Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6
7
8
9
10
11
12
13
14 **Table of Contents:**
15
16
17
18
19
20
21 = 1.  Introduction =
22
23 == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24
25 (((
26
27
28 Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29
30 It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31
32 The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33
34 NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35
36
37 )))
38
39 [[image:1654503236291-817.png]]
40
41
42 [[image:1657245163077-232.png]]
43
44
45
46 == 1.2 ​Features ==
47
48
49 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 * Monitor Soil Moisture
51 * Monitor Soil Temperature
52 * Monitor Soil Conductivity
53 * AT Commands to change parameters
54 * Uplink on periodically
55 * Downlink to change configure
56 * IP66 Waterproof Enclosure
57 * Ultra-Low Power consumption
58 * AT Commands to change parameters
59 * Micro SIM card slot for NB-IoT SIM
60 * 8500mAh Battery for long term use
61
62 == 1.3  Specification ==
63
64
65 (% style="color:#037691" %)**Common DC Characteristics:**
66
67 * Supply Voltage: 2.1v ~~ 3.6v
68 * Operating Temperature: -40 ~~ 85°C
69
70 (% style="color:#037691" %)**NB-IoT Spec:**
71
72 * - B1 @H-FDD: 2100MHz
73 * - B3 @H-FDD: 1800MHz
74 * - B8 @H-FDD: 900MHz
75 * - B5 @H-FDD: 850MHz
76 * - B20 @H-FDD: 800MHz
77 * - B28 @H-FDD: 700MHz
78
79 (% style="color:#037691" %)**Probe Specification:**
80
81 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82
83 [[image:image-20220708101224-1.png]]
84
85
86
87 == ​1.4  Applications ==
88
89 * Smart Agriculture
90
91 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92
93
94 == 1.5  Pin Definitions ==
95
96
97 [[image:1657246476176-652.png]]
98
99
100
101 = 2.  Use NSE01 to communicate with IoT Server =
102
103 == 2.1  How it works ==
104
105
106 (((
107 The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
108 )))
109
110
111 (((
112 The diagram below shows the working flow in default firmware of NSE01:
113 )))
114
115 [[image:image-20220708101605-2.png]]
116
117 (((
118
119 )))
120
121
122
123 == 2.2 ​ Configure the NSE01 ==
124
125
126 === 2.2.1 Test Requirement ===
127
128
129 To use NSE01 in your city, make sure meet below requirements:
130
131 * Your local operator has already distributed a NB-IoT Network there.
132 * The local NB-IoT network used the band that NSE01 supports.
133 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
134
135 (((
136 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 )))
138
139
140 [[image:1657249419225-449.png]]
141
142
143
144 === 2.2.2 Insert SIM card ===
145
146 Insert the NB-IoT Card get from your provider.
147
148 User need to take out the NB-IoT module and insert the SIM card like below:
149
150
151 [[image:1657249468462-536.png]]
152
153
154
155 === 2.2.3 Connect USB – TTL to NSE01 to configure it ===
156
157 (((
158 (((
159 User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 )))
161 )))
162
163
164 **Connection:**
165
166 (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167
168 (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
169
170 (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
171
172
173 In the PC, use below serial tool settings:
174
175 * Baud: (% style="color:green" %)**9600**
176 * Data bits:** (% style="color:green" %)8(%%)**
177 * Stop bits: (% style="color:green" %)**1**
178 * Parity: (% style="color:green" %)**None**
179 * Flow Control: (% style="color:green" %)**None**
180
181 (((
182 Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 )))
184
185 [[image:image-20220708110657-3.png]]
186
187 (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188
189
190
191 === 2.2.4 Use CoAP protocol to uplink data ===
192
193 (% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194
195
196 **Use below commands:**
197
198 * (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201
202
203
204 For parameter description, please refer to AT command set
205
206 [[image:1657249793983-486.png]]
207
208
209 After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
210
211 [[image:1657249831934-534.png]]
212
213
214
215 === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
216
217 This feature is supported since firmware version v1.0.1
218
219
220 * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
221 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
223
224
225
226 [[image:1657249864775-321.png]]
227
228
229
230 [[image:1657249930215-289.png]]
231
232
233
234 === 2.2.6 Use MQTT protocol to uplink data ===
235
236 This feature is supported since firmware version v110
237
238
239 * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 * (% style="color:blue" %)**AT+UNAME=UNAME  **(%%)~/~/Set the username of MQTT
243 * (% style="color:blue" %)**AT+PWD=PWD  **(%%)~/~/Set the password of MQTT
244 * (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB  **(%%)~/~/Set the sending topic of MQTT
245 * (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246
247
248
249 [[image:1657249978444-674.png]]
250
251
252 [[image:1657249990869-686.png]]
253
254
255
256 (((
257 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
258 )))
259
260
261
262 === 2.2.7 Use TCP protocol to uplink data ===
263
264 This feature is supported since firmware version v110
265
266
267 * (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
268 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
269
270 [[image:1657250217799-140.png]]
271
272
273 [[image:1657250255956-604.png]]
274
275
276 === 2.2.8 Change Update Interval ===
277
278 User can use below command to change the (% style="color:green" %)**uplink interval**.
279
280 * (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
281
282
283 (((
284 (% style="color:red" %)**NOTE:**
285 )))
286
287 (((
288 (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
289 )))
290
291
292
293 == 2.3 Uplink Payload ==
294
295
296 === 2.3.1 MOD~=0(Default Mode) ===
297
298 LSE01 will uplink payload via LoRaWAN with below payload format: 
299
300 (((
301 Uplink payload includes in total 11 bytes.
302 )))
303
304 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
305 |(((
306 **Size**
307
308 **(bytes)**
309 )))|**2**|**2**|**2**|**2**|**2**|**1**
310 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
311 Temperature
312
313 (Reserve, Ignore now)
314 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
315 MOD & Digital Interrupt
316
317 (Optional)
318 )))
319
320 === 2.3.2 MOD~=1(Original value) ===
321
322 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
323
324 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
325 |(((
326 **Size**
327
328 **(bytes)**
329 )))|**2**|**2**|**2**|**2**|**2**|**1**
330 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
331 Temperature
332
333 (Reserve, Ignore now)
334 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
335 MOD & Digital Interrupt
336
337 (Optional)
338 )))
339
340 === 2.3.3 Battery Info ===
341
342 (((
343 Check the battery voltage for LSE01.
344 )))
345
346 (((
347 Ex1: 0x0B45 = 2885mV
348 )))
349
350 (((
351 Ex2: 0x0B49 = 2889mV
352 )))
353
354
355
356 === 2.3.4 Soil Moisture ===
357
358 (((
359 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
360 )))
361
362 (((
363 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
364 )))
365
366 (((
367
368 )))
369
370 (((
371 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
372 )))
373
374
375
376 === 2.3.5 Soil Temperature ===
377
378 (((
379 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
380 )))
381
382 (((
383 **Example**:
384 )))
385
386 (((
387 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
388 )))
389
390 (((
391 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
392 )))
393
394
395
396 === 2.3.6 Soil Conductivity (EC) ===
397
398 (((
399 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
400 )))
401
402 (((
403 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
404 )))
405
406 (((
407 Generally, the EC value of irrigation water is less than 800uS / cm.
408 )))
409
410 (((
411
412 )))
413
414 (((
415
416 )))
417
418 === 2.3.7 MOD ===
419
420 Firmware version at least v2.1 supports changing mode.
421
422 For example, bytes[10]=90
423
424 mod=(bytes[10]>>7)&0x01=1.
425
426
427 **Downlink Command:**
428
429 If payload = 0x0A00, workmode=0
430
431 If** **payload =** **0x0A01, workmode=1
432
433
434
435 === 2.3.8 ​Decode payload in The Things Network ===
436
437 While using TTN network, you can add the payload format to decode the payload.
438
439
440 [[image:1654505570700-128.png]]
441
442 (((
443 The payload decoder function for TTN is here:
444 )))
445
446 (((
447 LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
448 )))
449
450
451 == 2.4 Uplink Interval ==
452
453 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
454
455
456
457 == 2.5 Downlink Payload ==
458
459 By default, LSE50 prints the downlink payload to console port.
460
461 [[image:image-20220606165544-8.png]]
462
463
464 (((
465 (% style="color:blue" %)**Examples:**
466 )))
467
468 (((
469
470 )))
471
472 * (((
473 (% style="color:blue" %)**Set TDC**
474 )))
475
476 (((
477 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
478 )))
479
480 (((
481 Payload:    01 00 00 1E    TDC=30S
482 )))
483
484 (((
485 Payload:    01 00 00 3C    TDC=60S
486 )))
487
488 (((
489
490 )))
491
492 * (((
493 (% style="color:blue" %)**Reset**
494 )))
495
496 (((
497 If payload = 0x04FF, it will reset the LSE01
498 )))
499
500
501 * (% style="color:blue" %)**CFM**
502
503 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
504
505
506
507 == 2.6 ​Show Data in DataCake IoT Server ==
508
509 (((
510 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
511 )))
512
513 (((
514
515 )))
516
517 (((
518 (% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
519 )))
520
521 (((
522 (% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
523 )))
524
525
526 [[image:1654505857935-743.png]]
527
528
529 [[image:1654505874829-548.png]]
530
531
532 (% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
533
534 (% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
535
536
537 [[image:1654505905236-553.png]]
538
539
540 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
541
542 [[image:1654505925508-181.png]]
543
544
545
546 == 2.7 Frequency Plans ==
547
548 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
549
550
551 === 2.7.1 EU863-870 (EU868) ===
552
553 (% style="color:#037691" %)** Uplink:**
554
555 868.1 - SF7BW125 to SF12BW125
556
557 868.3 - SF7BW125 to SF12BW125 and SF7BW250
558
559 868.5 - SF7BW125 to SF12BW125
560
561 867.1 - SF7BW125 to SF12BW125
562
563 867.3 - SF7BW125 to SF12BW125
564
565 867.5 - SF7BW125 to SF12BW125
566
567 867.7 - SF7BW125 to SF12BW125
568
569 867.9 - SF7BW125 to SF12BW125
570
571 868.8 - FSK
572
573
574 (% style="color:#037691" %)** Downlink:**
575
576 Uplink channels 1-9 (RX1)
577
578 869.525 - SF9BW125 (RX2 downlink only)
579
580
581
582 === 2.7.2 US902-928(US915) ===
583
584 Used in USA, Canada and South America. Default use CHE=2
585
586 (% style="color:#037691" %)**Uplink:**
587
588 903.9 - SF7BW125 to SF10BW125
589
590 904.1 - SF7BW125 to SF10BW125
591
592 904.3 - SF7BW125 to SF10BW125
593
594 904.5 - SF7BW125 to SF10BW125
595
596 904.7 - SF7BW125 to SF10BW125
597
598 904.9 - SF7BW125 to SF10BW125
599
600 905.1 - SF7BW125 to SF10BW125
601
602 905.3 - SF7BW125 to SF10BW125
603
604
605 (% style="color:#037691" %)**Downlink:**
606
607 923.3 - SF7BW500 to SF12BW500
608
609 923.9 - SF7BW500 to SF12BW500
610
611 924.5 - SF7BW500 to SF12BW500
612
613 925.1 - SF7BW500 to SF12BW500
614
615 925.7 - SF7BW500 to SF12BW500
616
617 926.3 - SF7BW500 to SF12BW500
618
619 926.9 - SF7BW500 to SF12BW500
620
621 927.5 - SF7BW500 to SF12BW500
622
623 923.3 - SF12BW500(RX2 downlink only)
624
625
626
627 === 2.7.3 CN470-510 (CN470) ===
628
629 Used in China, Default use CHE=1
630
631 (% style="color:#037691" %)**Uplink:**
632
633 486.3 - SF7BW125 to SF12BW125
634
635 486.5 - SF7BW125 to SF12BW125
636
637 486.7 - SF7BW125 to SF12BW125
638
639 486.9 - SF7BW125 to SF12BW125
640
641 487.1 - SF7BW125 to SF12BW125
642
643 487.3 - SF7BW125 to SF12BW125
644
645 487.5 - SF7BW125 to SF12BW125
646
647 487.7 - SF7BW125 to SF12BW125
648
649
650 (% style="color:#037691" %)**Downlink:**
651
652 506.7 - SF7BW125 to SF12BW125
653
654 506.9 - SF7BW125 to SF12BW125
655
656 507.1 - SF7BW125 to SF12BW125
657
658 507.3 - SF7BW125 to SF12BW125
659
660 507.5 - SF7BW125 to SF12BW125
661
662 507.7 - SF7BW125 to SF12BW125
663
664 507.9 - SF7BW125 to SF12BW125
665
666 508.1 - SF7BW125 to SF12BW125
667
668 505.3 - SF12BW125 (RX2 downlink only)
669
670
671
672 === 2.7.4 AU915-928(AU915) ===
673
674 Default use CHE=2
675
676 (% style="color:#037691" %)**Uplink:**
677
678 916.8 - SF7BW125 to SF12BW125
679
680 917.0 - SF7BW125 to SF12BW125
681
682 917.2 - SF7BW125 to SF12BW125
683
684 917.4 - SF7BW125 to SF12BW125
685
686 917.6 - SF7BW125 to SF12BW125
687
688 917.8 - SF7BW125 to SF12BW125
689
690 918.0 - SF7BW125 to SF12BW125
691
692 918.2 - SF7BW125 to SF12BW125
693
694
695 (% style="color:#037691" %)**Downlink:**
696
697 923.3 - SF7BW500 to SF12BW500
698
699 923.9 - SF7BW500 to SF12BW500
700
701 924.5 - SF7BW500 to SF12BW500
702
703 925.1 - SF7BW500 to SF12BW500
704
705 925.7 - SF7BW500 to SF12BW500
706
707 926.3 - SF7BW500 to SF12BW500
708
709 926.9 - SF7BW500 to SF12BW500
710
711 927.5 - SF7BW500 to SF12BW500
712
713 923.3 - SF12BW500(RX2 downlink only)
714
715
716
717 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
718
719 (% style="color:#037691" %)**Default Uplink channel:**
720
721 923.2 - SF7BW125 to SF10BW125
722
723 923.4 - SF7BW125 to SF10BW125
724
725
726 (% style="color:#037691" %)**Additional Uplink Channel**:
727
728 (OTAA mode, channel added by JoinAccept message)
729
730 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
731
732 922.2 - SF7BW125 to SF10BW125
733
734 922.4 - SF7BW125 to SF10BW125
735
736 922.6 - SF7BW125 to SF10BW125
737
738 922.8 - SF7BW125 to SF10BW125
739
740 923.0 - SF7BW125 to SF10BW125
741
742 922.0 - SF7BW125 to SF10BW125
743
744
745 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
746
747 923.6 - SF7BW125 to SF10BW125
748
749 923.8 - SF7BW125 to SF10BW125
750
751 924.0 - SF7BW125 to SF10BW125
752
753 924.2 - SF7BW125 to SF10BW125
754
755 924.4 - SF7BW125 to SF10BW125
756
757 924.6 - SF7BW125 to SF10BW125
758
759
760 (% style="color:#037691" %)** Downlink:**
761
762 Uplink channels 1-8 (RX1)
763
764 923.2 - SF10BW125 (RX2)
765
766
767
768 === 2.7.6 KR920-923 (KR920) ===
769
770 Default channel:
771
772 922.1 - SF7BW125 to SF12BW125
773
774 922.3 - SF7BW125 to SF12BW125
775
776 922.5 - SF7BW125 to SF12BW125
777
778
779 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
780
781 922.1 - SF7BW125 to SF12BW125
782
783 922.3 - SF7BW125 to SF12BW125
784
785 922.5 - SF7BW125 to SF12BW125
786
787 922.7 - SF7BW125 to SF12BW125
788
789 922.9 - SF7BW125 to SF12BW125
790
791 923.1 - SF7BW125 to SF12BW125
792
793 923.3 - SF7BW125 to SF12BW125
794
795
796 (% style="color:#037691" %)**Downlink:**
797
798 Uplink channels 1-7(RX1)
799
800 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
801
802
803
804 === 2.7.7 IN865-867 (IN865) ===
805
806 (% style="color:#037691" %)** Uplink:**
807
808 865.0625 - SF7BW125 to SF12BW125
809
810 865.4025 - SF7BW125 to SF12BW125
811
812 865.9850 - SF7BW125 to SF12BW125
813
814
815 (% style="color:#037691" %) **Downlink:**
816
817 Uplink channels 1-3 (RX1)
818
819 866.550 - SF10BW125 (RX2)
820
821
822
823
824 == 2.8 LED Indicator ==
825
826 The LSE01 has an internal LED which is to show the status of different state.
827
828 * Blink once when device power on.
829 * Solid ON for 5 seconds once device successful Join the network.
830 * Blink once when device transmit a packet.
831
832 == 2.9 Installation in Soil ==
833
834 **Measurement the soil surface**
835
836
837 [[image:1654506634463-199.png]] ​
838
839 (((
840 (((
841 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
842 )))
843 )))
844
845
846
847 [[image:1654506665940-119.png]]
848
849 (((
850 Dig a hole with diameter > 20CM.
851 )))
852
853 (((
854 Horizontal insert the probe to the soil and fill the hole for long term measurement.
855 )))
856
857
858 == 2.10 ​Firmware Change Log ==
859
860 (((
861 **Firmware download link:**
862 )))
863
864 (((
865 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
866 )))
867
868 (((
869
870 )))
871
872 (((
873 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
874 )))
875
876 (((
877
878 )))
879
880 (((
881 **V1.0.**
882 )))
883
884 (((
885 Release
886 )))
887
888
889 == 2.11 ​Battery Analysis ==
890
891 === 2.11.1 ​Battery Type ===
892
893 (((
894 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
895 )))
896
897 (((
898 The battery is designed to last for more than 5 years for the LSN50.
899 )))
900
901 (((
902 (((
903 The battery-related documents are as below:
904 )))
905 )))
906
907 * (((
908 [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
909 )))
910 * (((
911 [[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
912 )))
913 * (((
914 [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
915 )))
916
917 [[image:image-20220610172436-1.png]]
918
919
920
921 === 2.11.2 ​Battery Note ===
922
923 (((
924 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
925 )))
926
927
928
929 === 2.11.3 Replace the battery ===
930
931 (((
932 If Battery is lower than 2.7v, user should replace the battery of LSE01.
933 )))
934
935 (((
936 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
937 )))
938
939 (((
940 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
941 )))
942
943
944
945 = 3. ​Using the AT Commands =
946
947 == 3.1 Access AT Commands ==
948
949
950 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
951
952 [[image:1654501986557-872.png||height="391" width="800"]]
953
954
955 Or if you have below board, use below connection:
956
957
958 [[image:1654502005655-729.png||height="503" width="801"]]
959
960
961
962 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
963
964
965 [[image:1654502050864-459.png||height="564" width="806"]]
966
967
968 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
969
970
971 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
972
973 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
974
975 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
976
977 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
978
979
980 (% style="color:#037691" %)**General Commands**(%%)      
981
982 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
983
984 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
985
986 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
987
988 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
989
990
991 (% style="color:#037691" %)**Keys, IDs and EUIs management**
992
993 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
994
995 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
996
997 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
998
999 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
1000
1001 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
1002
1003 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
1004
1005 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
1006
1007 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
1008
1009 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
1010
1011 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
1012
1013 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
1014
1015 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
1016
1017 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
1018
1019 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
1020
1021 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
1022
1023 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
1024
1025
1026 (% style="color:#037691" %)**LoRa Network Management**
1027
1028 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
1029
1030 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
1031
1032 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
1033
1034 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
1035
1036 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
1037
1038 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
1039
1040 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
1041
1042 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
1043
1044 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
1045
1046 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
1047
1048 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
1049
1050 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
1051
1052 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1053
1054 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1055
1056 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1057
1058
1059 (% style="color:#037691" %)**Information** 
1060
1061 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1062
1063 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1064
1065 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1066
1067 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1068
1069 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1070
1071 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1072
1073 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1074
1075
1076 = ​4. FAQ =
1077
1078 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1079
1080 (((
1081 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1082 When downloading the images, choose the required image file for download. ​
1083 )))
1084
1085 (((
1086
1087 )))
1088
1089 (((
1090 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1091 )))
1092
1093 (((
1094
1095 )))
1096
1097 (((
1098 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1099 )))
1100
1101 (((
1102
1103 )))
1104
1105 (((
1106 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1107 )))
1108
1109 [[image:image-20220606154726-3.png]]
1110
1111
1112 When you use the TTN network, the US915 frequency bands use are:
1113
1114 * 903.9 - SF7BW125 to SF10BW125
1115 * 904.1 - SF7BW125 to SF10BW125
1116 * 904.3 - SF7BW125 to SF10BW125
1117 * 904.5 - SF7BW125 to SF10BW125
1118 * 904.7 - SF7BW125 to SF10BW125
1119 * 904.9 - SF7BW125 to SF10BW125
1120 * 905.1 - SF7BW125 to SF10BW125
1121 * 905.3 - SF7BW125 to SF10BW125
1122 * 904.6 - SF8BW500
1123
1124 (((
1125 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1126
1127 * (% style="color:#037691" %)**AT+CHE=2**
1128 * (% style="color:#037691" %)**ATZ**
1129 )))
1130
1131 (((
1132
1133
1134 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1135 )))
1136
1137 (((
1138
1139 )))
1140
1141 (((
1142 The **AU915** band is similar. Below are the AU915 Uplink Channels.
1143 )))
1144
1145 [[image:image-20220606154825-4.png]]
1146
1147
1148 == 4.2 ​Can I calibrate LSE01 to different soil types? ==
1149
1150 LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1151
1152
1153 = 5. Trouble Shooting =
1154
1155 == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1156
1157 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1158
1159
1160 == 5.2 AT Command input doesn't work ==
1161
1162 (((
1163 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1164 )))
1165
1166
1167 == 5.3 Device rejoin in at the second uplink packet ==
1168
1169 (% style="color:#4f81bd" %)**Issue describe as below:**
1170
1171 [[image:1654500909990-784.png]]
1172
1173
1174 (% style="color:#4f81bd" %)**Cause for this issue:**
1175
1176 (((
1177 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1178 )))
1179
1180
1181 (% style="color:#4f81bd" %)**Solution: **
1182
1183 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1184
1185 [[image:1654500929571-736.png||height="458" width="832"]]
1186
1187
1188 = 6. ​Order Info =
1189
1190
1191 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1192
1193
1194 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1195
1196 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1197 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1198 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1199 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1200 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1201 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1202 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1203 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1204
1205 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1206
1207 * (% style="color:red" %)**4**(%%): 4000mAh battery
1208 * (% style="color:red" %)**8**(%%): 8500mAh battery
1209
1210 (% class="wikigeneratedid" %)
1211 (((
1212
1213 )))
1214
1215 = 7. Packing Info =
1216
1217 (((
1218
1219
1220 (% style="color:#037691" %)**Package Includes**:
1221 )))
1222
1223 * (((
1224 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1225 )))
1226
1227 (((
1228
1229
1230 (% style="color:#037691" %)**Dimension and weight**:
1231 )))
1232
1233 * (((
1234 Device Size: cm
1235 )))
1236 * (((
1237 Device Weight: g
1238 )))
1239 * (((
1240 Package Size / pcs : cm
1241 )))
1242 * (((
1243 Weight / pcs : g
1244
1245
1246 )))
1247
1248 = 8. Support =
1249
1250 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1251 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0