Version 33.3 by Xiaoling on 2022/09/13 09:23

Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20220907171221-1.jpeg]]
3
4
5
6 {{toc/}}
7
8
9
10 = 1.  Introduction =
11
12
13 == 1.1 ​ What is NLMS01 Leaf Moisture Sensor ==
14
15
16 The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
17
18 NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
19
20 NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
21 \\NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
22 \\NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
23 \\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
24
25
26 ​[[image:image-20220907171221-2.png]]
27
28
29 ​ [[image:image-20220907171221-3.png]]
30
31
32
33 == ​1.2  Features ==
34
35
36 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
37 * Monitor Leaf moisture
38 * Monitor Leaf temperature
39 * Moisture and Temperature alarm function
40 * Monitor Battery Level
41 * Uplink on periodically
42 * Downlink to change configure
43 * IP66 Waterproof Enclosure
44 * IP67 rate for the Sensor Probe
45 * Ultra-Low Power consumption
46 * AT Commands to change parameters
47 * Micro SIM card slot for NB-IoT SIM
48 * 8500mAh Battery for long term use
49
50 (((
51
52
53
54
55 )))
56
57 == 1.3  Specification ==
58
59
60 (% style="color:#037691" %)**Common DC Characteristics:**
61
62 * Supply Voltage: 2.1v ~~ 3.6v
63 * Operating Temperature: -40 ~~ 85°C
64
65 (% style="color:#037691" %)**NB-IoT Spec:**
66
67 * - B1 @H-FDD: 2100MHz
68 * - B3 @H-FDD: 1800MHz
69 * - B8 @H-FDD: 900MHz
70 * - B5 @H-FDD: 850MHz
71 * - B20 @H-FDD: 800MHz
72 * - B28 @H-FDD: 700MHz
73
74 == 1.4  Probe Specification ==
75
76
77 (% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface**
78
79 * Range 0-100%
80 * Resolution: 0.1%
81 * Accuracy: ±3%(0-50%);±6%(>50%)
82 * IP67 Protection
83 * Length: 3.5 meters
84
85 (% style="color:#037691" %)**Leaf Temperature:**
86
87 * Range -50℃~80℃
88 * Resolution: 0.1℃
89 * Accuracy: <±0.5℃(-10℃~70℃),<±1.0℃ (others)
90 * IP67 Protection
91 * Length: 3.5 meters
92
93 == 1.5 ​ Applications ==
94
95
96 * Smart Agriculture
97
98 == 1.6  Pin mapping and power on ==
99
100
101 ​[[image:image-20220907171221-4.png]]
102
103 **~ **
104
105
106 = 2.  Use NLMS01 to communicate with IoT Server =
107
108
109 == 2.1  How it works ==
110
111
112 The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01.
113
114 The diagram below shows the working flow in default firmware of NLMS01:
115
116
117 [[image:image-20220907171221-5.png]]
118
119
120
121 == 2.2 ​ Configure the NLMS01 ==
122
123
124 === 2.2.1 Test Requirement ===
125
126
127 To use NLMS01 in your city, make sure meet below requirements:
128
129 * Your local operator has already distributed a NB-IoT Network there.
130 * The local NB-IoT network used the band that NLMS01 supports.
131 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
132
133 Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use(% style="color:#037691" %)** CoAP(120.24.4.116:5683) **(%%)or raw(% style="color:#037691" %)** UDP(120.24.4.116:5601)** or(%%) (% style="color:#037691" %)**MQTT(120.24.4.116:1883)**(%%)or (% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server
134
135
136 [[image:image-20220907171221-6.png]] ​
137
138
139
140 === 2.2.2 Insert SIM card ===
141
142
143 Insert the NB-IoT Card get from your provider.
144
145 User need to take out the NB-IoT module and insert the SIM card like below:
146
147
148 [[image:image-20220907171221-7.png]] ​
149
150
151
152 === 2.2.3 Connect USB – TTL to NLMS01 to configure it ===
153
154
155 User need to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
156
157
158 (% style="color:blue" %)**Connection:**
159
160 **~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)**
161
162 **~ (% style="background-color:yellow" %)USB TTL TXD  <~-~-~-~-> UART_RXD(%%)**
163
164 **~ (% style="background-color:yellow" %)USB TTL RXD  <~-~-~-~-> UART_TXD(%%)**
165
166
167 In the PC, use below serial tool settings:
168
169 * Baud:  (% style="color:green" %)**9600**
170 * Data bits:**  (% style="color:green" %)8(%%)**
171 * Stop bits:  (% style="color:green" %)**1**
172 * Parity:  (% style="color:green" %)**None**
173 * Flow Control: (% style="color:green" %)**None**
174
175 Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
176
177 ​[[image:image-20220913090720-1.png]]
178
179
180 (% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
181
182
183
184 === 2.2.4 Use CoAP protocol to uplink data ===
185
186
187 (% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
188
189
190 (% style="color:blue" %)**Use below commands:**
191
192 * (% style="color:#037691" %)**AT+PRO=1**          (%%) ~/~/  Set to use CoAP protocol to uplink
193 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%) ~/~/  to set CoAP server address and port
194 * (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
195
196
197
198 For parameter description, please refer to AT command set
199
200 [[image:image-20220907171221-9.png]]
201
202
203 After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
204
205 [[image:image-20220907171221-10.png]] ​
206
207
208
209 === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
210
211
212 This feature is supported since firmware version v1.0.1
213
214 * (% style="color:#037691" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
215 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601  ** (%%) ~/~/  to set UDP server address and port
216 * (% style="color:#037691" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
217
218
219
220 ​ [[image:image-20220907171221-11.png]]
221
222
223 [[image:image-20220907171221-12.png]]
224
225
226
227
228 === 2.2.6 Use MQTT protocol to uplink data ===
229
230
231 This feature is supported since firmware version v110
232
233 * (% style="color:#037691" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
234 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
235 * (% style="color:#037691" %)**AT+CLIENT=CLIENT       ** (%%) ~/~/  Set up the CLIENT of MQTT
236 * (% style="color:#037691" %)**AT+UNAME=UNAME                        **(%%)** **~/~/  Set the username of MQTT
237 * (% style="color:#037691" %)**AT+PWD=PWD                            **(%%)** **~/~/  Set the password of MQTT
238 * (% style="color:#037691" %)**AT+PUBTOPIC=PUB                    ** (%%) ~/~/  Set the sending topic of MQTT
239 * (% style="color:#037691" %)**AT+SUBTOPIC=SUB          ** (%%) ~/~/  Set the subscription topic of MQTT
240
241
242
243 ​ [[image:image-20220907171221-13.png]]
244
245
246
247 [[image:image-20220907171221-14.png]]
248
249
250
251 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
252
253
254
255 === 2.2.7 Use TCP protocol to uplink data ===
256
257
258 This feature is supported since firmware version v110
259
260 * (% style="color:#037691" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
261 * (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600   ** (%%) ~/~/  to set TCP server address and port
262
263
264
265 ​ [[image:image-20220907171221-15.png]]
266
267
268
269 [[image:image-20220907171221-16.png]]
270
271
272
273
274 === 2.2.8 Change Update Interval ===
275
276
277 User can use below command to change the **uplink interval**.
278
279 * (% style="color:#037691" %)**AT+TDC=7200      ** (%%) ~/~/ Set Update Interval to 7200s (2 hour)
280
281
282
283 (% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
284
285
286
287 == 2.3  Uplink Payload ==
288
289
290 In this mode, uplink payload includes 87 bytes in total by default.
291
292 Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
293
294
295 (% border="1" style="background-color:#ffffcc; color:green; width:1251px" %)
296 |(% style="width:96px" %)**Size(bytes)**|(% style="width:82px" %)**8**|(% style="width:42px" %)**2**|(% style="width:48px" %)**2**|(% style="width:124px" %)1|(% style="width:58px" %)1|(% style="width:82px" %)1|(% style="width:113px" %)2|(% style="width:134px" %)2|(% style="width:100px" %)4|(% style="width:137px" %)2|(% style="width:110px" %)2|(% style="width:122px" %)4
297 |(% style="width:96px" %)**Value**|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
298
299
300 If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
301
302
303 [[image:image-20220907171221-17.png]]
304
305
306 The payload is ASCII string, representative same HEX:
307
308 0x(% style="color:red" %)f868411056754138(% style="color:blue" %)0064(% style="color:green" %)0c78(% style="color:red" %)17(% style="color:blue" %)01(% style="color:green" %)00(% style="color:blue" %)**0225010b6315537b**010b0226631550fb**010e022663154d77**01110225631549f1**011502246315466b**01190223631542e5**011d022163153f62**011e022163153bde**011e022163153859**(%%)** **where:
309
310 * (% style="color:red" %)Device ID: 0xf868411056754138 = f868411056754138
311 * (% style="color:blue" %)Version: 0x0064=100=1.0.0
312 * (% style="color:green" %)BAT: 0x0c78 = 3192 mV = 3.192V
313 * (% style="color:red" %)Singal: 0x17 = 23
314 * (% style="color:blue" %)Mod: 0x01 = 1
315 * (% style="color:green" %)Interrupt: 0x00= 0
316 * Leaf moisture: 0x0225= 549 = 54.9%
317 * Leaf Temperature:0x010B =267=26.7 °C
318 * Time stamp : 0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
319 * Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
320 * (% style="color:blue" %)8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
321
322
323
324
325
326 == 2.4  Payload Explanation and Sensor Interface ==
327
328
329 === 2.4.1  Device ID ===
330
331
332 By default, the Device ID equal to the last 15 bits of IMEI.
333
334 User can use **AT+DEUI** to set Device ID
335
336
337 **Example:**
338
339 AT+DEUI=868411056754138
340
341 The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
342
343
344
345 === 2.4.2  Version Info ===
346
347
348 Specify the software version: 0x64=100, means firmware version 1.00.
349
350 For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
351
352
353
354 === 2.4.3  Battery Info ===
355
356
357 Check the battery voltage for NLMS01.
358
359 Ex1: 0x0B45 = 2885mV
360
361 Ex2: 0x0B49 = 2889mV
362
363
364
365 === 2.4.4  Signal Strength ===
366
367
368 NB-IoT Network signal Strength.
369
370 **Ex1: 0x1d = 29**
371
372 **0**  -113dBm or less
373
374 **1**  -111dBm
375
376 **2...30** -109dBm... -53dBm
377
378 **31**   -51dBm or greater
379
380 **99**    Not known or not detectable
381
382
383
384 === 2.4.5  Leaf moisture ===
385
386
387 Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**.
388
389 For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is
390
391 **0229(H) = 549(D) /100 = 54.9.**
392
393
394
395 === 2.4.6  Leaf Temperature ===
396
397
398 Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is
399
400 **Example**:
401
402 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
403
404 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
405
406
407
408 === 2.4.7  Timestamp ===
409
410
411 Time stamp : 0x6315537b =1662342011
412
413 Convert Unix timestamp to time 2022-9-5 9:40:11.
414
415
416 === 2.4.8  Digital Interrupt ===
417
418
419 Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
420
421 The command is:
422
423 **AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
424
425 The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
426
427 Example:
428
429 0x(00): Normal uplink packet.
430
431 0x(01): Interrupt Uplink Packet.
432
433
434
435 === 2.4.9  ​+5V Output ===
436
437
438 NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 
439
440 The 5V output time can be controlled by AT Command.
441
442 **AT+5VT=1000**
443
444 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
445
446
447
448 == 2.5  Downlink Payload ==
449
450
451 By default, NLMS01 prints the downlink payload to console port.
452
453 [[image:image-20220907171221-18.png]] ​
454
455
456 **Examples:**
457
458 * **Set TDC**
459
460 If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
461
462 Payload:    01 00 00 1E    TDC=30S
463
464 Payload:    01 00 00 3C    TDC=60S
465
466 * **Reset**
467
468 If payload = 0x04FF, it will reset the NLMS01
469
470 * **INTMOD**
471
472 Downlink Payload: 06000003, Set AT+INTMOD=3
473
474
475
476 == 2.6  ​LED Indicator ==
477
478
479 The NLMS01 has an internal LED which is to show the status of different state.
480
481 * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
482 * Then the LED will be on for 1 second means device is boot normally.
483 * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
484 * For each uplink probe, LED will be on for 500ms.
485
486
487
488
489 == 2.7  Installation ==
490
491
492 NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor.
493
494
495 [[image:image-20220907171221-19.png]]
496
497
498
499 == 2.8  Moisture and Temperature alarm function ==
500
501
502 **➢ AT Command:**
503
504 **AT+ HUMALARM =min,max**
505
506 ² When min=0, and max≠0, Alarm higher than max
507
508 ² When min≠0, and max=0, Alarm lower than min
509
510 ² When min≠0 and max≠0, Alarm higher than max or lower than min
511
512
513 **Example:**
514
515 AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50.
516
517 AT+ TEMPALARM=min,max
518
519 ² When min=0, and max≠0, Alarm higher than max
520
521 ² When min≠0, and max=0, Alarm lower than min
522
523 ² When min≠0 and max≠0, Alarm higher than max or lower than min
524
525
526 **Example:**
527
528 AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
529
530
531
532 == 2.9  Set the number of data to be uploaded and the recording time ==
533
534
535 **➢ AT Command:**
536
537 **AT+TR=900**  ~/~/  The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
538
539 **AT+NOUD=8**  ~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
540
541
542
543 == 2.10  Read or Clear cached data ==
544
545
546 **➢ AT Command:**
547
548 **AT+CDP**  ~/~/  Read cached data
549
550 **AT+CDP=0  ** ~/~/  Clear cached data
551
552
553 [[image:image-20220907171221-20.png]]
554
555
556
557 == 2.11  ​Firmware Change Log ==
558
559
560 Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]]
561
562 Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]]
563
564
565
566 == 2.12  ​Battery Analysis ==
567
568
569 === 2.12.1  ​Battery Type ===
570
571
572 The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
573
574 The battery is designed to last for several years depends on the actually use environment and update interval. 
575
576 The battery related documents as below:
577
578 * [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
579 * [[Lithium-Thionyl Chloride Battery datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
580 * [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
581
582 [[image:image-20220907171221-21.png]] ​
583
584
585
586 === 2.12.2  Power consumption Analyze ===
587
588
589 Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
590
591 Instruction to use as below:
592
593 **Step 1:  **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
594
595 **Step 2: ** Open it and choose
596
597 * Product Model
598 * Uplink Interval
599 * Working Mode
600
601 And the Life expectation in difference case will be shown on the right.
602
603 [[image:image-20220907171221-22.jpeg]] ​
604
605
606 === 2.12.3  ​Battery Note ===
607
608
609 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
610
611
612
613 === 2.12.4  Replace the battery ===
614
615
616 The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
617
618
619
620 = 3. ​ Access NB-IoT Module =
621
622
623 Users can directly access the AT command set of the NB-IoT module.
624
625 The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
626
627
628 [[image:image-20220907171221-23.png]] ​
629
630
631
632 = 4.  Using the AT Commands =
633
634
635 == 4.1  Access AT Commands ==
636
637
638 See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
639
640 AT+<CMD>?  : Help on <CMD>
641
642 AT+<CMD>         : Run <CMD>
643
644 AT+<CMD>=<value> : Set the value
645
646 AT+<CMD>=?  : Get the value
647
648
649 **General Commands**      
650
651 AT  : Attention       
652
653 AT?  : Short Help     
654
655 ATZ  : MCU Reset    
656
657 AT+TDC  : Application Data Transmission Interval
658
659 AT+CFG  : Print all configurations
660
661 AT+CFGMOD           : Working mode selection
662
663 AT+INTMOD            : Set the trigger interrupt mode
664
665 AT+5VT  : Set extend the time of 5V power  
666
667 AT+PRO  : Choose agreement
668
669 AT+RXDL  : Extend the sending and receiving time
670
671 AT+SERVADDR  : Server Address
672
673 AT+APN     : Get or set the APN
674
675 AT+FBAND   : Get or Set whether to automatically modify the frequency band
676
677 AT+DNSCFG  : Get or Set DNS Server
678
679 AT+GETSENSORVALUE   : Returns the current sensor measurement
680
681 AT+TR      : Get or Set record time"
682
683 AT+NOUD      : Get or Set the number of data to be uploaded
684
685 AT+CDP     : Read or Clear cached data
686
687 AT+TEMPALARM      : Get or Set alarm of temp
688
689 AT+HUMALARM     : Get or Set alarm of PH
690
691
692 **COAP Management**      
693
694 AT+URI            : Resource parameters
695
696
697 **UDP Management**
698
699 AT+CFM          : Upload confirmation mode (only valid for UDP)
700
701
702 **MQTT Management**
703
704 AT+CLIENT               : Get or Set MQTT client
705
706 AT+UNAME  : Get or Set MQTT Username
707
708 AT+PWD                  : Get or Set MQTT password
709
710 AT+PUBTOPIC  : Get or Set MQTT publish topic
711
712 AT+SUBTOPIC  : Get or Set MQTT subscription topic
713
714
715 **Information**          
716
717 AT+FDR  : Factory Data Reset
718
719 AT+PWORD  : Serial Access Password
720
721
722
723 = ​5.  FAQ =
724
725
726 == 5.1 ​ How to Upgrade Firmware ==
727
728
729 User can upgrade the firmware for 1) bug fix, 2) new feature release.
730
731 Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
732
733 **Notice, NLMS01** **and LLMS01** **share the same mother board. They use the same connection and method to update.**
734
735
736
737 = 6.  Trouble Shooting =
738
739
740 == 6.1  ​Connection problem when uploading firmware ==
741
742
743 **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
744
745
746
747 == 6.2  AT Command input doesn't work ==
748
749
750 In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string.
751
752
753
754 = 7. ​ Order Info =
755
756
757 Part Number**:** NLMS01
758
759
760
761 = 8.  Packing Info =
762
763
764 **Package Includes**:
765
766 * NLMS01 NB-IoT Leaf Moisture Sensor x 1
767
768 **Dimension and weight**:
769
770 * Device Size: cm
771 * Device Weight: g
772 * Package Size / pcs : cm
773 * Weight / pcs : g
774
775
776
777
778 = 9.  Support =
779
780
781 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
782 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
783
784