Changes for page NLMS01-NB-IoT Leaf Moisture Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:54
From version 38.24
edited by Xiaoling
on 2024/01/18 14:38
on 2024/01/18 14:38
Change comment:
There is no comment for this version
To version 26.1
edited by David Huang
on 2022/09/07 17:38
on 2022/09/07 17:38
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 2 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.David - Content
-
... ... @@ -1,91 +1,90 @@ 1 - 1 +[[image:image-20220907171221-1.jpeg]] 2 2 3 -(% style="text-align:center" %) 4 -[[image:image-20220907171221-1.jpeg]] 5 5 6 - 7 7 5 += 1. Introduction = 8 8 7 +== 1.1 What is NLMS01 Leaf Moisture Sensor == 9 9 10 10 10 +The Dragino NLMS01 is a **NB-IOT Leaf Moisture Sensor** for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof. 11 11 12 +NLMS01 detects leaf's** moisture and temperature **use FDR method, it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy. 12 12 13 -{{toc/}} 14 - 15 - 16 - 17 -= 1. Introduction = 18 - 19 -== 1.1 What is NLMS01 Leaf Moisture Sensor == 20 - 21 - 22 -((( 23 -The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof. 24 - 25 -NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy. 26 - 27 27 NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 15 +\\NLMS01 supports different uplink methods include **TCP,MQTT,UDP and CoAP **for different application requirement. 16 +\\NLMS01 is powered by **8500mAh Li-SOCI2 battery**, It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 17 +\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a **NB-IoT SIM card** from local operator and install NLMS01 to get NB-IoT network connection 28 28 29 -NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP **(%%)for different application requirement. 30 - 31 -NLMS01 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method). 32 - 33 -To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection. 34 -))) 35 - 36 - 37 37 [[image:image-20220907171221-2.png]] 38 38 39 - 40 40 [[image:image-20220907171221-3.png]] 41 41 23 +== 1.2 Features == 42 42 43 -== 1.2 Features == 25 +* ((( 26 +NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 27 +))) 28 +* ((( 29 +Monitor Leaf moisture 30 +))) 44 44 32 +* ((( 33 + Monitor Leaf temperature 34 +))) 45 45 46 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 47 -* Monitor Leaf moisture 48 -* Monitor Leaf temperature 49 -* Moisture and Temperature alarm function 50 -* Monitor Battery Level 51 -* Uplink on periodically 52 -* Downlink to change configure 53 -* IP66 Waterproof Enclosure 54 -* IP67 rate for the Sensor Probe 55 -* Ultra-Low Power consumption 56 -* AT Commands to change parameters 57 -* Micro SIM card slot for NB-IoT SIM 58 -* 8500mAh Battery for long term use 59 - 60 -((( 61 - 62 - 63 - 36 +* ((( 37 +Moisture and Temperature alarm function 64 64 ))) 39 +* ((( 40 +Monitor Battery Level 41 +))) 42 +* ((( 43 +Uplink on periodically 44 +))) 45 +* ((( 46 +Downlink to change configure 47 +))) 48 +* ((( 49 +IP66 Waterproof Enclosure 50 +))) 51 +* ((( 52 +IP67 rate for the Sensor Probe 53 +))) 54 +* ((( 55 +Ultra-Low Power consumption 56 +))) 57 +* ((( 58 +AT Commands to change parameters 59 +))) 60 +* ((( 61 +Micro SIM card slot for NB-IoT SIM 62 +))) 63 +* ((( 64 +8500mAh Battery for long term use 65 +))) 65 65 66 66 == 1.3 Specification == 67 67 69 +**Common DC Characteristics:** 68 68 69 -(% style="color:#037691" %)**Common DC Characteristics:** 70 - 71 71 * Supply Voltage: 2.1v ~~ 3.6v 72 72 * Operating Temperature: -40 ~~ 85°C 73 73 74 - (% style="color:#037691" %)**NB-IoT Spec:**74 +**NB-IoT Spec:** 75 75 76 -* B1 @H-FDD: 2100MHz 77 -* B3 @H-FDD: 1800MHz 78 -* B8 @H-FDD: 900MHz 79 -* B5 @H-FDD: 850MHz 80 -* B20 @H-FDD: 800MHz 81 -* B28 @H-FDD: 700MHz 76 +* - B1 @H-FDD: 2100MHz 77 +* - B3 @H-FDD: 1800MHz 78 +* - B8 @H-FDD: 900MHz 79 +* - B5 @H-FDD: 850MHz 80 +* - B20 @H-FDD: 800MHz 81 +* - B28 @H-FDD: 700MHz 82 82 83 +== 1.4 Probe Specification == 83 83 84 -== 1.4 Probe Specification == 85 85 86 +**Leaf Moisture: percentage of water drop over total leaf surface** 86 86 87 -(% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface** 88 - 89 89 * Range 0-100% 90 90 * Resolution: 0.1% 91 91 * Accuracy: ±3%(0-50%);±6%(>50%) ... ... @@ -92,7 +92,7 @@ 92 92 * IP67 Protection 93 93 * Length: 3.5 meters 94 94 95 - (% style="color:#037691" %)**Leaf Temperature:**94 +**Leaf Temperature:** 96 96 97 97 * Range -50℃~80℃ 98 98 * Resolution: 0.1℃ ... ... @@ -100,16 +100,12 @@ 100 100 * IP67 Protection 101 101 * Length: 3.5 meters 102 102 102 +== 1.5 Applications == 103 103 104 -== 1.5 Applications == 105 - 106 - 107 107 * Smart Agriculture 108 108 106 +== 1.6 Pin mapping and power on == 109 109 110 -== 1.6 Pin mapping and power on == 111 - 112 - 113 113 [[image:image-20220907171221-4.png]] 114 114 115 115 **~ ** ... ... @@ -118,20 +118,16 @@ 118 118 119 119 == 2.1 How it works == 120 120 121 - 122 122 The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01. 123 123 124 124 The diagram below shows the working flow in default firmware of NLMS01: 125 125 126 - 127 127 [[image:image-20220907171221-5.png]] 128 128 122 +== **2.2 Configure the NLMS01** == 129 129 130 - ==2.2ConfiguretheNLMS01 ==124 +**2.2.1 Test Requirement** 131 131 132 -=== 2.2.1 Test Requirement === 133 - 134 - 135 135 To use NLMS01 in your city, make sure meet below requirements: 136 136 137 137 * Your local operator has already distributed a NB-IoT Network there. ... ... @@ -138,109 +138,90 @@ 138 138 * The local NB-IoT network used the band that NLMS01 supports. 139 139 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 140 140 141 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NLMS01 will use (%style="color:#037691" %)**CoAP(120.24.4.116:5683)**(%%)or raw(%style="color:#037691" %)**UDP(120.24.4.116:5601)** or(%%)(% style="color:#037691"%)**MQTT(120.24.4.116:1883)**(%%)or(% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server132 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NLMS01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server 142 142 143 - 144 144 [[image:image-20220907171221-6.png]] 145 145 136 +**2.2.2 Insert SIM card** 146 146 147 -=== 2.2.2 Insert SIM card === 148 - 149 - 150 150 Insert the NB-IoT Card get from your provider. 151 151 152 152 User need to take out the NB-IoT module and insert the SIM card like below: 153 153 154 - 155 155 [[image:image-20220907171221-7.png]] 156 156 144 +**2.2.3 Connect USB – TTL to NLMS01 to configure it** 157 157 158 - ===2.2.3Connect USB–TTL to NLMS01 to configure it===146 +User need to configure NLMS01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below. 159 159 148 +**Connection:** 160 160 161 - Userneed to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USBtoTTLadapter to connect toNLMS01anduse AT Commands to configure it, as below.150 + USB TTL GND <~-~-~-~-> GND 162 162 152 + USB TTL TXD <~-~-~-~-> UART_RXD 163 163 164 - (%style="color:blue"%)**Connection:**154 + USB TTL RXD <~-~-~-~-> UART_TXD 165 165 166 -**~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)** 167 - 168 -**~ (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD(%%)** 169 - 170 -**~ (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD(%%)** 171 - 172 - 173 173 In the PC, use below serial tool settings: 174 174 175 -* Baud: (% style="color:green" %)**9600**176 -* Data bits:** (% style="color:green" %)8(%%)**177 -* Stop bits: (% style="color:green" %)**1**178 -* Parity: (% style="color:green" %)**None**179 -* Flow Control: (% style="color:green" %)**None**158 +* Baud: **9600** 159 +* Data bits:** 8** 160 +* Stop bits: **1** 161 +* Parity: **None** 162 +* Flow Control: **None** 180 180 181 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%)to access AT Command input.164 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input. 182 182 183 -[[image:image-202209 13090720-1.png]]166 +[[image:image-20220907171221-8.png]] 184 184 168 +**Note: the valid AT Commands can be found at: **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]] 185 185 186 - (% style="color:red" %)**Note:thevalid AT Commandscan befoundat: **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]170 +**2.2.4 Use CoAP protocol to uplink data** 187 187 172 +**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 188 188 189 - === 2.2.4UseCoAPprotocol to uplinkdata ===174 +**Use below commands:** 190 190 176 +* **AT+PRO=1** ~/~/ Set to use CoAP protocol to uplink 177 +* **AT+SERVADDR=120.24.4.116,5683 ** ~/~/ to set CoAP server address and port 178 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path 191 191 192 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 193 - 194 - 195 -(% style="color:blue" %)**Use below commands:** 196 - 197 -* (% style="color:#037691" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 198 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%) ~/~/ to set CoAP server address and port 199 -* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/ Set COAP resource path 200 - 201 201 For parameter description, please refer to AT command set 202 202 203 203 [[image:image-20220907171221-9.png]] 204 204 184 +After configure the server address and **reset the device** (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server. 205 205 206 -After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server. 207 - 208 208 [[image:image-20220907171221-10.png]] 209 209 188 +**2.2.5 Use UDP protocol to uplink data(Default protocol)** 210 210 211 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 212 - 213 - 214 214 This feature is supported since firmware version v1.0.1 215 215 216 -* (% style="color:#037691" %)**AT+PRO=2 **(%%)~/~/217 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601(%%)~/~/218 -* (% style="color:#037691" %)**AT+CFM=1 **(%%)~/~/192 +* **AT+PRO=2 ** ~/~/ Set to use UDP protocol to uplink 193 +* **AT+SERVADDR=120.24.4.116,5601 ** ~/~/ to set UDP server address and port 194 +* **AT+CFM=1 ** ~/~/If the server does not respond, this command is unnecessary 219 219 220 220 [[image:image-20220907171221-11.png]] 221 221 222 - 223 223 [[image:image-20220907171221-12.png]] 224 224 225 225 226 226 227 - ===2.2.6 Use MQTT protocol to uplink data===202 +**2.2.6 Use MQTT protocol to uplink data** 228 228 229 - 230 230 This feature is supported since firmware version v110 231 231 232 -* (% style="color:#037691" %)**AT+PRO=3 **(%%)~/~/233 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883 **(%%)~/~/234 -* (% style="color:#037691" %)**AT+CLIENT=CLIENT **(%%)~/~/235 -* (% style="color:#037691" %)**AT+UNAME=UNAME **(%%)** **~/~/236 -* (% style="color:#037691" %)**AT+PWD=PWD **(%%)** **~/~/237 -* (% style="color:#037691" %)**AT+PUBTOPIC=PUB **(%%)~/~/238 -* (% style="color:#037691" %)**AT+SUBTOPIC=SUB **(%%)206 +* **AT+PRO=3 ** ~/~/Set to use MQTT protocol to uplink 207 +* **AT+SERVADDR=120.24.4.116,1883 ** ~/~/Set MQTT server address and port 208 +* **AT+CLIENT=CLIENT ** ~/~/Set up the CLIENT of MQTT 209 +* **AT+UNAME=UNAME **~/~/Set the username of MQTT 210 +* **AT+PWD=PWD **~/~/Set the password of MQTT 211 +* **AT+PUBTOPIC=PUB **~/~/Set the sending topic of MQTT 212 +* **AT+SUBTOPIC=SUB ** ~/~/Set the subscription topic of MQTT 239 239 240 240 [[image:image-20220907171221-13.png]] 241 241 242 - 243 - 244 244 [[image:image-20220907171221-14.png]] 245 245 246 246 ... ... @@ -247,108 +247,81 @@ 247 247 248 248 MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 249 249 222 +**2.2.7 Use TCP protocol to uplink data** 250 250 251 -=== 2.2.7 Use TCP protocol to uplink data === 252 - 253 - 254 254 This feature is supported since firmware version v110 255 255 256 -* (% style="color:#037691" %)**AT+PRO=4 **(%%)~/~/257 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600 **(%%)~/~/226 +* **AT+PRO=4 ** ~/~/ Set to use TCP protocol to uplink 227 +* **AT+SERVADDR=120.24.4.116,5600 ** ~/~/ to set TCP server address and port 258 258 259 259 [[image:image-20220907171221-15.png]] 260 260 261 - 262 - 263 263 [[image:image-20220907171221-16.png]] 264 264 265 265 266 266 235 +**2.2.8 Change Update Interval** 267 267 268 -=== 2.2.8 Change Update Interval === 269 - 270 - 271 271 User can use below command to change the **uplink interval**. 272 272 273 -* (% style="color:#037691" %)**AT+TDC=7200 **(%%)~/~/ Set Update Interval to7200s(2 hour)239 +* **AT+TDC=600 ** ~/~/ Set Update Interval to 600s 274 274 275 - (% style="color:red" %)**NOTE:By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**241 +**NOTE:** 276 276 243 +**~1. By default, the device will send an uplink message every 2 hour.** 277 277 278 278 == 2.3 Uplink Payload == 279 279 280 - 281 281 In this mode, uplink payload includes 87 bytes in total by default. 282 282 283 283 Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded. 284 284 285 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 286 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:40px" %)**8**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**1**|(% style="background-color:#4F81BD;color:white; width:30px" %)**1**|(% style="background-color:#4F81BD;color:white; width:40px" %)**1**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**4**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**|(% style="background-color:#4F81BD;color:white; width:37px" %)**4** 287 -|(% style="width:96px" %)Value|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp ..... 251 +|**Size(bytes)**|**8**|**2**|**2**|1|1|1|2|2|4|2|2|4 252 +|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Leaf moisture|Leaf Temperature|Time stamp|Leaf Temperature|Leaf moisture|Time stamp ..... 288 288 289 289 If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data. 290 290 291 - 292 292 [[image:image-20220907171221-17.png]] 293 293 294 - 295 295 The payload is ASCII string, representative same HEX: 296 296 297 - **0x(% style="color:red" %)__f868411056754138__ (% style="color:blue" %)__0064__ (% style="color:green" %)__0c78__ (% style="color:#00b0f0" %)__17__ (% style="color:#7030a0" %)__01__ (% style="color:#d60093" %)__00__ (% style="color:#a14d07" %)__0225__ (% style="color:#0020b0" %) __010b__ (% style="color:#420042" %)__6315537b__ (% style="color:#663300" %)//__010b0226631550fb__ __010e022663154d77__//(%%)**260 +0xf86841105675413800640c781701000225010b6315537b010b0226631550fb010e022663154d7701110225631549f1011502246315466b01190223631542e5011d022163153f62011e022163153bde011e022163153859 where: 298 298 299 -where: 262 +* Device ID: 0xf868411056754138 = f868411056754138 263 +* Version: 0x0064=100=1.0.0 300 300 301 -* (% style="color:#037691" %)**Device ID:**(%%) 0xf868411056754138 = f868411056754138 265 +* BAT: 0x0c78 = 3192 mV = 3.192V 266 +* Singal: 0x17 = 23 267 +* Mod: 0x01 = 1 268 +* Interrupt: 0x00= 0 269 +* Leaf moisture: 0x0225= 549 = 54.9% 270 +* Leaf Temperature:0x010B =267=26.7 °C 271 +* Time stamp : 0x6315537b =1662342011 272 +* Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb 273 +* 8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,....... 302 302 303 -* (% style="color:#037691" %)**Version:**(%%) 0x0064=100=1.0.0 304 - 305 -* (% style="color:#037691" %)**BAT:** (%%)0x0c78 = 3192 mV = 3.192V 306 - 307 -* (% style="color:#037691" %)**Singal:**(%%) 0x17 = 23 308 - 309 -* (% style="color:#037691" %)**Mod:**(%%) 0x01 = 1 310 - 311 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0 312 - 313 -* (% style="color:#037691" %)**Leaf moisture:**(%%) 0x0225= 549 = 54.9% 314 - 315 -* (% style="color:#037691" %)**Leaf Temperature: **(%%)0x010B =267=26.7 °C 316 - 317 -* (% style="color:#037691" %)**Time stamp :** (%%)0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]]) 318 - 319 -* (% style="color:#037691" %)**Leaf Temperature, Leaf moisture,Time stamp : **(%%)010b0226631550fb 320 - 321 -* (% style="color:#037691" %)**8 sets of recorded data: **(%%)Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,....... 322 - 323 - 324 324 == 2.4 Payload Explanation and Sensor Interface == 325 325 326 - ===2.4.1 Device ID===277 +**2.4.1 Device ID** 327 327 328 - 329 329 By default, the Device ID equal to the last 15 bits of IMEI. 330 330 331 -User can use (% style="color:#037691" %)**AT+DEUI**(%%)to set Device ID281 +User can use **AT+DEUI** to set Device ID 332 332 283 +**Example:** 333 333 334 -(% style="color:blue" %)**Example**: 335 - 336 336 AT+DEUI=868411056754138 337 337 338 338 The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 339 339 289 +**2.4.2 Version Info** 340 340 341 -=== 2.4.2 Version Info === 342 - 343 - 344 344 Specify the software version: 0x64=100, means firmware version 1.00. 345 345 346 346 For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0. 347 347 295 +**2.4.3 Battery Info** 348 348 349 -=== 2.4.3 Battery Info === 350 - 351 - 352 352 Check the battery voltage for NLMS01. 353 353 354 354 Ex1: 0x0B45 = 2885mV ... ... @@ -355,15 +355,12 @@ 355 355 356 356 Ex2: 0x0B49 = 2889mV 357 357 303 +**2.4.4 Signal Strength** 358 358 359 -=== 2.4.4 Signal Strength === 360 - 361 - 362 362 NB-IoT Network signal Strength. 363 363 307 +**Ex1: 0x1d = 29** 364 364 365 -(% style="color:blue" %)**Ex1: 0x1d = 29** 366 - 367 367 **0** -113dBm or less 368 368 369 369 **1** -111dBm ... ... @@ -374,45 +374,37 @@ 374 374 375 375 **99** Not known or not detectable 376 376 319 +**2.4.5 Leaf** moisture 377 377 378 - ===2.4.5Leaf moisture===321 +Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**. 379 379 323 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is 380 380 381 - Get the moisture of the (% style="color:#037691" %)**Leaf**(%%).Thevalue range of the register is 300-1000(Decimal),divide this value by100toget the percentage of moisture in the Leaf.325 +**0229(H) = 549(D) /100 = 54.9.** 382 382 383 - Forexample, ifthedata you get fromtheegister is (% style="color:#037691" %)**__0x05 0xDC__**(%%), the moisturecontent in the (% style="color:#037691" %)**Leaf**(%%) is327 +**2.4.6 Leaf Temperature** 384 384 385 - (%style="color:blue"%)**0229(H)=549(D)/100=54.9.**329 +Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is 386 386 331 +**Example**: 387 387 388 -=== 2.4.6 Leaf Temperature===333 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C 389 389 335 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C 390 390 391 - Get the temperature in the Leaf. The value range of the register is -4000 - +800(Decimal), dividethisvalue by 100to get the temperature in the Leaf. For example, if the data you get from the register is (% style="color:#037691" %)**__0x09 0xEC__**(%%), the temperature content in the (% style="color:#037691" %)**Leaf **(%%)is337 +**2.4.7 Timestamp** 392 392 393 -(% style="color:blue" %)**Example**: 394 - 395 -If payload is **0105H**: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C 396 - 397 -If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C 398 - 399 - 400 -=== 2.4.7 Timestamp === 401 - 402 - 403 403 Time stamp : 0x6315537b =1662342011 404 404 405 405 Convert Unix timestamp to time 2022-9-5 9:40:11. 406 406 343 +**2.4.8 Digital Interrupt** 407 407 408 - === 2.4.8Digital Interrupt===345 +Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server. 409 409 410 - 411 -Digital Interrupt refers to pin (% style="color:#037691" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server. 412 - 413 413 The command is: 414 414 415 - (% style="color:blue" %)**AT+INTMOD=3 **(%%)~/~/349 +**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 416 416 417 417 The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 418 418 ... ... @@ -422,15 +422,13 @@ 422 422 423 423 0x(01): Interrupt Uplink Packet. 424 424 359 +**2.4.9 +5V Output** 425 425 426 -=== 2.4.9 +5V Output === 427 - 428 - 429 429 NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 430 430 431 431 The 5V output time can be controlled by AT Command. 432 432 433 - (% style="color:blue" %)**AT+5VT=1000**365 +**AT+5VT=1000** 434 434 435 435 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** ** 436 436 ... ... @@ -437,22 +437,14 @@ 437 437 438 438 == 2.5 Downlink Payload == 439 439 440 - 441 441 By default, NLMS01 prints the downlink payload to console port. 442 442 443 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 444 -|=(% style="width: 183px; background-color:#4F81BD;color:white" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#4F81BD;color:white" %)FPort|=(% style="width: 93px; background-color:#4F81BD;color:white" %)**Type Code**|=(% style="width: 179px; background-color:#4F81BD;color:white" %)**Downlink payload size(bytes)** 445 -|(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4 446 -|(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2 447 -|(% style="width:183px" %)INTMOD|(% style="width:55px" %)Any|(% style="width:93px" %)06|(% style="width:146px" %)4 374 +[[image:image-20220907171221-18.png]] 448 448 449 - 376 +**Examples:** 450 450 451 - (%style="color:blue" %)**Examples:**378 +* **Set TDC** 452 452 453 - 454 -* (% style="color:#037691" %)**Set TDC** 455 - 456 456 If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 457 457 458 458 Payload: 01 00 00 1E TDC=30S ... ... @@ -459,22 +459,16 @@ 459 459 460 460 Payload: 01 00 00 3C TDC=60S 461 461 386 +* **Reset** 462 462 463 - 464 -* (% style="color:#037691" %)**Reset** 465 - 466 466 If payload = 0x04FF, it will reset the NLMS01 467 467 390 +* **INTMOD** 468 468 469 - 470 -* (% style="color:#037691" %)**INTMOD** 471 - 472 472 Downlink Payload: 06000003, Set AT+INTMOD=3 473 473 474 - 475 475 == 2.6 LED Indicator == 476 476 477 - 478 478 The NLMS01 has an internal LED which is to show the status of different state. 479 479 480 480 * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) ... ... @@ -482,23 +482,18 @@ 482 482 * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds. 483 483 * For each uplink probe, LED will be on for 500ms. 484 484 403 +== 2.7 Installation == 485 485 486 -== 2.7 Installation == 487 - 488 - 489 489 NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor. 490 490 491 - 492 492 [[image:image-20220907171221-19.png]] 493 493 409 +== 2.8 Moisture and Temperature alarm function == 494 494 495 - ==2.8Moisture and Temperature alarmfunction ==411 +➢ AT Command: 496 496 413 +AT+ HUMALARM =min,max 497 497 498 -(% style="color:blue" %)**➢ AT Command:** 499 - 500 -(% style="color:#037691" %)**AT+ HUMALARM =min,max** 501 - 502 502 ² When min=0, and max≠0, Alarm higher than max 503 503 504 504 ² When min≠0, and max=0, Alarm lower than min ... ... @@ -505,9 +505,8 @@ 505 505 506 506 ² When min≠0 and max≠0, Alarm higher than max or lower than min 507 507 421 +Example: 508 508 509 -(% style="color:blue" %)**Example:** 510 - 511 511 AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50. 512 512 513 513 AT+ TEMPALARM=min,max ... ... @@ -518,199 +518,196 @@ 518 518 519 519 ² When min≠0 and max≠0, Alarm higher than max or lower than min 520 520 433 +Example: 521 521 522 -(% style="color:blue" %)**Example:** 523 - 524 524 AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20. 525 525 526 526 527 -== 2.9 438 +== 2.9 Set the number of data to be uploaded and the recording time == 528 528 440 +➢ AT Command: 529 529 530 - (%style="color:blue"%)**➢ATCommand:**442 +AT+TR=900 ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds) 531 531 532 -* (% style="color:#037691" %)**AT+TR=900** (%%) ~/~/ The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds) 533 -* (% style="color:#037691" %)**AT+NOUD=8** (%%)~/~/ The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded. 444 +AT+NOUD=8 ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded. 534 534 535 - Thediagrambelowexplainstherelationship between TR, NOUD,andTDC more clearly**:**446 +== 2.10 Read or Clear cached data == 536 536 537 - [[image:image-20221009001002-1.png||height="706" width="982"]]448 +➢ AT Command: 538 538 450 +AT+CDP ~/~/ Read cached data 539 539 540 - == 2.10 Read or Clear cached data ==452 +[[image:image-20220907171221-20.png]] 541 541 542 542 543 - (%style="color:blue"%)**➢ AT Command:**455 +AT+CDP=0 ~/~/ Clear cached data 544 544 545 -* (% style="color:#037691" %)**AT+CDP** (%%) ~/~/ Read cached data 546 -* (% style="color:#037691" %)**AT+CDP=0 ** (%%) ~/~/ Clear cached data 547 547 548 - [[image:image-20220907171221-20.png]]458 +== 2.11 Firmware Change Log == 549 549 460 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]] 550 550 551 - ==2.11FirmwareChange Log==462 +Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]] 552 552 464 +== 2.12 Battery Analysis == 553 553 554 - Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0>>https://www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0]]466 +**2.12.1 Battery Type** 555 555 556 - UpgradeInstruction:[[UpgradeFirmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]468 +The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 557 557 470 +The battery is designed to last for several years depends on the actually use environment and update interval. 558 558 559 - ==2.12 Battery& PowerConsumption==472 +The battery related documents as below: 560 560 474 +* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 475 +* [[Lithium-Thionyl Chloride Battery datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 476 +* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 561 561 562 - NLMS01 uses ER26500+ SPC1520 battery pack.See below linkfor detail information about the battery info and how to replace.478 +[[image:image-20220907171221-21.png]] 563 563 564 - [[**BatteryInfo &PowerConsumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .480 +**2.12.2 Power consumption Analyze** 565 565 482 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 566 566 567 - = 3. Access NB-IoTModule=484 +Instruction to use as below: 568 568 486 +**Step 1: **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 569 569 570 - UserscandirectlyaccesstheAT commandset of the NB-IoT module.488 +**Step 2: ** Open it and choose 571 571 572 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 490 +* Product Model 491 +* Uplink Interval 492 +* Working Mode 573 573 494 +And the Life expectation in difference case will be shown on the right. 574 574 575 -[[image:image-20220907171221-2 3.png]] 496 +[[image:image-20220907171221-22.jpeg]] 576 576 498 +**2.12.3 Battery Note** 577 577 578 - =4.Using theATCommands=500 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 579 579 580 - == 4.1AccessATCommands ==502 +**2.12.4 Replace the battery** 581 581 504 +The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 582 582 583 - Seethislinkfor detail: [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]506 += 3. Access NB-IoT Module = 584 584 585 -AT +<CMD>?:Helpon<CMD>508 +Users can directly access the AT command set of the NB-IoT module. 586 586 587 -AT +<CMD>:Run<CMD>510 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 588 588 589 - AT+<CMD>=<value>:Set the value512 +[[image:image-20220907171221-23.png]] 590 590 591 - AT+<CMD>=?:Getthevalue514 += 4. Using the AT Commands = 592 592 516 +**4.1 Access AT Commands** 593 593 594 - (%style="color:#037691" %)**GeneralCommands**518 +See this link for detail: [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]] 595 595 596 -AT :Attention520 +AT+<CMD>? : Help on <CMD> 597 597 598 -AT ?:Short Help522 +AT+<CMD> : Run <CMD> 599 599 600 -AT Z:MCUReset524 +AT+<CMD>=<value> : Set the value 601 601 602 -AT+ TDC:ApplicationDataTransmissionInterval526 +AT+<CMD>=? : Get the value 603 603 604 - AT+CFG: Printallconfigurations528 +**General Commands** 605 605 606 -AT +CFGMOD:Workingmodeselection530 +AT : Attention 607 607 608 -AT +INTMOD:Setthetriggerinterruptmode532 +AT? : Short Help 609 609 610 -AT +5VT:Setextendthetimeof5Vpower534 +ATZ : MCU Reset 611 611 612 -AT+ PRO :Chooseagreement536 +AT+TDC : Application Data Transmission Interval 613 613 614 -AT+ RXDL:Extendthesendingandreceivingme538 +AT+CFG : Print all configurations 615 615 616 -AT+ SERVADDR:ServerAddress540 +AT+CFGMOD : Working mode selection 617 617 618 -AT+ APN :Getor set theAPN542 +AT+INTMOD : Set the trigger interrupt mode 619 619 620 -AT+ FBAND :GetorSetwhethertoautomaticallymodifythefrequencyband544 +AT+5VT : Set extend the time of 5V power 621 621 622 -AT+ DNSCFG:GetorSetDNSServer546 +AT+PRO : Choose agreement 623 623 624 -AT+ GETSENSORVALUEReturnsthecurrentsensormeasurement548 +AT+RXDL : Extend the sending and receiving time 625 625 626 -AT+ TR:Get orSetrecordtime"550 +AT+SERVADDR : Server Address 627 627 628 -AT+ NOUD:the numberfdatato beuploaded552 +AT+TR : Get or Set record time" 629 629 630 -AT+CDP : Read or Clear cached data 631 631 632 -AT+ TEMPALARM:alarm of temp555 +AT+NOUD : Get or Set the number of data to be uploaded 633 633 634 -AT+HUMALARM : Get or Set alarm of humidity 635 635 558 +AT+CDP : Read or Clear cached data 636 636 637 -(% style="color:#037691" %)**COAP Management** 638 638 639 -AT+ URI:Resourceparameters561 +AT+TEMPALARM : Get or Set alarm of temp 640 640 563 +AT+HUMALARM : Get or Set alarm of PH 641 641 642 -(% style="color:#037691" %)**UDP Management** 643 643 644 - AT+CFM: Upload confirmationmode(onlyvalid for UDP)566 +**COAP Management** 645 645 568 +AT+URI : Resource parameters 646 646 647 - (% style="color:#037691" %)**MQTTManagement**570 +**UDP Management** 648 648 649 -AT+C LIENT:GetorSetMQTTclient572 +AT+CFM : Upload confirmation mode (only valid for UDP) 650 650 651 - AT+UNAME : Get or Set MQTTUsername574 +**MQTT Management** 652 652 653 -AT+ PWDpassword576 +AT+CLIENT : Get or Set MQTT client 654 654 655 -AT+ PUBTOPIC:Get or Set MQTTpublish topic578 +AT+UNAME : Get or Set MQTT Username 656 656 657 -AT+ SUBTOPIC:ubscription topic580 +AT+PWD : Get or Set MQTT password 658 658 582 +AT+PUBTOPIC : Get or Set MQTT publish topic 659 659 660 - (%style="color:#037691"%)**Information**584 +AT+SUBTOPIC : Get or Set MQTT subscription topic 661 661 662 - AT+FDR : Factory DataReset586 +**Information** 663 663 664 -AT+ PWORD:SerialAccessPassword588 +AT+FDR : Factory Data Reset 665 665 590 +AT+PWORD : Serial Access Password 666 666 667 667 = 5. FAQ = 668 668 669 - ==5.1 How to Upgrade Firmware==594 +**5.1 How to Upgrade Firmware** 670 670 671 - 672 672 User can upgrade the firmware for 1) bug fix, 2) new feature release. 673 673 674 674 Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 675 675 600 +**Notice, **NLMS01 **and **NLMS01 **share the same mother board. They use the same connection and method to update.** 676 676 677 -(% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.** 678 - 679 - 680 680 = 6. Trouble Shooting = 681 681 682 - ==6.1 Connection problem when uploading firmware==604 +**6.1 Connection problem when uploading firmware** 683 683 684 - 685 685 **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 686 686 608 +**6.2 AT Command input doesn't work** 687 687 688 - ==6.2ATCommand input doesn't work==610 +In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string. 689 689 690 - 691 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 692 - 693 - 694 -== 6.3 Not able to connect to NB-IoT network and keep showing "Signal Strength:99". == 695 - 696 - 697 -This means sensor is trying to join the NB-IoT network but fail. Please see this link for **//[[trouble shooting for signal strenght:99>>doc:Main.CSQ\:99,99.WebHome]]//**. 698 - 699 - 700 700 = 7. Order Info = 701 701 702 - 703 703 Part Number**:** NLMS01 704 704 705 - 706 706 = 8. Packing Info = 707 707 618 +**Package Includes**: 708 708 709 -(% style="color:#037691" %)**Package Includes:** 710 - 711 711 * NLMS01 NB-IoT Leaf Moisture Sensor x 1 712 712 713 - (% style="color:#037691" %)**Dimension and weight**:622 +**Dimension and weight**: 714 714 715 715 * Device Size: cm 716 716 * Device Weight: g ... ... @@ -717,11 +717,11 @@ 717 717 * Package Size / pcs : cm 718 718 * Weight / pcs : g 719 719 720 - 721 721 = 9. Support = 722 722 723 - 724 724 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 725 725 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 726 726 727 727 635 + 636 +
- image-20220913090720-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -224.9 KB - Content
- image-20221009001002-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -282.9 KB - Content