<
From version < 43.1
edited by Mengting Qiu
on 2024/04/02 16:54
To version < 33.1 >
edited by Xiaoling
on 2022/09/13 09:07
Change comment: Uploaded new attachment "image-20220913090720-1.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Xiaoling
Content
... ... @@ -1,15 +3,8 @@
1 -
2 -
3 3  (% style="text-align:center" %)
4 4  [[image:image-20220907171221-1.jpeg]]
5 5  
6 6  ​
7 7  
8 -
9 -
10 -
11 -
12 -
13 13  {{toc/}}
14 14  
15 15  
... ... @@ -16,24 +16,20 @@
16 16  
17 17  = 1.  Introduction =
18 18  
12 +
19 19  == 1.1 ​ What is NLMS01 Leaf Moisture Sensor ==
20 20  
21 21  
22 -(((
23 23  The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
24 24  
25 25  NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
26 26  
27 27  NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
21 +\\NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
22 +\\NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
23 +\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
28 28  
29 -NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
30 30  
31 -NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
32 -
33 -To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
34 -)))
35 -
36 -
37 37  ​[[image:image-20220907171221-2.png]]
38 38  
39 39  
... ... @@ -40,6 +40,7 @@
40 40  ​ [[image:image-20220907171221-3.png]]
41 41  
42 42  
32 +
43 43  == ​1.2  Features ==
44 44  
45 45  
... ... @@ -60,6 +60,7 @@
60 60  (((
61 61  
62 62  
53 +
63 63  
64 64  )))
65 65  
... ... @@ -71,20 +71,23 @@
71 71  * Supply Voltage: 2.1v ~~ 3.6v
72 72  * Operating Temperature: -40 ~~ 85°C
73 73  
65 +
74 74  (% style="color:#037691" %)**NB-IoT Spec:**
75 75  
76 -* B1 @H-FDD: 2100MHz
77 -* B3 @H-FDD: 1800MHz
78 -* B8 @H-FDD: 900MHz
79 -* B5 @H-FDD: 850MHz
80 -* B20 @H-FDD: 800MHz
81 -* B28 @H-FDD: 700MHz
68 +* - B1 @H-FDD: 2100MHz
69 +* - B3 @H-FDD: 1800MHz
70 +* - B8 @H-FDD: 900MHz
71 +* - B5 @H-FDD: 850MHz
72 +* - B20 @H-FDD: 800MHz
73 +* - B28 @H-FDD: 700MHz
82 82  
83 -== 1.4  Probe Specification ==
84 84  
85 85  
86 -(% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface**
77 +== 1.4 Probe Specification ==
87 87  
79 +
80 +**Leaf Moisture: percentage of water drop over total leaf surface**
81 +
88 88  * Range 0-100%
89 89  * Resolution: 0.1%
90 90  * Accuracy: ±3%(0-50%);±6%(>50%)
... ... @@ -91,7 +91,7 @@
91 91  * IP67 Protection
92 92  * Length: 3.5 meters
93 93  
94 -(% style="color:#037691" %)**Leaf Temperature:**
88 +**Leaf Temperature:**
95 95  
96 96  * Range -50℃~80℃
97 97  * Resolution: 0.1℃
... ... @@ -99,14 +99,12 @@
99 99  * IP67 Protection
100 100  * Length: 3.5 meters
101 101  
102 -== 1.5 ​ Applications ==
96 +== 1.5 ​Applications ==
103 103  
104 -
105 105  * Smart Agriculture
106 106  
107 -== 1.6  Pin mapping and power on ==
100 +== 1.6 Pin mapping and power on ==
108 108  
109 -
110 110  ​[[image:image-20220907171221-4.png]]
111 111  
112 112  **~ **
... ... @@ -115,20 +115,16 @@
115 115  
116 116  == 2.1  How it works ==
117 117  
118 -
119 119  The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01.
120 120  
121 121  The diagram below shows the working flow in default firmware of NLMS01:
122 122  
123 -
124 124  [[image:image-20220907171221-5.png]]
125 125  
126 -
127 127  == 2.2 ​ Configure the NLMS01 ==
128 128  
129 129  === 2.2.1 Test Requirement ===
130 130  
131 -
132 132  To use NLMS01 in your city, make sure meet below requirements:
133 133  
134 134  * Your local operator has already distributed a NB-IoT Network there.
... ... @@ -135,87 +135,72 @@
135 135  * The local NB-IoT network used the band that NLMS01 supports.
136 136  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
137 137  
138 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use(% style="color:#037691" %)** CoAP(120.24.4.116:5683) **(%%)or raw(% style="color:#037691" %)** UDP(120.24.4.116:5601)** or(%%) (% style="color:#037691" %)**MQTT(120.24.4.116:1883)**(%%)or (% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server
126 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server
139 139  
140 -
141 141  [[image:image-20220907171221-6.png]] ​
142 142  
143 -
144 144  === 2.2.2 Insert SIM card ===
145 145  
146 -
147 147  Insert the NB-IoT Card get from your provider.
148 148  
149 149  User need to take out the NB-IoT module and insert the SIM card like below:
150 150  
151 -
152 152  [[image:image-20220907171221-7.png]] ​
153 153  
154 -
155 155  === 2.2.3 Connect USB – TTL to NLMS01 to configure it ===
156 156  
140 +User need to configure NLMS01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
157 157  
158 -User need to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
142 +**Connection:**
159 159  
144 + USB TTL GND <~-~-~-~-> GND
160 160  
161 -(% style="color:blue" %)**Connection:**
146 + USB TTL TXD <~-~-~-~-> UART_RXD
162 162  
163 -**~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)**
148 + USB TTL RXD <~-~-~-~-> UART_TXD
164 164  
165 -**~ (% style="background-color:yellow" %)USB TTL TXD  <~-~-~-~-> UART_RXD(%%)**
166 -
167 -**~ (% style="background-color:yellow" %)USB TTL RXD  <~-~-~-~-> UART_TXD(%%)**
168 -
169 -
170 170  In the PC, use below serial tool settings:
171 171  
172 -* Baud:  (% style="color:green" %)**9600**
173 -* Data bits:**  (% style="color:green" %)8(%%)**
174 -* Stop bits:  (% style="color:green" %)**1**
175 -* Parity:  (% style="color:green" %)**None**
176 -* Flow Control: (% style="color:green" %)**None**
152 +* Baud:  **9600**
153 +* Data bits:** 8**
154 +* Stop bits: **1**
155 +* Parity:  **None**
156 +* Flow Control: **None**
177 177  
178 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
158 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
179 179  
180 -​[[image:image-20220913090720-1.png]]
160 +​[[image:image-20220907171221-8.png]]
181 181  
162 +**Note: the valid AT Commands can be found at:  **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
182 182  
183 -(% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
184 -
185 -
186 186  === 2.2.4 Use CoAP protocol to uplink data ===
187 187  
166 +**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
188 188  
189 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
168 +**Use below commands:**
190 190  
170 +* **AT+PRO=1**   ~/~/ Set to use CoAP protocol to uplink
171 +* **AT+SERVADDR=120.24.4.116,5683   ** ~/~/ to set CoAP server address and port
172 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path
191 191  
192 -(% style="color:blue" %)**Use below commands:**
193 -
194 -* (% style="color:#037691" %)**AT+PRO=1**          (%%) ~/~/  Set to use CoAP protocol to uplink
195 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%) ~/~/  to set CoAP server address and port
196 -* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
197 -
198 198  For parameter description, please refer to AT command set
199 199  
200 200  [[image:image-20220907171221-9.png]]
201 201  
178 +After configure the server address and **reset the device** (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
202 202  
203 -After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
204 -
205 205  [[image:image-20220907171221-10.png]] ​
206 206  
207 -
208 208  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
209 209  
210 -
211 211  This feature is supported since firmware version v1.0.1
212 212  
213 -* (% style="color:#037691" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
214 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601     ** (%%) ~/~/  to set UDP server address and port
186 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
187 +* **AT+SERVADDR=120.24.4.116,5601   ** ~/~/ to set UDP server address and port
188 +* **AT+CFM=1       ** ~/~/If the server does not respond, this command is unnecessary
215 215  
216 216  ​ [[image:image-20220907171221-11.png]]
217 217  
218 -
219 219  [[image:image-20220907171221-12.png]]
220 220  
221 221  ​
... ... @@ -222,21 +222,18 @@
222 222  
223 223  === 2.2.6 Use MQTT protocol to uplink data ===
224 224  
225 -
226 226  This feature is supported since firmware version v110
227 227  
228 -* (% style="color:#037691" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
229 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
230 -* (% style="color:#037691" %)**AT+CLIENT=CLIENT       ** (%%) ~/~/  Set up the CLIENT of MQTT
231 -* (% style="color:#037691" %)**AT+UNAME=UNAME                        **(%%)** **~/~/  Set the username of MQTT
232 -* (% style="color:#037691" %)**AT+PWD=PWD                            **(%%)** **~/~/  Set the password of MQTT
233 -* (% style="color:#037691" %)**AT+PUBTOPIC=PUB                    ** (%%) ~/~/  Set the sending topic of MQTT
234 -* (% style="color:#037691" %)**AT+SUBTOPIC=SUB          ** (%%) ~/~/  Set the subscription topic of MQTT
200 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
201 +* **AT+SERVADDR=120.24.4.116,1883   ** ~/~/Set MQTT server address and port
202 +* **AT+CLIENT=CLIENT       ** ~/~/Set up the CLIENT of MQTT
203 +* **AT+UNAME=UNAME                               **~/~/Set the username of MQTT
204 +* **AT+PWD=PWD                                        **~/~/Set the password of MQTT
205 +* **AT+PUBTOPIC=PUB                    **~/~/Set the sending topic of MQTT
206 +* **AT+SUBTOPIC=SUB          ** ~/~/Set the subscription topic of MQTT
235 235  
236 236  ​ [[image:image-20220907171221-13.png]]
237 237  
238 -
239 -
240 240  [[image:image-20220907171221-14.png]]
241 241  
242 242  ​
... ... @@ -243,107 +243,79 @@
243 243  
244 244  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
245 245  
246 -
247 247  === 2.2.7 Use TCP protocol to uplink data ===
248 248  
249 -
250 250  This feature is supported since firmware version v110
251 251  
252 -* (% style="color:#037691" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
253 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600   ** (%%) ~/~/  to set TCP server address and port
220 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
221 +* **AT+SERVADDR=120.24.4.116,5600   ** ~/~/ to set TCP server address and port
254 254  
255 255  ​ [[image:image-20220907171221-15.png]]
256 256  
257 -
258 -
259 259  [[image:image-20220907171221-16.png]]
260 260  
261 261  ​
262 262  
263 -
264 264  === 2.2.8 Change Update Interval ===
265 265  
266 -
267 267  User can use below command to change the **uplink interval**.
268 268  
269 -* (% style="color:#037691" %)**AT+TDC=7200      ** (%%) ~/~/ Set Update Interval to 7200s (2 hour)
233 +* **AT+TDC=7200      ** ~/~/ Set Update Interval to 7200s (2 hour)
270 270  
271 -(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
235 +**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
272 272  
273 273  
274 274  == 2.3  Uplink Payload ==
275 275  
276 -
277 277  In this mode, uplink payload includes 87 bytes in total by default.
278 278  
279 279  Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
280 280  
281 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
282 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:40px" %)**8**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**|(% style="background-color:#4f81bd; color:white; width:30px" %)**1**|(% style="background-color:#4f81bd; color:white; width:40px" %)**1**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**4**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:37px" %)**4**
283 -|(% style="width:96px" %)Value|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
244 +|**Size(bytes)**|**8**|**2**|**2**|1|1|1|2|2|4|2|2|4
245 +|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Leaf moisture|Leaf Temperature|Time stamp|Leaf Temperature|Leaf moisture|Time stamp  .....
284 284  
285 285  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
286 286  
287 -
288 288  [[image:image-20220907171221-17.png]]
289 289  
290 -
291 291  The payload is ASCII string, representative same HEX:
292 292  
293 -**0x (% style="color:red" %)__f868411056754138__  (% style="color:blue" %)__0064 __ (% style="color:green" %)__0c78__  (% style="color:#00b0f0" %)__17__  (% style="color:#7030a0" %)__01__  (% style="color:#d60093" %)__00__  (% style="color:#a14d07" %)__0225 __ (% style="color:#0020b0" %) __010b__  (% style="color:#420042" %)__6315537b__  (% style="color:#663300" %)//__010b0226631550fb__  __010e022663154d77  01110225631549f1  011502246315466b  01190223631542e5  011d022163153f62  011e022163153bde 011e022163153859__//(%%)**
253 +0x(% style="color:red" %)f868411056754138(% style="color:blue" %)0064(% style="color:green" %)0c78(% style="color:red" %)17(% style="color:blue" %)01(% style="color:green" %)00(% style="color:blue" %)**0225010b6315537b**010b0226631550fb**010e022663154d77**01110225631549f1**011502246315466b**01190223631542e5**011d022163153f62**011e022163153bde**011e022163153859**(%%)** **where:
294 294  
295 -where:
255 +* (% style="color:red" %)Device ID: 0xf868411056754138 = f868411056754138
256 +* (% style="color:blue" %)Version: 0x0064=100=1.0.0
257 +* (% style="color:green" %)BAT: 0x0c78 = 3192 mV = 3.192V
258 +* (% style="color:red" %)Singal: 0x17 = 23
259 +* (% style="color:blue" %)Mod: 0x01 = 1
260 +* (% style="color:green" %)Interrupt: 0x00= 0
261 +* Leaf moisture: 0x0225= 549 = 54.9%
262 +* Leaf Temperature:0x010B =267=26.7 °C
263 +* Time stamp : 0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
264 +* Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
265 +* (% style="color:blue" %)8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
296 296  
297 -* (% style="color:#037691" %)**Device ID:**(%%) 0xf868411056754138 = f868411056754138
298 -
299 -* (% style="color:#037691" %)**Version:**(%%) 0x0064=100=1.0.0
300 -
301 -* (% style="color:#037691" %)**BAT:**       (%%)0x0c78 = 3192 mV = 3.192V
302 -
303 -* (% style="color:#037691" %)**Singal:**(%%)  0x17 = 23
304 -
305 -* (% style="color:#037691" %)**Mod:**(%%)  0x01 = 1
306 -
307 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0
308 -
309 -* (% style="color:#037691" %)**Leaf moisture:**(%%) 0x0225= 549 = 54.9%
310 -
311 -* (% style="color:#037691" %)**Leaf Temperature: **(%%)0x010B =267=26.7 °C
312 -
313 -* (% style="color:#037691" %)**Time stamp :**   (%%)0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
314 -
315 -* (% style="color:#037691" %)**Leaf Temperature, Leaf moisture,Time stamp :  **(%%)010b0226631550fb
316 -
317 -* (% style="color:#037691" %)**8 sets of recorded data: **(%%)Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
318 -
319 319  == 2.4  Payload Explanation and Sensor Interface ==
320 320  
321 321  === 2.4.1  Device ID ===
322 322  
323 -
324 324  By default, the Device ID equal to the last 15 bits of IMEI.
325 325  
326 -User can use (% style="color:#037691" %)**AT+DEUI**(%%) to set Device ID
273 +User can use **AT+DEUI** to set Device ID
327 327  
275 +**Example:**
328 328  
329 -(% style="color:blue" %)**Example**:
330 -
331 331  AT+DEUI=868411056754138
332 332  
333 333  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
334 334  
335 -
336 336  === 2.4.2  Version Info ===
337 337  
338 -
339 339  Specify the software version: 0x64=100, means firmware version 1.00.
340 340  
341 341  For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
342 342  
343 -
344 344  === 2.4.3  Battery Info ===
345 345  
346 -
347 347  Check the battery voltage for NLMS01.
348 348  
349 349  Ex1: 0x0B45 = 2885mV
... ... @@ -350,15 +350,12 @@
350 350  
351 351  Ex2: 0x0B49 = 2889mV
352 352  
353 -
354 354  === 2.4.4  Signal Strength ===
355 355  
356 -
357 357  NB-IoT Network signal Strength.
358 358  
299 +**Ex1: 0x1d = 29**
359 359  
360 -(% style="color:blue" %)**Ex1: 0x1d = 29**
361 -
362 362  **0**  -113dBm or less
363 363  
364 364  **1**  -111dBm
... ... @@ -369,45 +369,37 @@
369 369  
370 370  **99**    Not known or not detectable
371 371  
372 -
373 373  === 2.4.5  Leaf moisture ===
374 374  
313 +Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**.
375 375  
376 -Get the moisture of the (% style="color:#037691" %)**Leaf**(%%). The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the Leaf.
315 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is
377 377  
378 -For example, if the data you get from the register is (% style="color:#037691" %)**__0x05 0xDC__**(%%), the moisture content in the (% style="color:#037691" %)**Leaf**(%%) is
317 +**0229(H) = 549(D) /100 = 54.9.**
379 379  
380 -(% style="color:blue" %)**0229(H) = 549(D) /100 = 54.9.**
381 -
382 -
383 383  === 2.4.6  Leaf Temperature ===
384 384  
321 +Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is
385 385  
386 -Get the temperature in the Leaf. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the Leaf. For example, if the data you get from the register is (% style="color:#037691" %)**__0x09 0xEC__**(%%), the temperature content in the (% style="color:#037691" %)**Leaf **(%%)is
323 +**Example**:
387 387  
388 -(% style="color:blue" %)**Example**:
325 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
389 389  
390 -If payload is **0105H**: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
327 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
391 391  
392 -If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
393 -
394 -
395 395  === 2.4.7  Timestamp ===
396 396  
397 -
398 398  Time stamp : 0x6315537b =1662342011
399 399  
400 400  Convert Unix timestamp to time 2022-9-5 9:40:11.
401 401  
402 -
403 403  === 2.4.8  Digital Interrupt ===
404 404  
337 +Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
405 405  
406 -Digital Interrupt refers to pin (% style="color:#037691" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
407 -
408 408  The command is:
409 409  
410 -(% style="color:blue" %)**AT+INTMOD=3 ** (%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
341 +**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
411 411  
412 412  The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
413 413  
... ... @@ -417,15 +417,13 @@
417 417  
418 418  0x(01): Interrupt Uplink Packet.
419 419  
420 -
421 421  === 2.4.9  ​+5V Output ===
422 422  
423 -
424 424  NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 
425 425  
426 426  The 5V output time can be controlled by AT Command.
427 427  
428 -(% style="color:blue" %)**AT+5VT=1000**
357 +**AT+5VT=1000**
429 429  
430 430  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
431 431  
... ... @@ -432,22 +432,14 @@
432 432  
433 433  == 2.5  Downlink Payload ==
434 434  
435 -
436 436  By default, NLMS01 prints the downlink payload to console port.
437 437  
438 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
439 -|=(% style="width: 183px; background-color:#4F81BD;color:white" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)FPort|=(% style="width: 93px; background-color:#4F81BD;color:white" %)**Type Code**|=(% style="width: 179px; background-color:#4F81BD;color:white" %)**Downlink payload size(bytes)**
440 -|(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4
441 -|(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2
442 -|(% style="width:183px" %)INTMOD|(% style="width:55px" %)Any|(% style="width:93px" %)06|(% style="width:146px" %)4
366 +[[image:image-20220907171221-18.png]] ​
443 443  
444 -
368 +**Examples:**
445 445  
446 -(% style="color:blue" %)**Examples:**
370 +* **Set TDC**
447 447  
448 -
449 -* (% style="color:#037691" %)**Set TDC**
450 -
451 451  If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
452 452  
453 453  Payload:    01 00 00 1E    TDC=30S
... ... @@ -454,22 +454,16 @@
454 454  
455 455  Payload:    01 00 00 3C    TDC=60S
456 456  
378 +* **Reset**
457 457  
458 -
459 -* (% style="color:#037691" %)**Reset**
460 -
461 461  If payload = 0x04FF, it will reset the NLMS01
462 462  
382 +* **INTMOD**
463 463  
464 -
465 -* (% style="color:#037691" %)**INTMOD**
466 -
467 467  Downlink Payload: 06000003, Set AT+INTMOD=3
468 468  
469 -
470 470  == 2.6  ​LED Indicator ==
471 471  
472 -
473 473  The NLMS01 has an internal LED which is to show the status of different state.
474 474  
475 475  * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
... ... @@ -477,22 +477,18 @@
477 477  * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
478 478  * For each uplink probe, LED will be on for 500ms.
479 479  
480 -== 2.7  Installation ==
395 +== 2.7 Installation ==
481 481  
482 -
483 483  NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor.
484 484  
485 -
486 486  [[image:image-20220907171221-19.png]]
487 487  
401 +== 2.8 Moisture and Temperature alarm function ==
488 488  
489 -== 2.8  Moisture and Temperature alarm function ==
403 + AT Command:
490 490  
405 +AT+ HUMALARM =min,max
491 491  
492 -(% style="color:blue" %)**➢ AT Command:**
493 -
494 -(% style="color:#037691" %)**AT+ HUMALARM =min,max**
495 -
496 496  ² When min=0, and max≠0, Alarm higher than max
497 497  
498 498  ² When min≠0, and max=0, Alarm lower than min
... ... @@ -499,9 +499,8 @@
499 499  
500 500  ² When min≠0 and max≠0, Alarm higher than max or lower than min
501 501  
413 +Example:
502 502  
503 -(% style="color:blue" %)**Example:**
504 -
505 505  AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50.
506 506  
507 507  AT+ TEMPALARM=min,max
... ... @@ -512,206 +512,201 @@
512 512  
513 513  ² When min≠0 and max≠0, Alarm higher than max or lower than min
514 514  
425 +Example:
515 515  
516 -(% style="color:blue" %)**Example:**
517 -
518 518  AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
519 519  
520 520  
521 -== 2.9  Set the number of data to be uploaded and the recording time ==
430 +== 2.9 Set the number of data to be uploaded and the recording time ==
522 522  
432 +➢ AT Command:
523 523  
524 -(% style="color:blue" %)**➢ AT Command:**
434 +AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
525 525  
526 -* (% style="color:#037691" %)**AT+TR=900**   (%%) ~/~/  The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
527 -* (% style="color:#037691" %)**AT+NOUD=8**  (%%)~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
436 +AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
528 528  
529 - The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:**
438 +== 2.10 Read or Clear cached data ==
530 530  
531 -[[image:image-20221009001002-1.png||height="706" width="982"]]
440 +➢ AT Command:
532 532  
442 +AT+CDP    ~/~/ Read cached data
533 533  
534 -== 2.10  Read or Clear cached data ==
444 +[[image:image-20220907171221-20.png]]
535 535  
536 536  
537 -(% style="color:blue" %)**➢ AT Command:**
447 +AT+CDP=0    ~/~/ Clear cached data
538 538  
539 -* (% style="color:#037691" %)**AT+CDP**      (%%) ~/~/  Read cached data
540 -* (% style="color:#037691" %)**AT+CDP=0  ** (%%) ~/~/  Clear cached data
541 541  
542 -[[image:image-20220907171221-20.png]]
450 +== 2.11  ​Firmware Change Log ==
543 543  
452 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]]
544 544  
545 -== 2.11  Firmware Change Log ==
454 +Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]]
546 546  
456 +== 2.12  ​Battery Analysis ==
547 547  
548 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0>>https://www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0]]
458 +=== 2.12.1  ​Battery Type ===
549 549  
550 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
460 +The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
551 551  
462 +The battery is designed to last for several years depends on the actually use environment and update interval. 
552 552  
553 -== 2.12 Battery & Power Consumption ==
464 +The battery related documents as below:
554 554  
466 +* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
467 +* [[Lithium-Thionyl Chloride Battery datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
468 +* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
555 555  
556 -NLMS01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
470 +[[image:image-20220907171221-21.png]]
557 557  
558 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
472 +=== 2.12.2  Power consumption Analyze ===
559 559  
474 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
560 560  
561 -= 3. ​ Access NB-IoT Module =
476 +Instruction to use as below:
562 562  
478 +**Step 1:  **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
563 563  
480 +**Step 2: ** Open it and choose
481 +
482 +* Product Model
483 +* Uplink Interval
484 +* Working Mode
485 +
486 +And the Life expectation in difference case will be shown on the right.
487 +
488 +[[image:image-20220907171221-22.jpeg]] ​
489 +
490 +=== 2.12.3  ​Battery Note ===
491 +
492 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
493 +
494 +=== 2.12.4  Replace the battery ===
495 +
496 +The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
497 +
498 += 3. ​ Access NB-IoT Module =
499 +
564 564  Users can directly access the AT command set of the NB-IoT module.
565 565  
566 566  The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
567 567  
568 -
569 569  [[image:image-20220907171221-23.png]] ​
570 570  
571 -
572 572  = 4.  Using the AT Commands =
573 573  
574 574  == 4.1  Access AT Commands ==
575 575  
576 -
577 577  See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
578 578  
579 -AT+<CMD>?  :  Help on <CMD>
512 +AT+<CMD>?  : Help on <CMD>
580 580  
581 -AT+<CMD>  Run <CMD>
514 +AT+<CMD>         : Run <CMD>
582 582  
583 -AT+<CMD>=<value>:  Set the value
516 +AT+<CMD>=<value> : Set the value
584 584  
585 -AT+<CMD>=?  Get the value
518 +AT+<CMD>=?  : Get the value
586 586  
520 +**General Commands**      
587 587  
588 -(% style="color:#037691" %)**General Commands**      
522 +AT  : Attention       
589 589  
590 -AT  Attention       
524 +AT?  : Short Help     
591 591  
592 -AT?  Short Help     
526 +ATZ  : MCU Reset    
593 593  
594 -ATZ  :  MCU Reset    
528 +AT+TDC  : Application Data Transmission Interval
595 595  
596 -AT+TDC  :  Application Data Transmission Interval
530 +AT+CFG  : Print all configurations
597 597  
598 -AT+CFG  :  Print all configurations
532 +AT+CFGMOD           : Working mode selection
599 599  
600 -AT+CFGMOD  :  Working mode selection
534 +AT+INTMOD            : Set the trigger interrupt mode
601 601  
602 -AT+INTMOD  Set the trigger interrupt mode
536 +AT+5V : Set extend the time of 5V power  
603 603  
604 -AT+5VT  Set extend the time of 5V power  
538 +AT+PRO  : Choose agreement
605 605  
606 -AT+PRO :  Choose agreement
540 +AT+RXDL  : Extend the sending and receiving time
607 607  
608 -AT+RXDL:  Extend the sending and receiving time
542 +AT+SERVADDR  : Server Address
609 609  
610 -AT+SERVADDR :  Server Address
544 +AT+APN     : Get or set the APN
611 611  
612 -AT+APN :  Get or set the APN
546 +AT+FBAND   : Get or Set whether to automatically modify the frequency band
613 613  
614 -AT+FBAND :  Get or Set whether to automatically modify the frequency band
548 +AT+DNSCFG  : Get or Set DNS Server
615 615  
616 -AT+DNSCFG : Get or Set DNS Server
617 -
618 618  AT+GETSENSORVALUE   : Returns the current sensor measurement
619 619  
620 -AT+TR :  Get or Set record time"
552 +AT+TR      : Get or Set record time"
621 621  
622 -AT+NOUD :  Get or Set the number of data to be uploaded
554 +AT+NOUD      : Get or Set the number of data to be uploaded
623 623  
624 -AT+CDP :  Read or Clear cached data
556 +AT+CDP     : Read or Clear cached data
625 625  
626 -AT+TEMPALARM :  Get or Set alarm of temp
558 +AT+TEMPALARM      : Get or Set alarm of temp
627 627  
628 -AT+HUMALARM :  Get or Set alarm of humidity
560 +AT+HUMALARM     : Get or Set alarm of PH
629 629  
630 630  
631 -(% style="color:#037691" %)**COAP Management**      
563 +**COAP Management**      
632 632  
633 -AT+URI :  Resource parameters
565 +AT+URI            : Resource parameters
634 634  
567 +**UDP Management**
635 635  
636 -(% style="color:#037691" %)**MQTT Management**
569 +AT+CFM          : Upload confirmation mode (only valid for UDP)
637 637  
638 -AT+CLIENT  :  Get or Set MQTT client
571 +**MQTT Management**
639 639  
640 -AT+UNAME  : Get or Set MQTT Username
573 +AT+CLIENT               : Get or Set MQTT client
641 641  
642 -AT+PWD  Get or Set MQTT password
575 +AT+UNAME  : Get or Set MQTT Username
643 643  
644 -AT+PUBTOPIC  :  Get or Set MQTT publish topic
577 +AT+PWD                  : Get or Set MQTT password
645 645  
646 -AT+SUBTOPIC :  Get or Set MQTT subscription topic
579 +AT+PUBTOPIC  : Get or Set MQTT publish topic
647 647  
581 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
648 648  
649 -(% style="color:#037691" %)**Information**          
583 +**Information**          
650 650  
651 -AT+FDR :  Factory Data Reset
585 +AT+FDR  : Factory Data Reset
652 652  
653 -AT+PWORD :  Serial Access Password
587 +AT+PWORD  : Serial Access Password
654 654  
655 -
656 656  = ​5.  FAQ =
657 657  
658 658  == 5.1 ​ How to Upgrade Firmware ==
659 659  
660 -
661 661  User can upgrade the firmware for 1) bug fix, 2) new feature release.
662 662  
663 663  Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
664 664  
597 +**Notice, **NLMS01 **and **NLMS01 **share the same mother board. They use the same connection and method to update.**
665 665  
666 -(% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.**
667 -
668 -
669 669  = 6.  Trouble Shooting =
670 670  
671 671  == 6.1  ​Connection problem when uploading firmware ==
672 672  
673 -
674 674  **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
675 675  
676 -
677 677  == 6.2  AT Command input doesn't work ==
678 678  
607 +In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string.
679 679  
680 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
681 -
682 -
683 -== 6.3 Not able to connect to NB-IoT network and keep showing "Signal Strength:99". ==
684 -
685 -
686 -This means sensor is trying to join the NB-IoT network but fail. Please see this link for **//[[trouble shooting for signal strenght:99>>doc:Main.CSQ\:99,99.WebHome]]//**.
687 -
688 -
689 -== 6.4 Possible reasons why the device is unresponsive: ==
690 -
691 -
692 -​1. Check whether the battery voltage is lower than 2.8V
693 -2. Check whether the jumper of the device is correctly connected
694 -
695 -[[image:image-20240330175629-2.png]]
696 -3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
697 -​
698 -
699 -[[image:image-20240330175554-1.png]]
700 -
701 701  = 7. ​ Order Info =
702 702  
703 -
704 704  Part Number**:** NLMS01
705 705  
706 -
707 707  = 8.  Packing Info =
708 708  
615 +**Package Includes**:
709 709  
710 -(% style="color:#037691" %)**Package Includes:**
711 -
712 712  * NLMS01 NB-IoT Leaf Moisture Sensor x 1
713 713  
714 -(% style="color:#037691" %)**Dimension and weight**:
619 +**Dimension and weight**:
715 715  
716 716  * Device Size: cm
717 717  * Device Weight: g
... ... @@ -720,7 +720,6 @@
720 720  
721 721  = 9.  Support =
722 722  
723 -
724 724  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
725 725  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
726 726  
image-20221009001002-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -282.9 KB
Content
image-20240330175554-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -445.4 KB
Content
image-20240330175629-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -445.4 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0