Changes for page NSPH01-NB-IoT Soil pH Sensor User Manual
Last modified by Bei Jinggeng on 2024/03/30 17:53
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 3 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Xiaoling - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:)YK]Y_LZJIO]J2~~VA}OQJM2.png]] 2 +[[image:)YK]Y_LZJIO]J2~~VA}OQJM2.png||height="442" width="410"]] 3 3 4 4 **Table of Contents:** 5 5 ... ... @@ -7,27 +7,35 @@ 7 7 8 8 9 9 10 -= 1. Introduction = 10 += 1. Introduction = 11 11 12 -== 1.1 What is NSPH01 Soil pH Sensor == 13 13 14 - TheDraginoNSPH01is a **NB-IoT soil pHsensor**for IoT of Agriculture. It is designed to measure the soil pH and soil temperature, so to send to the platform to analyze the soil acid or alkali level. The probe is IP68 waterproof.13 +== 1.1 What is NSPH01 Soil pH Sensor == 15 15 16 -NSPH01 probe is made by Solid AgCl reference electrode and Pure metal pH sensitive electrode. It can detect soil's** pH **with high accuracy and stable value. The NSPH01 probe can be buried into soil for long time use. 17 17 16 +The Dragino NSPH01 is a (% style="color:blue" %)**NB-IoT soil pH sensor**(%%) for IoT of Agriculture. It is designed to measure the soil pH and soil temperature, so to send to the platform to analyze the soil acid or alkali level. The probe is IP68 waterproof. 17 + 18 +NSPH01 probe is made by Solid AgCl reference electrode and Pure metal pH sensitive electrode. It can detect soil's** (% style="color:blue" %)pH (%%)**with high accuracy and stable value. The NSPH01 probe can be buried into soil for long time use. 19 + 18 18 NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 19 -\\NSPH01 supports different uplink methods include **TCP,MQTT,UDP and CoAP **for different application requirement. 20 -\\NSPH01 is powered by **8500mAh Li-SOCI2 battery**, It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 21 -\\To use NSPH01, user needs to check if there is NB-IoT coverage in the installation area and with the bands NSPH01 supports. If the local operator supports it, user needs to get a **NB-IoT SIM card** from local operator and install NSPH01 to get NB-IoT network connection. 22 22 23 -(% style="text-align:center" %) 22 +NSPH01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP **(%%)for different application requirement. 23 + 24 +NSPH01 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 25 + 26 +To use NSPH01, user needs to check if there is NB-IoT coverage in the installation area and with the bands NSPH01 supports. If the local operator supports it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card** (%%)from local operator and install NSPH01 to get NB-IoT network connection. 27 + 28 + 24 24 [[image:image-20220907153151-1.png]] 25 25 26 - (% style="text-align:center" %)31 + 27 27 [[image:M_K`YF9`CAYAE\@}3T]FHT$9.png]] 28 28 29 -== 1.2 Features == 30 30 35 + 36 +== 1.2 Features == 37 + 38 + 31 31 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 32 32 * Monitor soil pH with temperature compensation. 33 33 * Monitor soil temperature ... ... @@ -43,14 +43,16 @@ 43 43 * Micro SIM card slot 44 44 * 8500mAh Battery for long term use 45 45 54 + 46 46 == 1.3 Specification == 47 47 48 -**Common DC Characteristics:** 49 49 58 +(% style="color:#037691" %)**Common DC Characteristics:** 59 + 50 50 * Supply Voltage: 2.1v ~~ 3.6v 51 51 * Operating Temperature: -40 ~~ 85°C 52 52 53 -**NB-IoT Spec:** 63 +(% style="color:#037691" %)**NB-IoT Spec:** 54 54 55 55 * - B1 @H-FDD: 2100MHz 56 56 * - B3 @H-FDD: 1800MHz ... ... @@ -59,10 +59,12 @@ 59 59 * - B20 @H-FDD: 800MHz 60 60 * - B28 @H-FDD: 700MHz 61 61 62 -== 1.4 Probe Specification == 63 63 64 - **SoilpH:**73 +== 1.4 Probe Specification == 65 65 75 + 76 +(% style="color:#037691" %)**Soil pH:** 77 + 66 66 * Range: 3 ~~ 10 pH 67 67 * Resolution: 0.01 pH 68 68 * Accuracy: ±2% under (0~~50 ℃, Accuracy will poor under 0 due to frozen) ... ... @@ -70,7 +70,7 @@ 70 70 * IP68 Protection 71 71 * Length: 3.5 meters 72 72 73 -**Soil Temperature:** 85 +(% style="color:#037691" %)**Soil Temperature:** 74 74 75 75 * Range -40℃~85℃ 76 76 * Resolution: 0.1℃ ... ... @@ -78,31 +78,41 @@ 78 78 * IP68 Protection 79 79 * Length: 3.5 meters 80 80 81 -== 1.5 Applications == 82 82 94 +== 1.5 Applications == 95 + 96 + 83 83 * Smart Agriculture 84 84 85 -== 1.6 Pin mapping and power on == 86 86 87 -(% style="text-align:center" %) 100 +== 1.6 Pin mapping and power on == 101 + 102 + 88 88 [[image:image-20220907153300-2.png]] 89 89 90 90 106 + 91 91 = 2. Use NSPH01 to communicate with IoT Server = 92 92 109 + 93 93 == 2.1 How it works == 94 94 112 + 95 95 The NSPH01 is equipped with a NB-IoT module, the pre-loaded firmware in NSPH01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSPH01. 96 96 97 97 The diagram below shows the working flow in default firmware of NSPH01: 98 98 99 - (% style="text-align:center" %)117 + 100 100 [[image:image-20220907153416-3.png]] 101 101 120 + 121 + 102 102 == 2.2 Configure the NSPH01 == 103 103 124 + 104 104 === 2.2.1 Test Requirement === 105 105 127 + 106 106 To use NSPH01 in the field, make sure meet below requirements: 107 107 108 108 * Your local operator has already distributed a NB-IoT Network there. ... ... @@ -109,165 +109,215 @@ 109 109 * The local NB-IoT network used the band that NSPH01 supports. 110 110 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 111 111 112 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSPH01 will use 134 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSPH01 will use** CoAP(120.24.4.116:5683) **or raw **UDP(120.24.4.116:5601)** or **MQTT(120.24.4.116:1883)**or **TCP(120.24.4.116:5600)**protocol to send data to the test server. 113 113 114 - (% style="text-align:center" %)136 + 115 115 [[image:image-20220907153445-4.png]] 116 116 117 117 140 + 118 118 === 2.2.2 Insert SIM card === 119 119 143 + 120 120 User need to take out the NB-IoT module and insert the SIM card like below. ((% style="color:red" %) Pay attention to the direction(%%)) 121 121 122 - (% style="text-align:center" %)146 + 123 123 [[image:image-20220907153505-5.png]] 124 124 149 + 150 + 125 125 === 2.2.3 Connect USB – TTL to NSPH01 to configure it === 126 126 127 -User need to configure NSPH01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NSPH01 support AT Commands, user can use a USB to TTL adapter to connect to NSPH01 and use AT Commands to configure it, as below. 128 128 129 -**Connect ion:**154 +User need to configure NSPH01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic**(%%) to define where and how-to uplink packets. NSPH01 support AT Commands, user can use a USB to TTL adapter to connect to NSPH01 and use AT Commands to configure it, as below. 130 130 131 - USB TTL GND <~-~-~-~-> GND 132 132 133 - USBTTL TXD <~-~-~-~-> UART_RXD157 +(% style="color:blue" %)**Connection:** 134 134 135 - USB TTL RXD <~-~-~-~->UART_TXD159 +**~ (% style="background-color:yellow" %) USB TTL GND <~-~-~-~-> GND(%%)** 136 136 161 +**~ (% style="background-color:yellow" %) USB TTL TXD <~-~-~-~-> UART_RXD(%%)** 162 + 163 +**~ (% style="background-color:yellow" %) USB TTL RXD <~-~-~-~-> UART_TXD(%%)** 164 + 165 + 137 137 In the PC, use below serial tool settings: 138 138 139 -* Baud: **9600** 140 -* Data bits:** 8** 141 -* Stop bits: **1** 142 -* Parity: **None** 143 -* Flow Control: **None** 168 +* Baud: (% style="color:green" %)**9600** 169 +* Data bits:** (% style="color:green" %)8(%%)** 170 +* Stop bits: (% style="color:green" %)**1** 171 +* Parity: (% style="color:green" %)**None** 172 +* Flow Control: (% style="color:green" %)**None** 144 144 145 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSPH01. NSPH01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input. 174 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSPH01. NSPH01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 146 146 147 -(% style="text-align:center" %) 148 -[[image:image-20220907153529-6.png]] 149 149 150 - **Note: the valid AT Commands can befound at:**[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]177 +[[image:image-20220912144017-1.png]] 151 151 179 + 180 +(% style="color:red" %)**Note: the valid AT Commands can be found at:**(%%)** **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]] 181 + 182 + 183 + 152 152 === 2.2.4 Use CoAP protocol to uplink data === 153 153 154 -**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 155 155 156 -** Usebelowcommands:**187 +(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one:**(%%)** **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 157 157 158 -* **AT+PRO=1** ~/~/ Set to use CoAP protocol to uplink 159 -* **AT+SERVADDR=120.24.4.116,5683 ** ~/~/ to set CoAP server address and port 160 -* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path 161 161 190 +(% style="color:blue" %)**Use below commands:** 191 + 192 +* (% style="color:#037691" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 193 +* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%) ~/~/ to set CoAP server address and port 194 +* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/ Set COAP resource path 195 + 162 162 For parameter description, please refer to AT command set 163 163 164 - (% style="text-align:center" %)198 + 165 165 [[image:image-20220907153551-7.png||height="502" width="740"]] 166 166 167 -After configure the server address and **reset the device** (via AT+ATZ ), NSPH01 will start to uplink sensor values to CoAP server. 168 168 169 -(% style="text-align:center" %) 202 +After configure the server address and (% style="color:green" %)**reset the device (via AT+ATZ )**(%%), NSPH01 will start to uplink sensor values to CoAP server. 203 + 204 + 170 170 [[image:image-20220907153612-8.png||height="529" width="729"]] 171 171 172 172 208 + 173 173 === 2.2.5 Use UDP protocol to uplink data(Default protocol) === 174 174 211 + 175 175 This feature is supported since firmware version v1.0.1 176 176 177 -* **AT+PRO=2 ** ~/~/ Set to use UDP protocol to uplink 178 -* **AT+SERVADDR=120.24.4.116,5601 ** ~/~/ to set UDP server address and port 179 -* **AT+CFM=1 ** ~/~/If the server does not respond, this command is unnecessar 214 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 215 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 216 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/ If the server does not respond, this command is unnecessar 180 180 181 -(% style="text-align:center" %) 182 182 [[image:image-20220907153643-9.png||height="401" width="734"]] 183 183 184 - (% style="text-align:center" %)220 + 185 185 [[image:image-20220907153703-10.png||height="309" width="738"]] 186 186 187 187 224 + 188 188 === 2.2.6 Use MQTT protocol to uplink data === 189 189 227 + 190 190 This feature is supported since firmware version v110 191 191 192 -* **AT+PRO=3 ** ~/~/Set to use MQTT protocol to uplink 193 -* **AT+SERVADDR=120.24.4.116,1883 ** ~/~/Set MQTT server address and port 194 -* **AT+CLIENT=CLIENT ** ~/~/Set up the CLIENT of MQTT 195 -* **AT+UNAME=UNAME **~/~/Set the username of MQTT 196 -* **AT+PWD=PWD **~/~/Set the password of MQTT 197 -* **AT+PUBTOPIC=NSE01_PUB **~/~/Set the sending topic of MQTT 198 -* **AT+SUBTOPIC=NSE01_SUB ** ~/~/Set the subscription topic of MQTT 230 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/ Set to use MQTT protocol to uplink 231 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/ Set MQTT server address and port 232 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%) ~/~/ Set up the CLIENT of MQTT 233 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/ Set the username of MQTT 234 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/ Set the password of MQTT 235 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/ Set the sending topic of MQTT 236 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB ** (%%) ~/~/ Set the subscription topic of MQTT 199 199 200 -(% style="text-align:center" %) 201 201 [[image:image-20220907153739-11.png||height="491" width="764"]] 202 202 203 - (% style="text-align:center" %)240 + 204 204 [[image:image-20220907153751-12.png||height="555" width="769"]] 205 205 243 + 206 206 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 207 207 246 + 247 + 248 + 208 208 === 2.2.7 Use TCP protocol to uplink data === 209 209 251 + 210 210 This feature is supported since firmware version v110 211 211 212 -* **AT+PRO=4 ** ~/~/ Set to use TCP protocol to uplink 213 -* **AT+SERVADDR=120.24.4.116,5600 ** ~/~/ to set TCP server address and port 254 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 255 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 ** (%%) ~/~/ to set TCP server address and port 214 214 215 -(% style="text-align:center" %) 216 216 [[image:image-20220907153818-13.png||height="486" width="668"]] 217 217 218 - (% style="text-align:center" %)259 + 219 219 [[image:image-20220907153827-14.png||height="236" width="684"]] 220 220 262 + 263 + 221 221 === 2.2.8 Change Update Interval === 222 222 266 + 223 223 Users can use the below command to change the **uplink interval**. 224 224 225 -* **AT+TDC=7200 ** ~/~/ Set Update Interval to 7200s (2 hour) 269 +* (% style="color:blue" %)**AT+TDC=7200 ** (%%) ~/~/ Set Update Interval to 7200s (2 hour) 226 226 271 +(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hours. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).** 227 227 228 -**NOTE: By default, the device will send an uplink message every 2 hours. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).** 229 229 230 230 231 231 == 2.3 Uplink Payload == 232 232 277 + 233 233 In this mode, uplink payload includes 87 bytes in total by default. 234 234 235 235 Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded. 236 236 237 -|**Size(bytes)**|**8**|**2**|**2**|1|1|1|2|2|4|2|2|4 238 -|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Soil PH|Soil Temperature|Time stamp|Soil Temperature|Soil PH|Time stamp ..... 282 +(% border="1.5" style="background-color:#ffffcc; color:green; width:520px" %) 283 +|=(% scope="row" style="width: 50px;" %)**Size(bytes)**|(% style="width:40px" %)**8**|(% style="width:20px" %)**2**|(% style="width:25px" %)**2**|(% style="width:60px" %)**1**|(% style="width:20px" %)**1**|(% style="width:40px" %)**1**|(% style="width:40px" %)**2**|(% style="width:50px" %)**2**|(% style="width:50px" %)**4**|(% style="width:50px" %)**2**|(% style="width:30px" %)**2**|(% style="width:40px" %)**4** 284 +|=(% style="width: 96px;" %)**Value**|(% style="width:83px" %)Device ID|(% style="width:44px" %)Ver|(% style="width:42px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:57px" %)MOD|(% style="width:80px" %)Interrupt|(% style="width:69px" %)Soil PH|(% style="width:134px" %)Soil Temperature|(% style="width:98px" %)Time stamp|(% style="width:134px" %)Soil Temperature|(% style="width:68px" %)Soil PH|(% style="width:125px" %)Time stamp ..... 239 239 240 240 If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSPH01 uplink data. 241 241 242 -(% style="text-align:center" %) 243 243 [[image:image-20220907153902-15.png||height="581" width="804"]] 244 244 245 245 291 +((( 246 246 The payload is ASCII string, representative same HEX: 293 +))) 247 247 248 -0xf86841105675413800640c781701000225010b6315537b010b0226631550fb010e022663154d7701110225631549f1011502246315466b01190223631542e5011d022163153f62011e022163153bde011e022163153859 where: 295 +((( 296 + 297 +))) 249 249 250 -* Device ID: 0xf868411056754138 = f868411056754138 251 -* Version: 0x0064=100=1.0.0 299 +((( 300 +**0x (% style="color:red" %)__f868411056754138__ (% style="color:blue" %)__0064 __ (% style="color:green" %)__0c78__ (% style="color:#00b0f0" %)__17__ (% style="color:#7030a0" %)__01__ (% style="color:#d60093" %)__00__ (% style="color:#a14d07" %)__0225 __ (% style="color:#0020b0" %) __010b__ (% style="color:#420042" %)__6315537b__ (% style="color:#663300" %)//__010b0226631550fb__ __010e022663154d77 01110225631549f1 011502246315466b 01190223631542e5 011d022163153f62 011e022163153bde 011e022163153859__//(%%)** 301 +))) 252 252 253 -* BAT: 0x0c78 = 3192 mV = 3.192V 254 -* Singal: 0x17 = 23 255 -* Mod: 0x01 = 1 256 -* Interrupt: 0x00= 0 257 -* Soil PH: 0x0225= 549 = 5.49 258 -* Soil Temperature:0x010B =267=26.7 °C 259 -* Time stamp : 0x6315537b =1662342011 260 -* Soil Temperature,Soil PH,Time stamp : 010b0226631550fb 261 -* 8 sets of recorded data: Temperature,Soil PH,Time stamp : 010e022663154d77,....... 303 +((( 304 + 262 262 306 +**where:** 307 +))) 308 + 309 +* (% style="color:#037691" %)**Device ID:**(%%)** **0xf868411056754138 = f868411056754138 310 + 311 +* (% style="color:#037691" %)**Version:** (%%) 0x0064=100=1.0.0 312 + 313 +* (% style="color:#037691" %)**BAT:** (%%) 0x0c78 = 3192 mV = 3.192V 314 + 315 +* (% style="color:#037691" %)**Singal:** (%%)0x17 = 23 316 + 317 +* (% style="color:#037691" %)**Mod:** (%%) 0x01 = 1 318 + 319 +* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0 320 + 321 +* (% style="color:#037691" %)**Soil PH:** (%%) 0x0225= 549 = 5.49 322 + 323 +* (% style="color:#037691" %)**Soil Temperature:**(%%) 0x010b =267=26.7 °C 324 + 325 +* (% style="color:#037691" %)**Time stamp :** (%%) 0x6315537b =1662342011 ([[Unix Epoch Time>>url:http://www.epochconverter.com/]]) 326 + 327 +* (% style="color:#037691" %)**Soil Temperature,Soil PH,Time stamp : **(%%) 010b0226631550fb 328 + 329 +* (% style="color:#037691" %)**8 sets of recorded data:**(%%) Temperature,Soil PH,Time stamp : 010e022663154d77,....... 330 + 331 + 263 263 == 2.4 Payload Explanation and Sensor Interface == 264 264 334 + 265 265 === 2.4.1 Device ID === 266 266 337 + 267 267 By default, the Device ID equal to the last 15 bits of IMEI. 268 268 269 -User can use **AT+DEUI** to set Device ID 340 +User can use (% style="color:blue" %)**AT+DEUI** (%%)to set Device ID 270 270 342 + 271 271 **Example:** 272 272 273 273 AT+DEUI=868411056754138 ... ... @@ -274,14 +274,20 @@ 274 274 275 275 The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 276 276 349 + 350 + 277 277 === 2.4.2 Version Info === 278 278 353 + 279 279 Specify the software version: 0x64=100, means firmware version 1.00. 280 280 281 281 For example: 0x00 64 : this device is NSPH01 with firmware version 1.0.0. 282 282 358 + 359 + 283 283 === 2.4.3 Battery Info === 284 284 362 + 285 285 Check the battery voltage for NSPH01. 286 286 287 287 Ex1: 0x0B45 = 2885mV ... ... @@ -288,8 +288,11 @@ 288 288 289 289 Ex2: 0x0B49 = 2889mV 290 290 369 + 370 + 291 291 === 2.4.4 Signal Strength === 292 292 373 + 293 293 NB-IoT Network signal Strength. 294 294 295 295 **Ex1: 0x1d = 29** ... ... @@ -304,18 +304,25 @@ 304 304 305 305 **99** Not known or not detectable 306 306 388 + 389 + 307 307 === 2.4.5 Soil PH === 308 308 392 + 309 309 Get the PH content of the soil. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of PH in the soil. 310 310 311 -For example, if the data you get from the register is **__0x05 0xDC__**, the PH content in the soil is 395 +For example, if the data you get from the register is (% style="color:blue" %)**__0x05 0xDC__**(%%), the PH content in the soil is 312 312 313 -**0229(H) = 549(D) /100 = 5.49.** 397 +(% style="color:blue" %)**0229(H) = 549(D) /100 = 5.49.** 314 314 399 + 400 + 315 315 === 2.4.6 Soil Temperature === 316 316 317 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the soil is 318 318 404 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is (% style="color:blue" %)**__0x09 0xEC__**(%%), the temperature content in the soil is 405 + 406 + 319 319 **Example**: 320 320 321 321 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C ... ... @@ -322,56 +322,62 @@ 322 322 323 323 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C 324 324 413 + 414 + 325 325 === 2.4.7 Timestamp === 326 326 417 + 327 327 Time stamp : 0x6315537b =1662342011 328 328 329 329 Convert Unix timestamp to time 2022-9-5 9:40:11. 330 330 422 + 423 + 331 331 === 2.4.8 Digital Interrupt === 332 332 333 -Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NSPH01 will send a packet to the server. 334 334 427 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSPH01 will send a packet to the server. 428 + 335 335 The command is: 336 336 337 -**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 431 +(% style="color:blue" %)**AT+INTMOD=3 ** (%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 338 338 339 339 The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 340 340 341 -Example: 342 342 436 +**Example:** 437 + 343 343 0x(00): Normal uplink packet. 344 344 345 345 0x(01): Interrupt Uplink Packet. 346 346 442 + 443 + 347 347 === 2.4.9 +5V Output === 348 348 446 + 349 349 NSPH01 will enable +5V output before all sampling and disable the +5v after all sampling. 350 350 351 351 The 5V output time can be controlled by AT Command. 352 352 353 -**AT+5VT=1000** 451 +(% style="color:blue" %)**AT+5VT=1000** 354 354 355 355 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** ** 356 356 357 357 456 + 358 358 == 2.5 Downlink Payload == 359 359 459 + 360 360 By default, NSPH01 prints the downlink payload to console port. 361 361 362 -(% style="text-align:center" %) 363 363 [[image:image-20220907154636-17.png]] 364 364 365 365 465 +(% style="color:blue" %)**Examples:** 366 366 467 +* (% style="color:#037691" %)** Set TDC** 367 367 368 - 369 - 370 - 371 -**Examples:** 372 - 373 -* **Set TDC** 374 - 375 375 If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 376 376 377 377 Payload: 01 00 00 1E TDC=30S ... ... @@ -378,16 +378,19 @@ 378 378 379 379 Payload: 01 00 00 3C TDC=60S 380 380 381 -* **Reset** 475 +* (% style="color:#037691" %)** Reset** 382 382 383 383 If payload = 0x04FF, it will reset the NSPH01 384 384 385 -* **INTMOD** 479 +* (% style="color:#037691" %)** INTMOD** 386 386 387 387 Downlink Payload: 06000003, Set AT+INTMOD=3 388 388 483 + 484 + 389 389 == 2.6 LED Indicator == 390 390 487 + 391 391 The NSPH01 has an internal LED which is to show the status of different state. 392 392 393 393 * When power on, NSPH01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) ... ... @@ -395,16 +395,22 @@ 395 395 * After NSPH01 join NB-IoT network. The LED will be ON for 3 seconds. 396 396 * For each uplink probe, LED will be on for 500ms. 397 397 398 -== 2.7 Installation and Maintain == 495 +== 2.7 Installation and Maintain == 399 399 400 -=== 2.7.1 Before measurement === 401 401 498 +=== 2.7.1 Before measurement === 499 + 500 + 402 402 If the NSPH01 has more than 7 days not use or just clean the pH probe. User should put the probe inside pure water for more than 24 hours for activation. If no put in water, user need to put inside soil for more than 24 hours to ensure the measurement accuracy. 403 403 404 -=== 2.7.2 Measurement === 405 405 406 -**Measurement the soil surface:** 407 407 505 +=== 2.7.2 Measurement === 506 + 507 + 508 +(% style="color:#037691" %)**Measurement the soil surface:** 509 + 510 + 408 408 [[image:image-20220907154700-18.png]] 409 409 410 410 Choose the proper measuring position. Split the surface soil according to the measured deep. ... ... @@ -415,14 +415,18 @@ 415 415 416 416 Put soil over the probe after insert. And start to measure. 417 417 418 -**Measurement inside soil:** 419 419 522 +(% style="color:#037691" %)**Measurement inside soil:** 523 + 420 420 Dig a hole with diameter > 20CM. 421 421 422 422 Insert the probe inside, method like measure the surface. 423 423 424 -=== 2.7.3 Maintain Probe === 425 425 529 + 530 +=== 2.7.3 Maintain Probe === 531 + 532 + 426 426 1. pH probe electrode is fragile and no strong. User must avoid strong force or hitting it. 427 427 1. After long time use (3~~ 6 months). The probe electrode needs to be clean; user can use high grade sandpaper to polish it or put in 5% hydrochloric acid for several minutes. After the metal probe looks like new, user can use pure water to wash it. 428 428 1. Probe reference electrode is also no strong, need to avoid strong force or hitting. ... ... @@ -430,12 +430,13 @@ 430 430 1. Avoid the probes to touch oily matter. Which will cause issue in accuracy. 431 431 1. The probe is IP68 can be put in water. 432 432 433 -== 2.8 PH and Temperature alarm function == 540 +== 2.8 PH and Temperature alarm function == 434 434 435 -➢ AT Command: 436 436 437 -AT +PHALARM=min,max543 +(% style="color:#037691" %)**➢ AT Command:** 438 438 545 +(% style="color:blue" %)**AT+ PHALARM=min,max** 546 + 439 439 ² When min=3, and max≠0, Alarm higher than max 440 440 441 441 ² When min≠0, and max=0, Alarm lower than min ... ... @@ -442,10 +442,11 @@ 442 442 443 443 ² When min≠0 and max≠0, Alarm higher than max or lower than min 444 444 445 -Example: 446 446 447 - AT+PHALARM =5,8 ~/~/ Alarm when PHlowerthan 5.554 +(% style="color:blue" %)**Example:** 448 448 556 +AT+ PHALARM =5,8 ~/~/ Alarm when PH lower than 5. 557 + 449 449 AT+ TEMPALARM=min,max 450 450 451 451 ² When min=0, and max≠0, Alarm higher than max ... ... @@ -454,50 +454,66 @@ 454 454 455 455 ² When min≠0 and max≠0, Alarm higher than max or lower than min 456 456 457 -Example: 458 458 459 - AT+TEMPALARM=20,30 ~/~/ Alarm whentemperaturelower than 20.567 +(% style="color:blue" %)**Example:** 460 460 569 +AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20. 461 461 462 -== 2.9 Set the number of data to be uploaded and the recording time == 463 463 464 -➢ AT Command: 465 465 466 - AT+TR=900~/~/Theunitis seconds, andthedefaultistorecordataonceevery900 seconds.( The minimum can beset to 180 seconds)573 +== 2.9 Set the number of data to be uploaded and the recording time == 467 467 468 -AT+NOUD=8 ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded. 469 469 576 +(% style="color:#037691" %)**➢ AT Command:** 470 470 471 -== 2.10 Read or Clear cached data == 578 +* (% style="color:blue" %)**AT+TR=900** (%%) ~/~/ The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds) 579 +* (% style="color:blue" %)**AT+NOUD=8** (%%) ~/~/ The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded. 472 472 473 - ➢ATCommand:581 + The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:** 474 474 475 - AT+CDP ~/~/ Read cacheddata583 +[[image:image-20221009000933-1.png||height="750" width="1043"]] 476 476 585 + 586 + 587 +== 2.10 Read or Clear cached data == 588 + 589 + 590 +(% style="color:#037691" %)**➢ AT Command:** 591 + 592 +* (% style="color:blue" %)**AT+CDP** (%%) ~/~/ Read cached data 593 +* (% style="color:blue" %)**AT+CDP=0** (%%) ~/~/ Clear cached data 594 + 477 477 [[image:image-20220907154700-19.png]] 478 478 479 479 480 -AT+CDP=0 ~/~/ Clear cached data 481 481 599 +== 2.11 Calibration == 482 482 483 -== 2.11 Calibration == 484 484 485 485 User can do calibration for the probe. It is limited to use below pH buffer solution to calibrate: 4.00, 6.86, 9.18. When calibration, user need to clean the electrode and put the probe in the pH buffer solution to wait the value stable ( a new clean electrode might need max 24 hours to be stable). 486 486 487 487 After stable, user can use below command to calibrate. 488 488 606 + 489 489 [[image:image-20220907154700-20.png]] 490 490 609 + 610 + 491 491 == 2.12 Firmware Change Log == 492 492 493 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]] 494 494 495 - Upgrade Instruction: [[UpgradeFirmware>>path:#H5.1200BHowtoUpgradeFirmware]]614 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1tv07fro2pvjqj8/AAD-2wbfGfluTZfh38fQqdA_a?dl=0>>https://www.dropbox.com/sh/1tv07fro2pvjqj8/AAD-2wbfGfluTZfh38fQqdA_a?dl=0]] 496 496 616 +Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 617 + 618 + 619 + 497 497 == 2.13 Battery Analysis == 498 498 622 + 499 499 === 2.13.1 Battery Type === 500 500 625 + 501 501 The NSPH01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 502 502 503 503 The battery is designed to last for several years depends on the actually use environment and update interval. ... ... @@ -510,15 +510,18 @@ 510 510 511 511 [[image:image-20220907154700-21.png]] 512 512 638 + 639 + 513 513 === 2.13.2 Power consumption Analyze === 514 514 642 + 515 515 Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 516 516 517 517 Instruction to use as below: 518 518 519 -**Step 1: **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 647 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 520 520 521 -**Step 2: ** Open it and choose 649 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 522 522 523 523 * Product Model 524 524 * Uplink Interval ... ... @@ -526,34 +526,45 @@ 526 526 527 527 And the Life expectation in difference case will be shown on the right. 528 528 529 - (% style="text-align:center" %)657 + 530 530 [[image:image-20220907154700-22.jpeg]] 531 531 532 532 533 533 662 + 534 534 === 2.13.3 Battery Note === 535 535 665 + 536 536 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 537 537 668 + 669 + 538 538 === 2.13.4 Replace the battery === 539 539 672 + 540 540 The default battery pack of NSPH01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 541 541 675 + 676 + 542 542 = 3. Access NB-IoT Module = 543 543 679 + 544 544 Users can directly access the AT command set of the NB-IoT module. 545 545 546 546 The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 547 547 548 - (% style="text-align:center" %)684 + 549 549 [[image:image-20220907154700-23.png]] 550 550 551 551 552 552 689 + 553 553 = 4. Using the AT Commands = 554 554 692 + 555 555 == 4.1 Access AT Commands == 556 556 695 + 557 557 See this link for detail: [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]] 558 558 559 559 AT+<CMD>? : Help on <CMD> ... ... @@ -564,8 +564,9 @@ 564 564 565 565 AT+<CMD>=? : Get the value 566 566 567 -**General Commands** 568 568 707 +(% style="color:#037691" %)**General Commands** 708 + 569 569 AT : Attention 570 570 571 571 AT? : Short Help ... ... @@ -590,13 +590,18 @@ 590 590 591 591 AT+TR : Get or Set record time" 592 592 733 +AT+APN : Get or set the APN 593 593 594 -AT+N OUDnumber ofdatabe uploaded735 +AT+FBAND : Get or Set whether to automatically modify the frequency band 595 595 737 +AT+DNSCFG : Get or Set DNS Server 596 596 597 -AT+ CDPad orClearcacheddata739 +AT+GETSENSORVALUE : Returns the current sensor measurement 598 598 741 +AT+NOUD : Get or Set the number of data to be uploaded 599 599 743 +AT+CDP : Read or Clear cached data 744 + 600 600 AT+TEMPALARM : Get or Set alarm of temp 601 601 602 602 AT+PHALARM : Get or Set alarm of PH ... ... @@ -604,16 +604,18 @@ 604 604 AT+ PHCAL : calibrate PH value 605 605 606 606 607 -**COAP Management** 752 +(% style="color:#037691" %)**COAP Management** 608 608 609 609 AT+URI : Resource parameters 610 610 611 -**UDP Management** 612 612 757 +(% style="color:#037691" %)**UDP Management** 758 + 613 613 AT+CFM : Upload confirmation mode (only valid for UDP) 614 614 615 -**MQTT Management** 616 616 762 +(% style="color:#037691" %)**MQTT Management** 763 + 617 617 AT+CLIENT : Get or Set MQTT client 618 618 619 619 AT+UNAME : Get or Set MQTT Username ... ... @@ -624,42 +624,63 @@ 624 624 625 625 AT+SUBTOPIC : Get or Set MQTT subscription topic 626 626 627 -**Information** 628 628 775 +(% style="color:#037691" %)**Information** 776 + 629 629 AT+FDR : Factory Data Reset 630 630 631 631 AT+PWORD : Serial Access Password 632 632 781 + 782 + 633 633 = 5. FAQ = 634 634 785 + 635 635 == 5.1 How to Upgrade Firmware == 636 636 788 + 637 637 User can upgrade the firmware for 1) bug fix, 2) new feature release. 638 638 639 639 Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 640 640 641 -**Notice, **NSPH01**and**NSPH01**share the same mother board. They use the same connection and method to update.**793 +(% style="color:red" %)**Notice, NSPH01 and LSPH01 share the same mother board. They use the same connection and method to update.** 642 642 795 + 796 + 643 643 == 5.2 Can I calibrate NSPH01 to different soil types? == 644 644 799 + 645 645 NSPH01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>url:https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 646 646 802 + 803 + 647 647 = 6. Trouble Shooting = 648 648 806 + 649 649 == 6.1 Connection problem when uploading firmware == 650 650 809 + 651 651 **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 652 652 812 + 813 + 653 653 == 6.2 AT Command input doesn't work == 654 654 655 -In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string. 656 656 817 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER** (%%)while press the send key, user need to add ENTER in their string. 818 + 819 + 820 + 657 657 = 7. Order Info = 658 658 823 + 659 659 Part Number**:** NSPH01 660 660 826 + 827 + 661 661 = 8. Packing Info = 662 662 830 + 663 663 **Package Includes**: 664 664 665 665 * NSPH01 NB-IoT pH Sensor x 1 ... ... @@ -667,11 +667,15 @@ 667 667 668 668 **Dimension and weight**: 669 669 670 -* Size: 195 x 125 x 55 mm 671 -* Weight: 420g 838 +* Device Size: cm 839 +* Device Weight: g 840 +* Package Size / pcs : cm 841 +* Weight / pcs : g 672 672 843 + 673 673 = 9. Support = 674 674 846 + 675 675 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 676 676 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 677 677
- image-20220912144017-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +149.6 KB - Content
- image-20220923101327-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +12.1 KB - Content
- image-20221009000933-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +282.9 KB - Content