Version 32.10 by Xiaoling on 2022/06/07 11:39

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3
4
5
6 **Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18
19 (((
20 The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 )))
22
23 (((
24 It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 )))
26
27 (((
28 The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 )))
30
31 (((
32 LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 )))
34
35 (((
36 Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 )))
38
39
40 [[image:1654503236291-817.png]]
41
42
43 [[image:1654503265560-120.png]]
44
45
46
47 == 1.2 ​Features ==
48
49 * LoRaWAN 1.0.3 Class A
50 * Ultra low power consumption
51 * Monitor Soil Moisture
52 * Monitor Soil Temperature
53 * Monitor Soil Conductivity
54 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 * AT Commands to change parameters
56 * Uplink on periodically
57 * Downlink to change configure
58 * IP66 Waterproof Enclosure
59 * 4000mAh or 8500mAh Battery for long term use
60
61 == 1.3 Specification ==
62
63 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
64
65 [[image:image-20220606162220-5.png]]
66
67
68
69 == ​1.4 Applications ==
70
71 * Smart Agriculture
72
73 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74
75
76 == 1.5 Firmware Change log ==
77
78
79 **LSE01 v1.0 :**  Release
80
81
82
83 = 2. Configure LSE01 to connect to LoRaWAN network =
84
85 == 2.1 How it works ==
86
87 (((
88 The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 )))
90
91 (((
92 In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 )))
94
95
96
97 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
98
99 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
100
101
102 [[image:1654503992078-669.png]]
103
104
105 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106
107
108 **Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109
110 Each LSE01 is shipped with a sticker with the default device EUI as below:
111
112 [[image:image-20220606163732-6.jpeg]]
113
114 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115
116 **Add APP EUI in the application**
117
118
119 [[image:1654504596150-405.png]]
120
121
122
123 **Add APP KEY and DEV EUI**
124
125 [[image:1654504683289-357.png]]
126
127
128
129 **Step 2**: Power on LSE01
130
131
132 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133
134 [[image:image-20220606163915-7.png]]
135
136
137 **Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138
139 [[image:1654504778294-788.png]]
140
141
142
143 == 2.3 Uplink Payload ==
144
145 (% class="wikigeneratedid" %)
146 === ===
147
148 === 2.3.1 MOD~=0(Default Mode) ===
149
150 LSE01 will uplink payload via LoRaWAN with below payload format: 
151
152 (((
153 Uplink payload includes in total 11 bytes.
154 )))
155
156 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 |(((
158 **Size**
159
160 **(bytes)**
161 )))|**2**|**2**|**2**|**2**|**2**|**1**
162 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 Temperature
164
165 (Reserve, Ignore now)
166 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 MOD & Digital Interrupt
168
169 (Optional)
170 )))
171
172
173
174 === 2.3.2 MOD~=1(Original value) ===
175
176 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177
178 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 |(((
180 **Size**
181
182 **(bytes)**
183 )))|**2**|**2**|**2**|**2**|**2**|**1**
184 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 Temperature
186
187 (Reserve, Ignore now)
188 )))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 MOD & Digital Interrupt
190
191 (Optional)
192 )))
193
194
195
196 === 2.3.3 Battery Info ===
197
198 (((
199 Check the battery voltage for LSE01.
200 )))
201
202 (((
203 Ex1: 0x0B45 = 2885mV
204 )))
205
206 (((
207 Ex2: 0x0B49 = 2889mV
208 )))
209
210
211
212 === 2.3.4 Soil Moisture ===
213
214 (((
215 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 )))
217
218 (((
219 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
220 )))
221
222 (((
223
224 )))
225
226 (((
227 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
228 )))
229
230
231
232 === 2.3.5 Soil Temperature ===
233
234 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
235
236 **Example**:
237
238 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
239
240 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
241
242
243
244 === 2.3.6 Soil Conductivity (EC) ===
245
246 (((
247 Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
248 )))
249
250 (((
251 For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
252 )))
253
254 (((
255 Generally, the EC value of irrigation water is less than 800uS / cm.
256 )))
257
258 (((
259
260 )))
261
262 (((
263
264 )))
265
266 === 2.3.7 MOD ===
267
268 Firmware version at least v2.1 supports changing mode.
269
270 For example, bytes[10]=90
271
272 mod=(bytes[10]>>7)&0x01=1.
273
274
275 **Downlink Command:**
276
277 If payload = 0x0A00, workmode=0
278
279 If** **payload =** **0x0A01, workmode=1
280
281
282
283 === 2.3.8 ​Decode payload in The Things Network ===
284
285 While using TTN network, you can add the payload format to decode the payload.
286
287
288 [[image:1654505570700-128.png]]
289
290 The payload decoder function for TTN is here:
291
292 LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
293
294
295
296 == 2.4 Uplink Interval ==
297
298 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
299
300
301
302 == 2.5 Downlink Payload ==
303
304 By default, LSE50 prints the downlink payload to console port.
305
306 [[image:image-20220606165544-8.png]]
307
308
309 **Examples:**
310
311
312 * **Set TDC**
313
314 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
315
316 Payload:    01 00 00 1E    TDC=30S
317
318 Payload:    01 00 00 3C    TDC=60S
319
320
321 * **Reset**
322
323 If payload = 0x04FF, it will reset the LSE01
324
325
326 * **CFM**
327
328 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
329
330
331
332 == 2.6 ​Show Data in DataCake IoT Server ==
333
334 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
335
336
337 **Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
338
339 **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
340
341
342 [[image:1654505857935-743.png]]
343
344
345 [[image:1654505874829-548.png]]
346
347 Step 3: Create an account or log in Datacake.
348
349 Step 4: Search the LSE01 and add DevEUI.
350
351
352 [[image:1654505905236-553.png]]
353
354
355 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
356
357 [[image:1654505925508-181.png]]
358
359
360
361 == 2.7 Frequency Plans ==
362
363 The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
364
365
366 === 2.7.1 EU863-870 (EU868) ===
367
368 (% style="color:#037691" %)** Uplink:**
369
370 868.1 - SF7BW125 to SF12BW125
371
372 868.3 - SF7BW125 to SF12BW125 and SF7BW250
373
374 868.5 - SF7BW125 to SF12BW125
375
376 867.1 - SF7BW125 to SF12BW125
377
378 867.3 - SF7BW125 to SF12BW125
379
380 867.5 - SF7BW125 to SF12BW125
381
382 867.7 - SF7BW125 to SF12BW125
383
384 867.9 - SF7BW125 to SF12BW125
385
386 868.8 - FSK
387
388
389 (% style="color:#037691" %)** Downlink:**
390
391 Uplink channels 1-9 (RX1)
392
393 869.525 - SF9BW125 (RX2 downlink only)
394
395
396
397 === 2.7.2 US902-928(US915) ===
398
399 Used in USA, Canada and South America. Default use CHE=2
400
401 (% style="color:#037691" %)**Uplink:**
402
403 903.9 - SF7BW125 to SF10BW125
404
405 904.1 - SF7BW125 to SF10BW125
406
407 904.3 - SF7BW125 to SF10BW125
408
409 904.5 - SF7BW125 to SF10BW125
410
411 904.7 - SF7BW125 to SF10BW125
412
413 904.9 - SF7BW125 to SF10BW125
414
415 905.1 - SF7BW125 to SF10BW125
416
417 905.3 - SF7BW125 to SF10BW125
418
419
420 (% style="color:#037691" %)**Downlink:**
421
422 923.3 - SF7BW500 to SF12BW500
423
424 923.9 - SF7BW500 to SF12BW500
425
426 924.5 - SF7BW500 to SF12BW500
427
428 925.1 - SF7BW500 to SF12BW500
429
430 925.7 - SF7BW500 to SF12BW500
431
432 926.3 - SF7BW500 to SF12BW500
433
434 926.9 - SF7BW500 to SF12BW500
435
436 927.5 - SF7BW500 to SF12BW500
437
438 923.3 - SF12BW500(RX2 downlink only)
439
440
441
442 === 2.7.3 CN470-510 (CN470) ===
443
444 Used in China, Default use CHE=1
445
446 (% style="color:#037691" %)**Uplink:**
447
448 486.3 - SF7BW125 to SF12BW125
449
450 486.5 - SF7BW125 to SF12BW125
451
452 486.7 - SF7BW125 to SF12BW125
453
454 486.9 - SF7BW125 to SF12BW125
455
456 487.1 - SF7BW125 to SF12BW125
457
458 487.3 - SF7BW125 to SF12BW125
459
460 487.5 - SF7BW125 to SF12BW125
461
462 487.7 - SF7BW125 to SF12BW125
463
464
465 (% style="color:#037691" %)**Downlink:**
466
467 506.7 - SF7BW125 to SF12BW125
468
469 506.9 - SF7BW125 to SF12BW125
470
471 507.1 - SF7BW125 to SF12BW125
472
473 507.3 - SF7BW125 to SF12BW125
474
475 507.5 - SF7BW125 to SF12BW125
476
477 507.7 - SF7BW125 to SF12BW125
478
479 507.9 - SF7BW125 to SF12BW125
480
481 508.1 - SF7BW125 to SF12BW125
482
483 505.3 - SF12BW125 (RX2 downlink only)
484
485
486
487 === 2.7.4 AU915-928(AU915) ===
488
489 Default use CHE=2
490
491 (% style="color:#037691" %)**Uplink:**
492
493 916.8 - SF7BW125 to SF12BW125
494
495 917.0 - SF7BW125 to SF12BW125
496
497 917.2 - SF7BW125 to SF12BW125
498
499 917.4 - SF7BW125 to SF12BW125
500
501 917.6 - SF7BW125 to SF12BW125
502
503 917.8 - SF7BW125 to SF12BW125
504
505 918.0 - SF7BW125 to SF12BW125
506
507 918.2 - SF7BW125 to SF12BW125
508
509
510 (% style="color:#037691" %)**Downlink:**
511
512 923.3 - SF7BW500 to SF12BW500
513
514 923.9 - SF7BW500 to SF12BW500
515
516 924.5 - SF7BW500 to SF12BW500
517
518 925.1 - SF7BW500 to SF12BW500
519
520 925.7 - SF7BW500 to SF12BW500
521
522 926.3 - SF7BW500 to SF12BW500
523
524 926.9 - SF7BW500 to SF12BW500
525
526 927.5 - SF7BW500 to SF12BW500
527
528 923.3 - SF12BW500(RX2 downlink only)
529
530
531
532 === 2.7.5 AS920-923 & AS923-925 (AS923) ===
533
534 (% style="color:#037691" %)**Default Uplink channel:**
535
536 923.2 - SF7BW125 to SF10BW125
537
538 923.4 - SF7BW125 to SF10BW125
539
540
541 (% style="color:#037691" %)**Additional Uplink Channel**:
542
543 (OTAA mode, channel added by JoinAccept message)
544
545 (% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
546
547 922.2 - SF7BW125 to SF10BW125
548
549 922.4 - SF7BW125 to SF10BW125
550
551 922.6 - SF7BW125 to SF10BW125
552
553 922.8 - SF7BW125 to SF10BW125
554
555 923.0 - SF7BW125 to SF10BW125
556
557 922.0 - SF7BW125 to SF10BW125
558
559
560 (% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
561
562 923.6 - SF7BW125 to SF10BW125
563
564 923.8 - SF7BW125 to SF10BW125
565
566 924.0 - SF7BW125 to SF10BW125
567
568 924.2 - SF7BW125 to SF10BW125
569
570 924.4 - SF7BW125 to SF10BW125
571
572 924.6 - SF7BW125 to SF10BW125
573
574
575 (% style="color:#037691" %)** Downlink:**
576
577 Uplink channels 1-8 (RX1)
578
579 923.2 - SF10BW125 (RX2)
580
581
582
583 === 2.7.6 KR920-923 (KR920) ===
584
585 Default channel:
586
587 922.1 - SF7BW125 to SF12BW125
588
589 922.3 - SF7BW125 to SF12BW125
590
591 922.5 - SF7BW125 to SF12BW125
592
593
594 (% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
595
596 922.1 - SF7BW125 to SF12BW125
597
598 922.3 - SF7BW125 to SF12BW125
599
600 922.5 - SF7BW125 to SF12BW125
601
602 922.7 - SF7BW125 to SF12BW125
603
604 922.9 - SF7BW125 to SF12BW125
605
606 923.1 - SF7BW125 to SF12BW125
607
608 923.3 - SF7BW125 to SF12BW125
609
610
611 (% style="color:#037691" %)**Downlink:**
612
613 Uplink channels 1-7(RX1)
614
615 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
616
617
618
619 === 2.7.7 IN865-867 (IN865) ===
620
621 (% style="color:#037691" %)** Uplink:**
622
623 865.0625 - SF7BW125 to SF12BW125
624
625 865.4025 - SF7BW125 to SF12BW125
626
627 865.9850 - SF7BW125 to SF12BW125
628
629
630 (% style="color:#037691" %) **Downlink:**
631
632 Uplink channels 1-3 (RX1)
633
634 866.550 - SF10BW125 (RX2)
635
636
637
638
639 == 2.8 LED Indicator ==
640
641 The LSE01 has an internal LED which is to show the status of different state.
642
643 * Blink once when device power on.
644 * Solid ON for 5 seconds once device successful Join the network.
645 * Blink once when device transmit a packet.
646
647
648
649 == 2.9 Installation in Soil ==
650
651 **Measurement the soil surface**
652
653
654 [[image:1654506634463-199.png]] ​
655
656 (((
657 (((
658 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
659 )))
660 )))
661
662
663 [[image:1654506665940-119.png]]
664
665 (((
666 Dig a hole with diameter > 20CM.
667 )))
668
669 (((
670 Horizontal insert the probe to the soil and fill the hole for long term measurement.
671 )))
672
673
674 == 2.10 ​Firmware Change Log ==
675
676 (((
677 **Firmware download link:**
678 )))
679
680 (((
681 [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
682 )))
683
684 (((
685
686 )))
687
688 (((
689 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
690 )))
691
692 (((
693
694 )))
695
696 (((
697 **V1.0.**
698 )))
699
700 (((
701 Release
702 )))
703
704
705 == 2.11 ​Battery Analysis ==
706
707 === 2.11.1 ​Battery Type ===
708
709 (((
710 The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
711 )))
712
713 (((
714 The battery is designed to last for more than 5 years for the LSN50.
715 )))
716
717 (((
718 (((
719 The battery-related documents are as below:
720 )))
721 )))
722
723 * (((
724 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
725 )))
726 * (((
727 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
728 )))
729 * (((
730 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
731 )))
732
733 [[image:image-20220606171726-9.png]]
734
735
736
737 === 2.11.2 ​Battery Note ===
738
739 (((
740 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
741 )))
742
743
744
745 === 2.11.3 Replace the battery ===
746
747 (((
748 If Battery is lower than 2.7v, user should replace the battery of LSE01.
749 )))
750
751 (((
752 You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
753 )))
754
755 (((
756 The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
757 )))
758
759
760
761 = 3. ​Using the AT Commands =
762
763 == 3.1 Access AT Commands ==
764
765
766 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
767
768 [[image:1654501986557-872.png||height="391" width="800"]]
769
770
771 Or if you have below board, use below connection:
772
773
774 [[image:1654502005655-729.png||height="503" width="801"]]
775
776
777
778 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
779
780
781 [[image:1654502050864-459.png||height="564" width="806"]]
782
783
784 Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
785
786
787 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
788
789 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
790
791 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
792
793 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
794
795
796 (% style="color:#037691" %)**General Commands**(%%)      
797
798 (% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
799
800 (% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
801
802 (% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
803
804 (% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
805
806
807 (% style="color:#037691" %)**Keys, IDs and EUIs management**
808
809 (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
810
811 (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
812
813 (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
814
815 (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
816
817 (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
818
819 (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
820
821 (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
822
823 (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
824
825 (% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
826
827 (% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
828
829 (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
830
831 (% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
832
833 (% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
834
835 (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
836
837 (% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
838
839 (% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
840
841
842 (% style="color:#037691" %)**LoRa Network Management**
843
844 (% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
845
846 (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
847
848 (% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Setting 
849
850 (% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
851
852 (% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
853
854 (% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
855
856 (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
857
858 (% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
859
860 (% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
861
862 (% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
863
864 (% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
865
866 (% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
867
868 (% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
869
870 (% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
871
872 (% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
873
874
875 (% style="color:#037691" %)**Information** 
876
877 (% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
878
879 (% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
880
881 (% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
882
883 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
884
885 (% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
886
887 (% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
888
889 (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
890
891
892 = ​4. FAQ =
893
894 == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
895
896 (((
897 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
898 When downloading the images, choose the required image file for download. ​
899 )))
900
901 (((
902
903 )))
904
905 (((
906 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
907 )))
908
909 (((
910
911 )))
912
913 (((
914 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
915 )))
916
917 (((
918
919 )))
920
921 (((
922 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
923 )))
924
925 [[image:image-20220606154726-3.png]]
926
927
928 When you use the TTN network, the US915 frequency bands use are:
929
930 * 903.9 - SF7BW125 to SF10BW125
931 * 904.1 - SF7BW125 to SF10BW125
932 * 904.3 - SF7BW125 to SF10BW125
933 * 904.5 - SF7BW125 to SF10BW125
934 * 904.7 - SF7BW125 to SF10BW125
935 * 904.9 - SF7BW125 to SF10BW125
936 * 905.1 - SF7BW125 to SF10BW125
937 * 905.3 - SF7BW125 to SF10BW125
938 * 904.6 - SF8BW500
939
940 (((
941 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
942 )))
943
944 (% class="box infomessage" %)
945 (((
946 **AT+CHE=2**
947 )))
948
949 (% class="box infomessage" %)
950 (((
951 **ATZ**
952 )))
953
954 (((
955 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
956 )))
957
958 (((
959
960 )))
961
962 (((
963 The **AU915** band is similar. Below are the AU915 Uplink Channels.
964 )))
965
966 [[image:image-20220606154825-4.png]]
967
968
969
970 = 5. Trouble Shooting =
971
972 == 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
973
974 It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
975
976
977 == 5.2 AT Command input doesn’t work ==
978
979 (((
980 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
981 )))
982
983
984 == 5.3 Device rejoin in at the second uplink packet ==
985
986 (% style="color:#4f81bd" %)**Issue describe as below:**
987
988 [[image:1654500909990-784.png]]
989
990
991 (% style="color:#4f81bd" %)**Cause for this issue:**
992
993 (((
994 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
995 )))
996
997
998 (% style="color:#4f81bd" %)**Solution: **
999
1000 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1001
1002 [[image:1654500929571-736.png||height="458" width="832"]]
1003
1004
1005 = 6. ​Order Info =
1006
1007
1008 Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1009
1010
1011 (% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1012
1013 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1014 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1015 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1016 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1017 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1018 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1019 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1020 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1021
1022 (% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1023
1024 * (% style="color:red" %)**4**(%%): 4000mAh battery
1025 * (% style="color:red" %)**8**(%%): 8500mAh battery
1026
1027 (% class="wikigeneratedid" %)
1028 (((
1029
1030 )))
1031
1032 = 7. Packing Info =
1033
1034 (((
1035
1036
1037 (% style="color:#037691" %)**Package Includes**:
1038 )))
1039
1040 * (((
1041 LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
1042 )))
1043
1044 (((
1045
1046
1047 (% style="color:#037691" %)**Dimension and weight**:
1048 )))
1049
1050 * (((
1051 Device Size: cm
1052 )))
1053 * (((
1054 Device Weight: g
1055 )))
1056 * (((
1057 Package Size / pcs : cm
1058 )))
1059 * (((
1060 Weight / pcs : g
1061
1062
1063
1064 )))
1065
1066 = 8. Support =
1067
1068 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1069 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1070
1071
1072 ~)~)~)
1073 ~)~)~)
1074 ~)~)~)