Changes for page NSPH01-NB-IoT Soil pH Sensor User Manual
Last modified by Bei Jinggeng on 2024/03/30 17:53
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -7,32 +7,29 @@ 7 7 8 8 9 9 10 -= 1. 10 += 1. Introduction = 11 11 12 12 13 -== 1.1 13 +== 1.1 What is NSPH01 Soil pH Sensor == 14 14 15 15 16 -The Dragino NSPH01 is a (% style="color:blue" %) **NB-IoT soil pH sensor**(%%) for IoT of Agriculture. It is designed to measure the soil pH and soil temperature, so to send to the platform to analyze the soil acid or alkali level. The probe is IP68 waterproof.16 +The Dragino NSPH01 is a **(% style="color:blue" %)NB-IoT soil pH sensor**(%%) for IoT of Agriculture. It is designed to measure the soil pH and soil temperature, so to send to the platform to analyze the soil acid or alkali level. The probe is IP68 waterproof. 17 17 18 -NSPH01 probe is made by Solid AgCl reference electrode and Pure metal pH sensitive electrode. It can detect soil's** (% style="color:blue" %)pH (%%) **with high accuracy and stable value. The NSPH01 probe can be buried into soil for long time use.18 +NSPH01 probe is made by Solid AgCl reference electrode and Pure metal pH sensitive electrode. It can detect soil's** (% style="color:blue" %)pH **(%%)with high accuracy and stable value. The NSPH01 probe can be buried into soil for long time use. 19 19 20 20 NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 21 -\\NSPH01 supports different uplink methods include (% style="color:blue" %) **TCP,MQTT,UDP and CoAP **(%%)for different application requirement.22 -\\NSPH01 is powered by (% style="color:blue" %) **8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)23 -\\To use NSPH01, user needs to check if there is NB-IoT coverage in the installation area and with the bands NSPH01 supports. If the local operator supports it, user needs to get a (% style="color:blue" %) **NB-IoT SIM card**21 +\\NSPH01 supports different uplink methods include **(% style="color:blue" %)TCP,MQTT,UDP and CoAP **(%%)for different application requirement. 22 +\\NSPH01 is powered by **(% style="color:blue" %)8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 23 +\\To use NSPH01, user needs to check if there is NB-IoT coverage in the installation area and with the bands NSPH01 supports. If the local operator supports it, user needs to get a **(% style="color:blue" %)NB-IoT SIM card** (%%)from local operator and install NSPH01 to get NB-IoT network connection. 24 24 25 - 25 +(% style="text-align:center" %) 26 26 [[image:image-20220907153151-1.png]] 27 27 28 - 28 +(% style="text-align:center" %) 29 29 [[image:M_K`YF9`CAYAE\@}3T]FHT$9.png]] 30 30 31 +== 1.2 Features == 31 31 32 - 33 -== 1.2 Features == 34 - 35 - 36 36 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 37 37 * Monitor soil pH with temperature compensation. 38 38 * Monitor soil temperature ... ... @@ -48,19 +48,15 @@ 48 48 * Micro SIM card slot 49 49 * 8500mAh Battery for long term use 50 50 51 - 52 - 53 53 == 1.3 Specification == 54 54 50 +**Common DC Characteristics:** 55 55 56 -(% style="color:#037691" %)**Common DC Characteristics:** 57 - 58 58 * Supply Voltage: 2.1v ~~ 3.6v 59 59 * Operating Temperature: -40 ~~ 85°C 60 60 55 +**NB-IoT Spec:** 61 61 62 -(% style="color:#037691" %)**NB-IoT Spec:** 63 - 64 64 * - B1 @H-FDD: 2100MHz 65 65 * - B3 @H-FDD: 1800MHz 66 66 * - B8 @H-FDD: 900MHz ... ... @@ -68,13 +68,10 @@ 68 68 * - B20 @H-FDD: 800MHz 69 69 * - B28 @H-FDD: 700MHz 70 70 64 +== 1.4 Probe Specification == 71 71 66 +**Soil pH:** 72 72 73 -== 1.4 Probe Specification == 74 - 75 - 76 -(% style="color:#037691" %)**Soil pH:** 77 - 78 78 * Range: 3 ~~ 10 pH 79 79 * Resolution: 0.01 pH 80 80 * Accuracy: ±2% under (0~~50 ℃, Accuracy will poor under 0 due to frozen) ... ... @@ -82,9 +82,8 @@ 82 82 * IP68 Protection 83 83 * Length: 3.5 meters 84 84 75 +**Soil Temperature:** 85 85 86 -(% style="color:#037691" %)**Soil Temperature:** 87 - 88 88 * Range -40℃~85℃ 89 89 * Resolution: 0.1℃ 90 90 * Accuracy: <±0.5℃(-10℃~40℃),<±0.8℃ (others) ... ... @@ -91,43 +91,31 @@ 91 91 * IP68 Protection 92 92 * Length: 3.5 meters 93 93 94 - 95 - 96 96 == 1.5 Applications == 97 97 98 98 * Smart Agriculture 99 99 100 - 101 - 102 - 103 103 == 1.6 Pin mapping and power on == 104 104 105 - 89 +(% style="text-align:center" %) 106 106 [[image:image-20220907153300-2.png]] 107 107 108 108 109 - 110 110 = 2. Use NSPH01 to communicate with IoT Server = 111 111 112 - 113 113 == 2.1 How it works == 114 114 115 - 116 116 The NSPH01 is equipped with a NB-IoT module, the pre-loaded firmware in NSPH01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSPH01. 117 117 118 118 The diagram below shows the working flow in default firmware of NSPH01: 119 119 120 - 101 +(% style="text-align:center" %) 121 121 [[image:image-20220907153416-3.png]] 122 122 123 - 124 - 125 125 == 2.2 Configure the NSPH01 == 126 126 127 - 128 128 === 2.2.1 Test Requirement === 129 129 130 - 131 131 To use NSPH01 in the field, make sure meet below requirements: 132 132 133 133 * Your local operator has already distributed a NB-IoT Network there. ... ... @@ -136,20 +136,17 @@ 136 136 137 137 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSPH01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server. 138 138 139 - 116 +(% style="text-align:center" %) 140 140 [[image:image-20220907153445-4.png]] 141 141 142 142 143 - 144 144 === 2.2.2 Insert SIM card === 145 145 146 - 147 147 User need to take out the NB-IoT module and insert the SIM card like below. ((% style="color:red" %) Pay attention to the direction(%%)) 148 148 124 +(% style="text-align:center" %) 149 149 [[image:image-20220907153505-5.png]] 150 150 151 - 152 - 153 153 === 2.2.3 Connect USB – TTL to NSPH01 to configure it === 154 154 155 155 User need to configure NSPH01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NSPH01 support AT Commands, user can use a USB to TTL adapter to connect to NSPH01 and use AT Commands to configure it, as below.