT Commands to configure it, as below.129 +**Connection:** 152 152 131 + USB TTL GND <~-~-~-~-> GND 153 153 154 - (%style="color:blue"%)**Connection:**133 + USB TTL TXD <~-~-~-~-> UART_RXD 155 155 156 - **~(% style="background-color:yellow" %)USB TTLGND <~-~-~-~->GND(%%)**135 + USB TTL RXD <~-~-~-~-> UART_TXD 157 157 158 -**~ (% style="background-color:yellow" %) USB TTL TXD <~-~-~-~-> UART_RXD(%%)** 159 - 160 -**~ (% style="background-color:yellow" %) USB TTL RXD <~-~-~-~-> UART_TXD(%%)** 161 - 162 - 163 163 In the PC, use below serial tool settings: 164 164 165 -* Baud: (% style="color:green" %)**9600**166 -* Data bits:** (% style="color:green" %)8(%%)**167 -* Stop bits: (% style="color:green" %)**1**168 -* Parity: (% style="color:green" %)**None**169 -* Flow Control: (%style="color:green" %)**None**139 +* Baud: **9600** 140 +* Data bits:** 8** 141 +* Stop bits: **1** 142 +* Parity: **None** 143 +* Flow Control: **None** 170 170 171 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSPH01. NSPH01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%)to access AT Command input.145 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSPH01. NSPH01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input. 172 172 147 +(% style="text-align:center" %) 148 +[[image:image-20220907153529-6.png]] 173 173 174 - [[image:image-20220912144017-1.png]]150 +**Note: the valid AT Commands can be found at: **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]] 175 175 176 - 177 -(% style="color:red" %)**Note: the valid AT Commands can be found at:**(%%)** **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]] 178 - 179 - 180 - 181 181 === 2.2.4 Use CoAP protocol to uplink data === 182 182 154 +**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 183 183 184 - (% style="color:red" %)**Note: if you don't have CoAPserver,you can refer thislink toset up one:**(%%)** **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]156 +**Use below commands:** 185 185 158 +* **AT+PRO=1** ~/~/ Set to use CoAP protocol to uplink 159 +* **AT+SERVADDR=120.24.4.116,5683 ** ~/~/ to set CoAP server address and port 160 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path 186 186 187 -(% style="color:blue" %)**Use below commands:** 188 - 189 -* (% style="color:#037691" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 190 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%) ~/~/ to set CoAP server address and port 191 -* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/ Set COAP resource path 192 - 193 193 For parameter description, please refer to AT command set 194 194 195 - 164 +(% style="text-align:center" %) 196 196 [[image:image-20220907153551-7.png||height="502" width="740"]] 197 197 167 +After configure the server address and **reset the device** (via AT+ATZ ), NSPH01 will start to uplink sensor values to CoAP server. 198 198 199 -After configure the server address and (% style="color:green" %)**reset the device (via AT+ATZ )**(%%), NSPH01 will start to uplink sensor values to CoAP server. 200 - 201 - 169 +(% style="text-align:center" %) 202 202 [[image:image-20220907153612-8.png||height="529" width="729"]] 203 203 204 204 205 - 206 206 === 2.2.5 Use UDP protocol to uplink data(Default protocol) === 207 207 208 - 209 209 This feature is supported since firmware version v1.0.1 210 210 211 -* (% style="color:blue" %)**AT+PRO=2 **(%%)~/~/212 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 **(%%)~/~/213 -* (% style="color:blue" %)**AT+CFM=1 **(%%)~/~/177 +* **AT+PRO=2 ** ~/~/ Set to use UDP protocol to uplink 178 +* **AT+SERVADDR=120.24.4.116,5601 ** ~/~/ to set UDP server address and port 179 +* **AT+CFM=1 ** ~/~/If the server does not respond, this command is unnecessar 214 214 181 +(% style="text-align:center" %) 215 215 [[image:image-20220907153643-9.png||height="401" width="734"]] 216 216 217 - 184 +(% style="text-align:center" %) 218 218 [[image:image-20220907153703-10.png||height="309" width="738"]] 219 219 220 220 221 - 222 222 === 2.2.6 Use MQTT protocol to uplink data === 223 223 224 - 225 225 This feature is supported since firmware version v110 226 226 227 -* (% style="color:blue" %)**AT+PRO=3 **(%%)~/~/228 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 **(%%)~/~/229 -* (% style="color:blue" %)**AT+CLIENT=CLIENT **(%%)~/~/230 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/231 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/232 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/233 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%)~/~/192 +* **AT+PRO=3 ** ~/~/Set to use MQTT protocol to uplink 193 +* **AT+SERVADDR=120.24.4.116,1883 ** ~/~/Set MQTT server address and port 194 +* **AT+CLIENT=CLIENT ** ~/~/Set up the CLIENT of MQTT 195 +* **AT+UNAME=UNAME **~/~/Set the username of MQTT 196 +* **AT+PWD=PWD **~/~/Set the password of MQTT 197 +* **AT+PUBTOPIC=NSE01_PUB **~/~/Set the sending topic of MQTT 198 +* **AT+SUBTOPIC=NSE01_SUB ** ~/~/Set the subscription topic of MQTT 234 234 200 +(% style="text-align:center" %) 235 235 [[image:image-20220907153739-11.png||height="491" width="764"]] 236 236 237 - 203 +(% style="text-align:center" %) 238 238 [[image:image-20220907153751-12.png||height="555" width="769"]] 239 239 240 - 241 241 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 242 242 243 - 244 - 245 - 246 246 === 2.2.7 Use TCP protocol to uplink data === 247 247 248 - 249 249 This feature is supported since firmware version v110 250 250 251 -* (% style="color:blue" %)**AT+PRO=4 **(%%)~/~/ Set to use TCP protocol to uplink252 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%)~/~/ to set TCP server address and port212 +* **AT+PRO=4 ** ~/~/ Set to use TCP protocol to uplink 213 +* **AT+SERVADDR=120.24.4.116,5600 ** ~/~/ to set TCP server address and port 253 253 215 +(% style="text-align:center" %) 254 254 [[image:image-20220907153818-13.png||height="486" width="668"]] 255 255 256 - 218 +(% style="text-align:center" %) 257 257 [[image:image-20220907153827-14.png||height="236" width="684"]] 258 258 259 - 260 - 261 261 === 2.2.8 Change Update Interval === 262 262 263 - 264 264 Users can use the below command to change the **uplink interval**. 265 265 266 -* (% style="color:blue" %)**AT+TDC=7200 **(%%)~/~/ Set Update Interval to 7200s (2 hour)225 +* **AT+TDC=7200 ** ~/~/ Set Update Interval to 7200s (2 hour) 267 267 268 - (% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hours. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**227 +**NOTE: By default, the device will send an uplink message every 2 hours. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).** 269 269 270 270 271 - 272 272 == 2.3 Uplink Payload == 273 273 274 - 275 275 In this mode, uplink payload includes 87 bytes in total by default. 276 276 277 277 Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded. 278 278 279 -(% border="1.5" style="background-color:#ffffcc; color:green; width:520px" %) 280 -|=(% scope="row" style="width: 50px;" %)**Size(bytes)**|(% style="width:40px" %)**8**|(% style="width:20px" %)**2**|(% style="width:20px" %)**2**|(% style="width:60px" %)**1**|(% style="width:20px" %)**1**|(% style="width:40px" %)**1**|(% style="width:40px" %)**2**|(% style="width:60px" %)**2**|(% style="width:50px" %)**4**|(% style="width:60px" %)**2**|(% style="width:40px" %)**2**|(% style="width:40px" %)**4** 281 -|=(% style="width: 96px;" %)**Value**|(% style="width:83px" %)Device ID|(% style="width:44px" %)Ver|(% style="width:42px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:57px" %)MOD|(% style="width:80px" %)Interrupt|(% style="width:69px" %)Soil PH|(% style="width:134px" %)Soil Temperature|(% style="width:98px" %)Time stamp|(% style="width:134px" %)Soil Temperature|(% style="width:68px" %)Soil PH|(% style="width:125px" %)Time stamp ..... 236 +|**Size(bytes)**|**8**|**2**|**2**|1|1|1|2|2|4|2|2|4 237 +|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Soil PH|Soil Temperature|Time stamp|Soil Temperature|Soil PH|Time stamp ..... 282 282 283 283 If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSPH01 uplink data. 284 284 241 +(% style="text-align:center" %) 285 285 [[image:image-20220907153902-15.png||height="581" width="804"]] 286 286 287 287 288 -((( 289 289 The payload is ASCII string, representative same HEX: 290 -))) 291 291 292 -((( 293 - 294 -))) 247 +0x(% style="color:red" %)f868411056754138(% style="color:blue" %)0064(% style="color:green" %)0c78(% style="color:red" %)17(% style="color:blue" %)01(% style="color:green" %)00(% style="color:red" %)**//0225010b6315537b//**010b0226631550fb//**010e022663154d77**//01110225631549f1//**011502246315466b**//01190223631542e5//**011d022163153f62**//011e022163153bde//**011e022163153859**//(%%) where: 295 295 296 -((( 297 -**0x (% style="color:red" %)__f868411056754138__ (% style="color:blue" %)__0064 __ (% style="color:green" %)__0c78__ (% style="color:#00b0f0" %)__17__ (% style="color:#7030a0" %)__01__ (% style="color:#d60093" %)__00__ (% style="color:#a14d07" %)__0225 __ (% style="color:#0020b0" %) __010b__ (% style="color:#420042" %)__6315537b__ (% style="color:#663300" %)//__010b0226631550fb__ __010e022663154d77 01110225631549f1 011502246315466b 01190223631542e5 011d022163153f62 011e022163153bde 011e022163153859__//(%%)** 298 -))) 249 +* (% style="color:red" %)Device ID: 0xf868411056754138 = f868411056754138 250 +* (% style="color:blue" %)Version: 0x0064=100=1.0.0 251 +* (% style="color:green" %)BAT: 0x0c78 = 3192 mV = 3.192V 252 +* (% style="color:red" %)Singal: 0x17 = 23 253 +* (% style="color:blue" %)Mod: 0x01 = 1 254 +* (% style="color:green" %)Interrupt: 0x00= 0 255 +* Soil PH: 0x0225= 549 = 5.49 256 +* Soil Temperature:0x010B =267=26.7 °C 257 +* Time stamp : 0x6315537b =1662342011 ([[Unix Epoch Time>>url:http://www.epochconverter.com/]]) 258 +* Soil Temperature,Soil PH,Time stamp : 010b0226631550fb 259 +* (% style="color:red" %)8 sets of recorded data: Temperature,Soil PH,Time stamp : 010e022663154d77,....... 299 299 300 -((( 301 - 302 - 303 -**where:** 304 -))) 305 - 306 -* (% style="color:#037691" %)**Device ID:**(%%)** **0xf868411056754138 = f868411056754138 307 - 308 -* (% style="color:#037691" %)**Version:** (%%) 0x0064=100=1.0.0 309 - 310 -* (% style="color:#037691" %)**BAT:** (%%) 0x0c78 = 3192 mV = 3.192V 311 - 312 -* (% style="color:#037691" %)**Singal:** (%%)0x17 = 23 313 - 314 -* (% style="color:#037691" %)**Mod:** (%%) 0x01 = 1 315 - 316 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0 317 - 318 -* (% style="color:#037691" %)**Soil PH:** (%%) 0x0225= 549 = 5.49 319 - 320 -* (% style="color:#037691" %)**Soil Temperature:**(%%) 0x010b =267=26.7 °C 321 - 322 -* (% style="color:#037691" %)**Time stamp :** (%%) 0x6315537b =1662342011 ([[Unix Epoch Time>>url:http://www.epochconverter.com/]]) 323 - 324 -* (% style="color:#037691" %)**Soil Temperature,Soil PH,Time stamp : **(%%) 010b0226631550fb 325 - 326 -* (% style="color:#037691" %)**8 sets of recorded data:**(%%) Temperature,Soil PH,Time stamp : 010e022663154d77,....... 327 - 328 - 329 329 == 2.4 Payload Explanation and Sensor Interface == 330 330 331 - 332 332 === 2.4.1 Device ID === 333 333 334 - 335 335 By default, the Device ID equal to the last 15 bits of IMEI. 336 336 337 -User can use (% style="color:blue" %)**AT+DEUI**(%%)to set Device ID267 +User can use **AT+DEUI** to set Device ID 338 338 339 - 340 340 **Example:** 341 341 342 342 AT+DEUI=868411056754138 ... ... @@ -343,20 +343,14 @@ 343 343 344 344 The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 345 345 346 - 347 - 348 348 === 2.4.2 Version Info === 349 349 350 - 351 351 Specify the software version: 0x64=100, means firmware version 1.00. 352 352 353 353 For example: 0x00 64 : this device is NSPH01 with firmware version 1.0.0. 354 354 355 - 356 - 357 357 === 2.4.3 Battery Info === 358 358 359 - 360 360 Check the battery voltage for NSPH01. 361 361 362 362 Ex1: 0x0B45 = 2885mV ... ... @@ -363,11 +363,8 @@ 363 363 364 364 Ex2: 0x0B49 = 2889mV 365 365 366 - 367 - 368 368 === 2.4.4 Signal Strength === 369 369 370 - 371 371 NB-IoT Network signal Strength. 372 372 373 373 **Ex1: 0x1d = 29** ... ... @@ -382,25 +382,18 @@ 382 382 383 383 **99** Not known or not detectable 384 384 385 - 386 - 387 387 === 2.4.5 Soil PH === 388 388 389 - 390 390 Get the PH content of the soil. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of PH in the soil. 391 391 392 -For example, if the data you get from the register is (% style="color:blue" %)**__0x05 0xDC__**(%%), the PH content in the soil is309 +For example, if the data you get from the register is **__0x05 0xDC__**, the PH content in the soil is 393 393 394 - (% style="color:blue" %)**0229(H) = 549(D) /100 = 5.49.**311 +**0229(H) = 549(D) /100 = 5.49.** 395 395 396 - 397 - 398 398 === 2.4.6 Soil Temperature === 399 399 315 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the soil is 400 400 401 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is (% style="color:blue" %)**__0x09 0xEC__**(%%), the temperature content in the soil is 402 - 403 - 404 404 **Example**: 405 405 406 406 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C ... ... @@ -407,62 +407,56 @@ 407 407 408 408 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C 409 409 410 - 411 - 412 412 === 2.4.7 Timestamp === 413 413 414 - 415 415 Time stamp : 0x6315537b =1662342011 416 416 417 417 Convert Unix timestamp to time 2022-9-5 9:40:11. 418 418 419 - 420 - 421 421 === 2.4.8 Digital Interrupt === 422 422 331 +Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NSPH01 will send a packet to the server. 423 423 424 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSPH01 will send a packet to the server. 425 - 426 426 The command is: 427 427 428 - (% style="color:blue" %)**AT+INTMOD=3 **(%%)~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**335 +**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 429 429 430 430 The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 431 431 339 +Example: 432 432 433 -**Example:** 434 - 435 435 0x(00): Normal uplink packet. 436 436 437 437 0x(01): Interrupt Uplink Packet. 438 438 439 - 440 - 441 441 === 2.4.9 +5V Output === 442 442 443 - 444 444 NSPH01 will enable +5V output before all sampling and disable the +5v after all sampling. 445 445 446 446 The 5V output time can be controlled by AT Command. 447 447 448 - (% style="color:blue" %)**AT+5VT=1000**351 +**AT+5VT=1000** 449 449 450 450 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** ** 451 451 452 452 453 - 454 454 == 2.5 Downlink Payload == 455 455 456 - 457 457 By default, NSPH01 prints the downlink payload to console port. 458 458 360 +(% style="text-align:center" %) 459 459 [[image:image-20220907154636-17.png]] 460 460 461 461 462 -(% style="color:blue" %)**Examples:** 463 463 464 -* (% style="color:#037691" %)** Set TDC** 465 465 366 + 367 + 368 + 369 +**Examples:** 370 + 371 +* **Set TDC** 372 + 466 466 If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 467 467 468 468 Payload: 01 00 00 1E TDC=30S ... ... @@ -469,19 +469,16 @@ 469 469 470 470 Payload: 01 00 00 3C TDC=60S 471 471 472 -* (% style="color:#037691" %)**379 +* **Reset** 473 473 474 474 If payload = 0x04FF, it will reset the NSPH01 475 475 476 -* (% style="color:#037691" %)**383 +* **INTMOD** 477 477 478 478 Downlink Payload: 06000003, Set AT+INTMOD=3 479 479 480 - 481 - 482 482 == 2.6 LED Indicator == 483 483 484 - 485 485 The NSPH01 has an internal LED which is to show the status of different state. 486 486 487 487 * When power on, NSPH01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) ... ... @@ -489,22 +489,16 @@ 489 489 * After NSPH01 join NB-IoT network. The LED will be ON for 3 seconds. 490 490 * For each uplink probe, LED will be on for 500ms. 491 491 492 -== 2.7 396 +== 2.7 Installation and Maintain == 493 493 398 +=== 2.7.1 Before measurement === 494 494 495 -=== 2.7.1 Before measurement === 496 - 497 - 498 498 If the NSPH01 has more than 7 days not use or just clean the pH probe. User should put the probe inside pure water for more than 24 hours for activation. If no put in water, user need to put inside soil for more than 24 hours to ensure the measurement accuracy. 499 499 402 +=== 2.7.2 Measurement === 500 500 404 +**Measurement the soil surface:** 501 501 502 -=== 2.7.2 Measurement === 503 - 504 - 505 -(% style="color:#037691" %)**Measurement the soil surface:** 506 - 507 - 508 508 [[image:image-20220907154700-18.png]] 509 509 510 510 Choose the proper measuring position. Split the surface soil according to the measured deep. ... ... @@ -515,18 +515,14 @@ 515 515 516 516 Put soil over the probe after insert. And start to measure. 517 517 416 +**Measurement inside soil:** 518 518 519 -(% style="color:#037691" %)**Measurement inside soil:** 520 - 521 521 Dig a hole with diameter > 20CM. 522 522 523 523 Insert the probe inside, method like measure the surface. 524 524 422 +=== 2.7.3 Maintain Probe === 525 525 526 - 527 -=== 2.7.3 Maintain Probe === 528 - 529 - 530 530 1. pH probe electrode is fragile and no strong. User must avoid strong force or hitting it. 531 531 1. After long time use (3~~ 6 months). The probe electrode needs to be clean; user can use high grade sandpaper to polish it or put in 5% hydrochloric acid for several minutes. After the metal probe looks like new, user can use pure water to wash it. 532 532 1. Probe reference electrode is also no strong, need to avoid strong force or hitting. ... ... @@ -534,13 +534,12 @@ 534 534 1. Avoid the probes to touch oily matter. Which will cause issue in accuracy. 535 535 1. The probe is IP68 can be put in water. 536 536 537 -== 2.8 431 +== 2.8 PH and Temperature alarm function == 538 538 433 +➢ AT Command: 539 539 540 - (% style="color:#037691" %)**➢ATCommand:**435 +AT+ PHALARM=min,max 541 541 542 -(% style="color:blue" %)**AT+ PHALARM=min,max** 543 - 544 544 ² When min=3, and max≠0, Alarm higher than max 545 545 546 546 ² When min≠0, and max=0, Alarm lower than min ... ... @@ -547,11 +547,10 @@ 547 547 548 548 ² When min≠0 and max≠0, Alarm higher than max or lower than min 549 549 443 +Example: 550 550 551 - (%style="color:blue"%)**Example:**445 +AT+ PHALARM =5,8 ~/~/ Alarm when PH lower than 5. 552 552 553 -AT+ PHALARM =5,8 ~/~/ Alarm when PH lower than 5. 554 - 555 555 AT+ TEMPALARM=min,max 556 556 557 557 ² When min=0, and max≠0, Alarm higher than max ... ... @@ -560,66 +560,50 @@ 560 560 561 561 ² When min≠0 and max≠0, Alarm higher than max or lower than min 562 562 455 +Example: 563 563 564 - (%style="color:blue"%)**Example:**457 +AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20. 565 565 566 -AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20. 567 567 460 +== 2.9 Set the number of data to be uploaded and the recording time == 568 568 462 +➢ AT Command: 569 569 570 -= = 2.9Setthe numberofdatatobeuploadedandhe recording time==464 +AT+TR=900 ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds) 571 571 466 +AT+NOUD=8 ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded. 572 572 573 -(% style="color:#037691" %)**➢ AT Command:** 574 574 575 -* (% style="color:blue" %)**AT+TR=900** (%%) ~/~/ The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds) 576 -* (% style="color:blue" %)**AT+NOUD=8** (%%) ~/~/ The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded. 469 +== 2.10 Read or Clear cached data == 577 577 578 - T hediagram below explains the relationship between TR, NOUD, andTDC more clearly**:**471 +➢ AT Command: 579 579 580 - [[image:image-20221009000933-1.png||height="750"width="1043"]]473 +AT+CDP ~/~/ Read cached data 581 581 582 - 583 - 584 -== 2.10 Read or Clear cached data == 585 - 586 - 587 -(% style="color:#037691" %)**➢ AT Command:** 588 - 589 -* (% style="color:blue" %)**AT+CDP** (%%) ~/~/ Read cached data 590 -* (% style="color:blue" %)**AT+CDP=0** (%%) ~/~/ Clear cached data 591 - 592 592 [[image:image-20220907154700-19.png]] 593 593 594 594 478 +AT+CDP=0 ~/~/ Clear cached data 595 595 596 -== 2.11 Calibration == 597 597 481 +== 2.11 Calibration == 598 598 599 599 User can do calibration for the probe. It is limited to use below pH buffer solution to calibrate: 4.00, 6.86, 9.18. When calibration, user need to clean the electrode and put the probe in the pH buffer solution to wait the value stable ( a new clean electrode might need max 24 hours to be stable). 600 600 601 601 After stable, user can use below command to calibrate. 602 602 603 - 604 604 [[image:image-20220907154700-20.png]] 605 605 606 - 607 - 608 608 == 2.12 Firmware Change Log == 609 609 491 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]] 610 610 611 - DownloadURL &FirmwareChange log: [[https:~~/~~/www.dropbox.com/sh/1tv07fro2pvjqj8/AAD-2wbfGfluTZfh38fQqdA_a?dl=0>>https://www.dropbox.com/sh/1tv07fro2pvjqj8/AAD-2wbfGfluTZfh38fQqdA_a?dl=0]]493 +Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]] 612 612 613 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 614 - 615 - 616 - 617 617 == 2.13 Battery Analysis == 618 618 619 - 620 620 === 2.13.1 Battery Type === 621 621 622 - 623 623 The NSPH01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 624 624 625 625 The battery is designed to last for several years depends on the actually use environment and update interval. ... ... @@ -632,18 +632,15 @@ 632 632 633 633 [[image:image-20220907154700-21.png]] 634 634 635 - 636 - 637 637 === 2.13.2 Power consumption Analyze === 638 638 639 - 640 640 Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 641 641 642 642 Instruction to use as below: 643 643 644 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]517 +**Step 1: **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 645 645 646 - (% style="color:blue" %)**Step 2: **(%%)Open it and choose519 +**Step 2: ** Open it and choose 647 647 648 648 * Product Model 649 649 * Uplink Interval ... ... @@ -651,45 +651,34 @@ 651 651 652 652 And the Life expectation in difference case will be shown on the right. 653 653 654 - 527 +(% style="text-align:center" %) 655 655 [[image:image-20220907154700-22.jpeg]] 656 656 657 657 658 658 659 - 660 660 === 2.13.3 Battery Note === 661 661 662 - 663 663 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 664 664 665 - 666 - 667 667 === 2.13.4 Replace the battery === 668 668 669 - 670 670 The default battery pack of NSPH01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 671 671 672 - 673 - 674 674 = 3. Access NB-IoT Module = 675 675 676 - 677 677 Users can directly access the AT command set of the NB-IoT module. 678 678 679 679 The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 680 680 681 - 546 +(% style="text-align:center" %) 682 682 [[image:image-20220907154700-23.png]] 683 683 684 684 685 685 686 - 687 687 = 4. Using the AT Commands = 688 688 689 - 690 690 == 4.1 Access AT Commands == 691 691 692 - 693 693 See this link for detail: [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]] 694 694 695 695 AT+<CMD>? : Help on <CMD> ... ... @@ -700,9 +700,8 @@ 700 700 701 701 AT+<CMD>=? : Get the value 702 702 565 +**General Commands** 703 703 704 -(% style="color:#037691" %)**General Commands** 705 - 706 706 AT : Attention 707 707 708 708 AT? : Short Help ... ... @@ -727,18 +727,13 @@ 727 727 728 728 AT+TR : Get or Set record time" 729 729 730 -AT+APN : Get or set the APN 731 731 732 -AT+FBAND : Get or Set whether to automatically modify the frequency band 733 - 734 -AT+DNSCFG : Get or Set DNS Server 735 - 736 -AT+GETSENSORVALUE : Returns the current sensor measurement 737 - 738 738 AT+NOUD : Get or Set the number of data to be uploaded 739 739 594 + 740 740 AT+CDP : Read or Clear cached data 741 741 597 + 742 742 AT+TEMPALARM : Get or Set alarm of temp 743 743 744 744 AT+PHALARM : Get or Set alarm of PH ... ... @@ -746,18 +746,16 @@ 746 746 AT+ PHCAL : calibrate PH value 747 747 748 748 749 - (% style="color:#037691" %)**COAP Management**605 +**COAP Management** 750 750 751 751 AT+URI : Resource parameters 752 752 609 +**UDP Management** 753 753 754 -(% style="color:#037691" %)**UDP Management** 755 - 756 756 AT+CFM : Upload confirmation mode (only valid for UDP) 757 757 613 +**MQTT Management** 758 758 759 -(% style="color:#037691" %)**MQTT Management** 760 - 761 761 AT+CLIENT : Get or Set MQTT client 762 762 763 763 AT+UNAME : Get or Set MQTT Username ... ... @@ -768,63 +768,42 @@ 768 768 769 769 AT+SUBTOPIC : Get or Set MQTT subscription topic 770 770 625 +**Information** 771 771 772 -(% style="color:#037691" %)**Information** 773 - 774 774 AT+FDR : Factory Data Reset 775 775 776 776 AT+PWORD : Serial Access Password 777 777 778 - 779 - 780 780 = 5. FAQ = 781 781 782 - 783 783 == 5.1 How to Upgrade Firmware == 784 784 785 - 786 786 User can upgrade the firmware for 1) bug fix, 2) new feature release. 787 787 788 788 Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 789 789 790 - (% style="color:red" %)**Notice, NSPH01 andLSPH01 share the same mother board. They use the same connection and method to update.**639 +**Notice, **NSPH01 **and **NSPH01 **share the same mother board. They use the same connection and method to update.** 791 791 792 - 793 - 794 794 == 5.2 Can I calibrate NSPH01 to different soil types? == 795 795 796 - 797 797 NSPH01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>url:https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 798 798 799 - 800 - 801 801 = 6. Trouble Shooting = 802 802 803 - 804 804 == 6.1 Connection problem when uploading firmware == 805 805 806 - 807 807 **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 808 808 809 - 810 - 811 811 == 6.2 AT Command input doesn't work == 812 812 653 +In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string. 813 813 814 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER** (%%)while press the send key, user need to add ENTER in their string. 815 - 816 - 817 - 818 818 = 7. Order Info = 819 819 820 - 821 821 Part Number**:** NSPH01 822 822 823 - 824 - 825 825 = 8. Packing Info = 826 826 827 - 828 828 **Package Includes**: 829 829 830 830 * NSPH01 NB-IoT pH Sensor x 1 ... ... @@ -832,15 +832,11 @@ 832 832 833 833 **Dimension and weight**: 834 834 835 -* Device Size: cm 836 -* Device Weight: g 837 -* Package Size / pcs : cm 838 -* Weight / pcs : g 668 +* Size: 195 x 125 x 55 mm 669 +* Weight: 420g 839 839 840 - 841 841 = 9. Support = 842 842 843 - 844 844 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 845 845 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 846 846
- image-20220912144017-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -149.6 KB - Content
- image-20220923101327-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -12.1 KB - Content
- image-20221009000933-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -282.9 KB - Content