Last modified by Mengting Qiu on 2024/04/02 16:54

From version 38.23
edited by Xiaoling
on 2024/01/18 14:37
Change comment: There is no comment for this version
To version 25.1
edited by David Huang
on 2022/09/07 17:14
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.David
Content
... ... @@ -1,51 +1,31 @@
1 -
1 +[[image:image-20220907171221-1.jpeg]]​
2 2  
3 -(% style="text-align:center" %)
4 -[[image:image-20220907171221-1.jpeg]]
5 5  
6 -​
7 7  
5 +**~1. Introduction**
8 8  
7 +**1.1 ​What is NLMS01 **Leaf Moisture Sensor
9 9  
9 +The Dragino NLMS01 is a **NB-IOT Leaf Moisture Sensor** for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
10 10  
11 +NLMS01 detects leaf's** moisture and temperature **use FDR method, it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
11 11  
12 -
13 -{{toc/}}
14 -
15 -
16 -
17 -= 1.  Introduction =
18 -
19 -== 1.1 ​ What is NLMS01 Leaf Moisture Sensor ==
20 -
21 -
22 -(((
23 -The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
24 -
25 -NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
26 -
27 27  NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
14 +\\NLMS01 supports different uplink methods include **TCP,MQTT,UDP and CoAP  **for different application requirement.
15 +\\NLMS01 is powered by  **8500mAh Li-SOCI2 battery**, It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
16 +\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a **NB-IoT SIM card** from local operator and install NLMS01 to get NB-IoT network connection
28 28  
29 -NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
30 -
31 -NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
32 -
33 -To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
34 -)))
35 -
36 -
37 37  ​[[image:image-20220907171221-2.png]]
38 38  
39 -
40 40  ​ [[image:image-20220907171221-3.png]]
41 41  
22 +**​1.2 Features**
42 42  
43 -== ​1.2  Features ==
44 -
45 -
46 46  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Leaf moisture
48 -* Monitor Leaf temperature
26 +
27 +* Monitor Leaf temperature
28 +
49 49  * Moisture and Temperature alarm function
50 50  * Monitor Battery Level
51 51  * Uplink on periodically
... ... @@ -57,35 +57,27 @@
57 57  * Micro SIM card slot for NB-IoT SIM
58 58  * 8500mAh Battery for long term use
59 59  
60 -(((
61 -
40 +**1.3  Specification**
62 62  
63 -
64 -)))
42 +**Common DC Characteristics:**
65 65  
66 -== 1.3  Specification ==
67 -
68 -
69 -(% style="color:#037691" %)**Common DC Characteristics:**
70 -
71 71  * Supply Voltage: 2.1v ~~ 3.6v
72 72  * Operating Temperature: -40 ~~ 85°C
73 73  
74 -(% style="color:#037691" %)**NB-IoT Spec:**
47 +**NB-IoT Spec:**
75 75  
76 -* B1 @H-FDD: 2100MHz
77 -* B3 @H-FDD: 1800MHz
78 -* B8 @H-FDD: 900MHz
79 -* B5 @H-FDD: 850MHz
80 -* B20 @H-FDD: 800MHz
81 -* B28 @H-FDD: 700MHz
49 +* - B1 @H-FDD: 2100MHz
50 +* - B3 @H-FDD: 1800MHz
51 +* - B8 @H-FDD: 900MHz
52 +* - B5 @H-FDD: 850MHz
53 +* - B20 @H-FDD: 800MHz
54 +* - B28 @H-FDD: 700MHz
82 82  
56 +**1.4 Probe Specification**
83 83  
84 -== 1.4  Probe Specification ==
85 85  
59 +**Leaf Moisture: percentage of water drop over total leaf surface**
86 86  
87 -(% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface**
88 -
89 89  * Range 0-100%
90 90  * Resolution: 0.1%
91 91  * Accuracy: ±3%(0-50%);±6%(>50%)
... ... @@ -92,7 +92,7 @@
92 92  * IP67 Protection
93 93  * Length: 3.5 meters
94 94  
95 -(% style="color:#037691" %)**Leaf Temperature:**
67 +**Leaf Temperature:**
96 96  
97 97  * Range -50℃~80℃
98 98  * Resolution: 0.1℃
... ... @@ -100,38 +100,30 @@
100 100  * IP67 Protection
101 101  * Length: 3.5 meters
102 102  
75 +**~ 1.5 ​Applications**
103 103  
104 -== 1.5 ​ Applications ==
105 -
106 -
107 107  * Smart Agriculture
108 108  
79 +**1.6 Pin mapping and power on**
109 109  
110 -== 1.6  Pin mapping and power on ==
111 -
112 -
113 113  ​[[image:image-20220907171221-4.png]]
114 114  
115 115  **~ **
116 116  
117 -= 2.  Use NLMS01 to communicate with IoT Server =
85 +**2.  Use NLMS01 to communicate with IoT Server**
118 118  
119 -== 2.1  How it works ==
87 +**2.1  How it works**
120 120  
121 -
122 122  The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01.
123 123  
124 124  The diagram below shows the working flow in default firmware of NLMS01:
125 125  
126 -
127 127  [[image:image-20220907171221-5.png]]
128 128  
95 +**2.2 ​ Configure the NLMS01**
129 129  
130 -== 2.2 Configure the NLMS01 ==
97 +**2.2.1 Test Requirement**
131 131  
132 -=== 2.2.1 Test Requirement ===
133 -
134 -
135 135  To use NLMS01 in your city, make sure meet below requirements:
136 136  
137 137  * Your local operator has already distributed a NB-IoT Network there.
... ... @@ -138,109 +138,90 @@
138 138  * The local NB-IoT network used the band that NLMS01 supports.
139 139  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
140 140  
141 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use(% style="color:#037691" %)** CoAP(120.24.4.116:5683) **(%%)or raw(% style="color:#037691" %)** UDP(120.24.4.116:5601)** or(%%) (% style="color:#037691" %)**MQTT(120.24.4.116:1883)**(%%)or (% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server
105 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server
142 142  
143 -
144 144  [[image:image-20220907171221-6.png]] ​
145 145  
109 +**2.2.2 Insert SIM card**
146 146  
147 -=== 2.2.2 Insert SIM card ===
148 -
149 -
150 150  Insert the NB-IoT Card get from your provider.
151 151  
152 152  User need to take out the NB-IoT module and insert the SIM card like below:
153 153  
154 -
155 155  [[image:image-20220907171221-7.png]] ​
156 156  
117 +**2.2.3 Connect USB – TTL to NLMS01 to configure it**
157 157  
158 -=== 2.2.3 Connect USB TTL to NLMS01 to configure it ===
119 +User need to configure NLMS01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
159 159  
121 +**Connection:**
160 160  
161 -User need to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
123 + USB TTL GND <~-~-~-~-> GND
162 162  
125 + USB TTL TXD <~-~-~-~-> UART_RXD
163 163  
164 -(% style="color:blue" %)**Connection:**
127 + USB TTL RXD <~-~-~-~-> UART_TXD
165 165  
166 -**~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)**
167 -
168 -**~ (% style="background-color:yellow" %)USB TTL TXD  <~-~-~-~-> UART_RXD(%%)**
169 -
170 -**~ (% style="background-color:yellow" %)USB TTL RXD  <~-~-~-~-> UART_TXD(%%)**
171 -
172 -
173 173  In the PC, use below serial tool settings:
174 174  
175 -* Baud:  (% style="color:green" %)**9600**
176 -* Data bits:**  (% style="color:green" %)8(%%)**
177 -* Stop bits:  (% style="color:green" %)**1**
178 -* Parity:  (% style="color:green" %)**None**
179 -* Flow Control: (% style="color:green" %)**None**
131 +* Baud:  **9600**
132 +* Data bits:** 8**
133 +* Stop bits: **1**
134 +* Parity:  **None**
135 +* Flow Control: **None**
180 180  
181 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
137 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
182 182  
183 -​[[image:image-20220913090720-1.png]]
139 +​[[image:image-20220907171221-8.png]]
184 184  
141 +**Note: the valid AT Commands can be found at:  **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
185 185  
186 -(% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
143 +**2.2.4 Use CoAP protocol to uplink data**
187 187  
145 +**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
188 188  
189 -=== 2.2.4 Use CoAP protocol to uplink data ===
147 +**Use below commands:**
190 190  
149 +* **AT+PRO=1**   ~/~/ Set to use CoAP protocol to uplink
150 +* **AT+SERVADDR=120.24.4.116,5683   ** ~/~/ to set CoAP server address and port
151 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path
191 191  
192 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
193 -
194 -
195 -(% style="color:blue" %)**Use below commands:**
196 -
197 -* (% style="color:#037691" %)**AT+PRO=1**          (%%) ~/~/  Set to use CoAP protocol to uplink
198 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%) ~/~/  to set CoAP server address and port
199 -* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
200 -
201 201  For parameter description, please refer to AT command set
202 202  
203 203  [[image:image-20220907171221-9.png]]
204 204  
157 +After configure the server address and **reset the device** (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
205 205  
206 -After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
207 -
208 208  [[image:image-20220907171221-10.png]] ​
209 209  
161 +**2.2.5 Use UDP protocol to uplink data(Default protocol)**
210 210  
211 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
212 -
213 -
214 214  This feature is supported since firmware version v1.0.1
215 215  
216 -* (% style="color:#037691" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
217 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601     ** (%%) ~/~/  to set UDP server address and port
218 -* (% style="color:#037691" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
165 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
166 +* **AT+SERVADDR=120.24.4.116,5601   ** ~/~/ to set UDP server address and port
167 +* **AT+CFM=1       ** ~/~/If the server does not respond, this command is unnecessary
219 219  
220 220  ​ [[image:image-20220907171221-11.png]]
221 221  
222 -
223 223  [[image:image-20220907171221-12.png]]
224 224  
225 225  ​
226 226  
227 -=== 2.2.6 Use MQTT protocol to uplink data ===
175 +**2.2.6 Use MQTT protocol to uplink data**
228 228  
229 -
230 230  This feature is supported since firmware version v110
231 231  
232 -* (% style="color:#037691" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
233 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
234 -* (% style="color:#037691" %)**AT+CLIENT=CLIENT       ** (%%) ~/~/  Set up the CLIENT of MQTT
235 -* (% style="color:#037691" %)**AT+UNAME=UNAME                        **(%%)** **~/~/  Set the username of MQTT
236 -* (% style="color:#037691" %)**AT+PWD=PWD                            **(%%)** **~/~/  Set the password of MQTT
237 -* (% style="color:#037691" %)**AT+PUBTOPIC=PUB                    ** (%%) ~/~/  Set the sending topic of MQTT
238 -* (% style="color:#037691" %)**AT+SUBTOPIC=SUB          ** (%%) ~/~/  Set the subscription topic of MQTT
179 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
180 +* **AT+SERVADDR=120.24.4.116,1883   ** ~/~/Set MQTT server address and port
181 +* **AT+CLIENT=CLIENT       ** ~/~/Set up the CLIENT of MQTT
182 +* **AT+UNAME=UNAME                               **~/~/Set the username of MQTT
183 +* **AT+PWD=PWD                                        **~/~/Set the password of MQTT
184 +* **AT+PUBTOPIC=NSE01_PUB                    **~/~/Set the sending topic of MQTT
185 +* **AT+SUBTOPIC=NSE01_SUB          ** ~/~/Set the subscription topic of MQTT
239 239  
240 240  ​ [[image:image-20220907171221-13.png]]
241 241  
242 -
243 -
244 244  [[image:image-20220907171221-14.png]]
245 245  
246 246  ​
... ... @@ -247,108 +247,81 @@
247 247  
248 248  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
249 249  
195 +**2.2.7 Use TCP protocol to uplink data**
250 250  
251 -=== 2.2.7 Use TCP protocol to uplink data ===
252 -
253 -
254 254  This feature is supported since firmware version v110
255 255  
256 -* (% style="color:#037691" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
257 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600   ** (%%) ~/~/  to set TCP server address and port
199 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
200 +* **AT+SERVADDR=120.24.4.116,5600   ** ~/~/ to set TCP server address and port
258 258  
259 259  ​ [[image:image-20220907171221-15.png]]
260 260  
261 -
262 -
263 263  [[image:image-20220907171221-16.png]]
264 264  
265 265  ​
266 266  
208 +**2.2.8 Change Update Interval**
267 267  
268 -=== 2.2.8 Change Update Interval ===
269 -
270 -
271 271  User can use below command to change the **uplink interval**.
272 272  
273 -* (% style="color:#037691" %)**AT+TDC=7200      ** (%%) ~/~/ Set Update Interval to 7200s (2 hour)
212 +* **AT+TDC=600      ** ~/~/ Set Update Interval to 600s
274 274  
275 -(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
214 +**NOTE:**
276 276  
216 +**~1. By default, the device will send an uplink message every 2 hour.**
277 277  
278 -== 2.3  Uplink Payload ==
218 +**2.3  Uplink Payload**
279 279  
280 -
281 281  In this mode, uplink payload includes 87 bytes in total by default.
282 282  
283 283  Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
284 284  
285 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
286 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:40px" %)**8**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**1**|(% style="background-color:#4F81BD;color:white; width:30px" %)**1**|(% style="background-color:#4F81BD;color:white; width:40px" %)**1**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**4**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**|(% style="background-color:#4F81BD;color:white; width:37px" %)**4**
287 -|(% style="width:96px" %)Value|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
224 +|**Size(bytes)**|**8**|**2**|**2**|**1**|**1**|1|2|2|2|4   
225 +|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Leaf moisture|Leaf Temperature|Soil PH|Time stamp  .....
288 288  
289 289  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
290 290  
291 -
292 292  [[image:image-20220907171221-17.png]]
293 293  
294 -
295 295  The payload is ASCII string, representative same HEX:
296 296  
297 -**0x (% style="color:red" %)__f868411056754138__  (% style="color:blue" %)__0064 __ (% style="color:green" %)__0c78__  (% style="color:#00b0f0" %)__17__  (% style="color:#7030a0" %)__01__  (% style="color:#d60093" %)__00__  (% style="color:#a14d07" %)__0225 __ (% style="color:#0020b0" %) __010b__  (% style="color:#420042" %)__6315537b__  (% style="color:#663300" %)//__010b0226631550fb__  __010e022663154d77  01110225631549f1  011502246315466b  01190223631542e5  011d022163153f62  011e022163153bde 011e022163153859__//(%%)**
233 +0xf86841105675413800640c781701000225010b6315537b010b0226631550fb010e022663154d7701110225631549f1011502246315466b01190223631542e5011d022163153f62011e022163153bde011e022163153859 where:
298 298  
299 -where:
235 +* Device ID: 0xf868411056754138 = f868411056754138
236 +* Version: 0x0064=100=1.0.0
300 300  
301 -* (% style="color:#037691" %)**Device ID:**(%%) 0xf868411056754138 = f868411056754138
238 +* BAT: 0x0c78 = 3192 mV = 3.192V
239 +* Singal: 0x17 = 23
240 +* Mod: 0x01 = 1
241 +* Interrupt: 0x00= 0
242 +* Leaf moisture: 0x0225= 549 = 54.9%
243 +* Leaf Temperature:0x010B =267=26.7 °C
244 +* Time stamp : 0x6315537b =1662342011
245 +* Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
246 +* 8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
302 302  
303 -* (% style="color:#037691" %)**Version:**(%%) 0x0064=100=1.0.0
248 +**2.4  Payload Explanation and Sensor Interface**
304 304  
305 -* (% style="color:#037691" %)**BAT:**       (%%)0x0c78 = 3192 mV = 3.192V
250 +**2.4.1  Device ID**
306 306  
307 -* (% style="color:#037691" %)**Singal:**(%%)  0x17 = 23
308 -
309 -* (% style="color:#037691" %)**Mod:**(%%)  0x01 = 1
310 -
311 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0
312 -
313 -* (% style="color:#037691" %)**Leaf moisture:**(%%) 0x0225= 549 = 54.9%
314 -
315 -* (% style="color:#037691" %)**Leaf Temperature: **(%%)0x010B =267=26.7 °C
316 -
317 -* (% style="color:#037691" %)**Time stamp :**   (%%)0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
318 -
319 -* (% style="color:#037691" %)**Leaf Temperature, Leaf moisture,Time stamp :  **(%%)010b0226631550fb
320 -
321 -* (% style="color:#037691" %)**8 sets of recorded data: **(%%)Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
322 -
323 -
324 -== 2.4  Payload Explanation and Sensor Interface ==
325 -
326 -=== 2.4.1  Device ID ===
327 -
328 -
329 329  By default, the Device ID equal to the last 15 bits of IMEI.
330 330  
331 -User can use (% style="color:#037691" %)**AT+DEUI**(%%) to set Device ID
254 +User can use **AT+DEUI** to set Device ID
332 332  
256 +**Example:**
333 333  
334 -(% style="color:blue" %)**Example**:
335 -
336 336  AT+DEUI=868411056754138
337 337  
338 338  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
339 339  
262 +**2.4.2  Version Info**
340 340  
341 -=== 2.4.2  Version Info ===
342 -
343 -
344 344  Specify the software version: 0x64=100, means firmware version 1.00.
345 345  
346 346  For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
347 347  
268 +**2.4.3  Battery Info**
348 348  
349 -=== 2.4.3  Battery Info ===
350 -
351 -
352 352  Check the battery voltage for NLMS01.
353 353  
354 354  Ex1: 0x0B45 = 2885mV
... ... @@ -355,15 +355,12 @@
355 355  
356 356  Ex2: 0x0B49 = 2889mV
357 357  
276 +**2.4.4  Signal Strength**
358 358  
359 -=== 2.4.4  Signal Strength ===
360 -
361 -
362 362  NB-IoT Network signal Strength.
363 363  
280 +**Ex1: 0x1d = 29**
364 364  
365 -(% style="color:blue" %)**Ex1: 0x1d = 29**
366 -
367 367  **0**  -113dBm or less
368 368  
369 369  **1**  -111dBm
... ... @@ -374,45 +374,37 @@
374 374  
375 375  **99**    Not known or not detectable
376 376  
292 +**2.4.5  Leaf** moisture
377 377  
378 -=== 2.4.5  Leaf moisture ===
294 +Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**.
379 379  
296 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is
380 380  
381 -Get the moisture of the (% style="color:#037691" %)**Leaf**(%%). The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the Leaf.
298 +**0229(H) = 549(D) /100 = 54.9.**
382 382  
383 -For example, if the data you get from the register is (% style="color:#037691" %)**__0x05 0xDC__**(%%), the moisture content in the (% style="color:#037691" %)**Leaf**(%%) is
300 +**2.4.6  Leaf Temperature**
384 384  
385 -(% style="color:blue" %)**0229(H) = 549(D) /100 = 54.9.**
302 +Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is
386 386  
304 +**Example**:
387 387  
388 -=== 2.4.6  Leaf Temperature ===
306 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
389 389  
308 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
390 390  
391 -Get the temperature in the Leaf. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the Leaf. For example, if the data you get from the register is (% style="color:#037691" %)**__0x09 0xEC__**(%%), the temperature content in the (% style="color:#037691" %)**Leaf **(%%)is
310 +**2.4.7  Timestamp**
392 392  
393 -(% style="color:blue" %)**Example**:
394 -
395 -If payload is **0105H**: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
396 -
397 -If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
398 -
399 -
400 -=== 2.4.7  Timestamp ===
401 -
402 -
403 403  Time stamp : 0x6315537b =1662342011
404 404  
405 405  Convert Unix timestamp to time 2022-9-5 9:40:11.
406 406  
316 +**2.4.8  Digital Interrupt**
407 407  
408 -=== 2.4.8  Digital Interrupt ===
318 +Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
409 409  
410 -
411 -Digital Interrupt refers to pin (% style="color:#037691" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
412 -
413 413  The command is:
414 414  
415 -(% style="color:blue" %)**AT+INTMOD=3 ** (%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
322 +**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
416 416  
417 417  The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
418 418  
... ... @@ -422,37 +422,27 @@
422 422  
423 423  0x(01): Interrupt Uplink Packet.
424 424  
332 +**2.4.9  ​+5V Output**
425 425  
426 -=== 2.4.9  ​+5V Output ===
427 -
428 -
429 429  NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 
430 430  
431 431  The 5V output time can be controlled by AT Command.
432 432  
433 -(% style="color:blue" %)**AT+5VT=1000**
338 +**AT+5VT=1000**
434 434  
435 435  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
436 436  
437 437  
438 -== 2.5  Downlink Payload ==
343 +**2.5  Downlink Payload**
439 439  
440 -
441 441  By default, NLMS01 prints the downlink payload to console port.
442 442  
443 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:479.818px" %)
444 -|=(% style="width: 183px; background-color:#D9E2F3;color:#0070C0" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#D9E2F3;color:#0070C0" %)FPort|=(% style="width: 93px; background-color:#D9E2F3;color:#0070C0" %)**Type Code**|=(% style="width: 146px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Downlink payload size(bytes)**
445 -|(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4
446 -|(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2
447 -|(% style="width:183px" %)INTMOD|(% style="width:55px" %)Any|(% style="width:93px" %)06|(% style="width:146px" %)4
347 +[[image:image-20220907171221-18.png]] ​
448 448  
449 -
349 +**Examples:**
450 450  
451 -(% style="color:blue" %)**Examples:**
351 +* **Set TDC**
452 452  
453 -
454 -* (% style="color:#037691" %)**Set TDC**
455 -
456 456  If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
457 457  
458 458  Payload:    01 00 00 1E    TDC=30S
... ... @@ -459,22 +459,16 @@
459 459  
460 460  Payload:    01 00 00 3C    TDC=60S
461 461  
359 +* **Reset**
462 462  
463 -
464 -* (% style="color:#037691" %)**Reset**
465 -
466 466  If payload = 0x04FF, it will reset the NLMS01
467 467  
363 +* **INTMOD**
468 468  
469 -
470 -* (% style="color:#037691" %)**INTMOD**
471 -
472 472  Downlink Payload: 06000003, Set AT+INTMOD=3
473 473  
367 +**2.6  ​LED Indicator**
474 474  
475 -== 2.6  ​LED Indicator ==
476 -
477 -
478 478  The NLMS01 has an internal LED which is to show the status of different state.
479 479  
480 480  * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
... ... @@ -482,23 +482,18 @@
482 482  * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
483 483  * For each uplink probe, LED will be on for 500ms.
484 484  
376 +**2.7 Installation**
485 485  
486 -== 2.7  Installation ==
487 -
488 -
489 489  NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor.
490 490  
491 -
492 492  [[image:image-20220907171221-19.png]]
493 493  
382 +**2.8 Moisture and Temperature alarm function**
494 494  
495 -== 2.8  Moisture and Temperature alarm function ==
384 + AT Command:
496 496  
386 +AT+ HUMALARM =min,max
497 497  
498 -(% style="color:blue" %)**➢ AT Command:**
499 -
500 -(% style="color:#037691" %)**AT+ HUMALARM =min,max**
501 -
502 502  ² When min=0, and max≠0, Alarm higher than max
503 503  
504 504  ² When min≠0, and max=0, Alarm lower than min
... ... @@ -505,9 +505,8 @@
505 505  
506 506  ² When min≠0 and max≠0, Alarm higher than max or lower than min
507 507  
394 +Example:
508 508  
509 -(% style="color:blue" %)**Example:**
510 -
511 511  AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50.
512 512  
513 513  AT+ TEMPALARM=min,max
... ... @@ -518,199 +518,197 @@
518 518  
519 519  ² When min≠0 and max≠0, Alarm higher than max or lower than min
520 520  
406 +Example:
521 521  
522 -(% style="color:blue" %)**Example:**
523 -
524 524  AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
525 525  
526 526  
527 -== 2.9  Set the number of data to be uploaded and the recording time ==
411 +**2.9 Set the number of data to be uploaded and the recording time**
528 528  
413 +➢ AT Command:
529 529  
530 -(% style="color:blue" %)**➢ AT Command:**
415 +AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
531 531  
532 -* (% style="color:#037691" %)**AT+TR=900**   (%%) ~/~/  The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
533 -* (% style="color:#037691" %)**AT+NOUD=8**  (%%)~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
534 534  
535 - The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:**
418 +AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
536 536  
537 -[[image:image-20221009001002-1.png||height="706" width="982"]]
420 +**2.10 Read or Clear cached data**
538 538  
422 +➢ AT Command:
539 539  
540 -== 2.10  Read or Clear cached data ==
424 +AT+CDP    ~/~/ Read cached data
541 541  
426 +[[image:image-20220907171221-20.png]]
542 542  
543 -(% style="color:blue" %)**➢ AT Command:**
544 544  
545 -* (% style="color:#037691" %)**AT+CDP**      (%%) ~/~/  Read cached data
546 -* (% style="color:#037691" %)**AT+CDP=0  ** (%%) ~/~/  Clear cached data
429 +AT+CDP=0    ~/~/ Clear cached data
547 547  
548 -[[image:image-20220907171221-20.png]]
549 549  
432 +**2.8  ​Firmware Change Log**
550 550  
551 -== 2.11  Firmware Change Log ==
434 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]]
552 552  
436 +Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]]
553 553  
554 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0>>https://www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0]]
438 +**2.9  ​Battery Analysis**
555 555  
556 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
440 +**2.9.1  ​Battery Type**
557 557  
442 +The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
558 558  
559 -== 2.12 Battery & Power Consumption ==
444 +The battery is designed to last for several years depends on the actually use environment and update interval. 
560 560  
446 +The battery related documents as below:
561 561  
562 -NLMS01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
448 +* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
449 +* [[Lithium-Thionyl Chloride Battery datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
450 +* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
563 563  
564 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
452 +[[image:image-20220907171221-21.png]]
565 565  
454 +**2.9.2  Power consumption Analyze**
566 566  
567 -= 3. Access NB-IoT Module =
456 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
568 568  
458 +Instruction to use as below:
569 569  
570 -Users can directly access the AT command set of the NB-IoT module.
460 +**Step 1:  **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
571 571  
572 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
462 +**Step 2: ** Open it and choose
573 573  
464 +* Product Model
465 +* Uplink Interval
466 +* Working Mode
574 574  
575 -[[image:image-20220907171221-23.png]]
468 +And the Life expectation in difference case will be shown on the right.
576 576  
470 +[[image:image-20220907171221-22.jpeg]] ​
577 577  
578 -= 4Using the AT Commands =
472 +**2.9.3  ​Battery Note**
579 579  
580 -== 4.1  Access AT Commands ==
474 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
581 581  
476 +**2.9.4  Replace the battery**
582 582  
583 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
478 +The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
584 584  
585 -AT+<CMD>?  :  Help on <CMD>
480 +**3. Access NB-IoT Module**
586 586  
587 -AT+<CMD>  Run <CMD>
482 +Users can directly access the AT command set of the NB-IoT module.
588 588  
589 -AT+<CMD>=<value> Set the value
484 +The AT Command set can refer the BC35-G NB-IoT Module AT Command[[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
590 590  
591 -AT+<CMD>=?  :  Get the value
486 +[[image:image-20220907171221-23.png]] ​
592 592  
488 +**4.  Using the AT Commands**
593 593  
594 -(% style="color:#037691" %)**General Commands**      
490 +**4.1  Access AT Commands**
595 595  
596 -AT  Attention       
492 +See this link for detail [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
597 597  
598 -AT?  Short Help     
494 +AT+<CMD> : Help on <CMD>
599 599  
600 -ATZ  MCU Reset    
496 +AT+<CMD>         : Run <CMD>
601 601  
602 -AT+TDC  Application Data Transmission Interval
498 +AT+<CMD>=<value> : Set the value
603 603  
604 -AT+CFG  :  Print all configurations
500 +AT+<CMD>=?  : Get the value
605 605  
606 -AT+CFGMOD  :  Working mode selection
502 +**General Commands**      
607 607  
608 -AT+INTMOD  Set the trigger interrupt mode
504 +AT  : Attention       
609 609  
610 -AT+5VT  Set extend the time of 5V power  
506 +AT?  : Short Help     
611 611  
612 -AT+PRO :  Choose agreement
508 +ATZ  : MCU Reset    
613 613  
614 -AT+RXDL:  Extend the sending and receiving time
510 +AT+TDC  : Application Data Transmission Interval
615 615  
616 -AT+SERVADDR :  Server Address
512 +AT+CFG  : Print all configurations
617 617  
618 -AT+APN :  Get or set the APN
514 +AT+CFGMOD           : Working mode selection
619 619  
620 -AT+FBAND :  Get or Set whether to automatically modify the frequency band
516 +AT+INTMOD            : Set the trigger interrupt mode
621 621  
622 -AT+DNSCFG : Get or Set DNS Server
518 +AT+5VT  : Set extend the time of 5V power  
623 623  
624 -AT+GETSENSORVALUE   : Returns the current sensor measurement
520 +AT+PRO  : Choose agreement
625 625  
626 -AT+TR :  Get or Set record time"
522 +AT+RXDL  : Extend the sending and receiving time
627 627  
628 -AT+NOUD :  Get or Set the number of data to be uploaded
524 +AT+SERVADDR  : Server Address
629 629  
630 -AT+CDP :  Read or Clear cached data
526 +AT+TR      : Get or Set record time"
631 631  
632 -AT+TEMPALARM :  Get or Set alarm of temp
633 633  
634 -AT+HUMALARM :  Get or Set alarm of humidity
529 +AT+NOUD      : Get or Set the number of data to be uploaded
635 635  
636 636  
637 -(% style="color:#037691" %)**COAP Management**      
532 +AT+CDP     : Read or Clear cached data
638 638  
639 -AT+URI :  Resource parameters
640 640  
535 +AT+TEMPALARM      : Get or Set alarm of temp
641 641  
642 -(% style="color:#037691" %)**UDP Management**
537 +AT+HUMALARM     : Get or Set alarm of PH
643 643  
644 -AT+CFM :  Upload confirmation mode (only valid for UDP)
645 645  
540 +**COAP Management**      
646 646  
647 -(% style="color:#037691" %)**MQTT Management**
542 +AT+URI            : Resource parameters
648 648  
649 -AT+CLIENT  :  Get or Set MQTT client
544 +**UDP Management**
650 650  
651 -AT+UNAME  : Get or Set MQTT Username
546 +AT+CF         : Upload confirmation mode (only valid for UDP)
652 652  
653 -AT+PWD  :  Get or Set MQTT password
548 +**MQTT Management**
654 654  
655 -AT+PUBTOPIC  :  Get or Set MQTT publish topic
550 +AT+CLIENT               : Get or Set MQTT client
656 656  
657 -AT+SUBTOPIC :  Get or Set MQTT subscription topic
552 +AT+UNAME  : Get or Set MQTT Username
658 658  
554 +AT+PWD                  : Get or Set MQTT password
659 659  
660 -(% style="color:#037691" %)**Information**          
556 +AT+PUBTOPIC  : Get or Set MQTT publish topic
661 661  
662 -AT+FDR :  Factory Data Reset
558 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
663 663  
664 -AT+PWORD :  Serial Access Password
560 +**Information**          
665 665  
562 +AT+FDR  : Factory Data Reset
666 666  
667 -= ​5.  FAQ =
564 +AT+PWORD  : Serial Access Password
668 668  
669 -== 5.1 ​ How to Upgrade Firmware ==
566 +**​5.  FAQ**
670 670  
568 +**5.1 ​ How to Upgrade Firmware**
671 671  
672 672  User can upgrade the firmware for 1) bug fix, 2) new feature release.
673 673  
674 674  Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
675 675  
574 +**Notice, **NLMS01 **and **NLMS01 **share the same mother board. They use the same connection and method to update.**
676 676  
677 -(% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.**
576 +**6.  Trouble Shooting**
678 678  
578 +**6.1  ​Connection problem when uploading firmware**
679 679  
680 -= 6.  Trouble Shooting =
681 -
682 -== 6.1  ​Connection problem when uploading firmware ==
683 -
684 -
685 685  **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
686 686  
582 +**6.2  AT Command input doesn't work**
687 687  
688 -== 6. AT Command input doesn't work ==
584 +In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string.
689 689  
586 +**7. ​ Order Info**
690 690  
691 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
692 -
693 -
694 -== 6.3 Not able to connect to NB-IoT network and keep showing "Signal Strength:99". ==
695 -
696 -
697 -This means sensor is trying to join the NB-IoT network but fail. Please see this link for **//[[trouble shooting for signal strenght:99>>doc:Main.CSQ\:99,99.WebHome]]//**.
698 -
699 -
700 -= 7. ​ Order Info =
701 -
702 -
703 703  Part Number**:** NLMS01
704 704  
590 +**8.  Packing Info**
705 705  
706 -= 8.  Packing Info =
592 +**Package Includes**:
707 707  
708 -
709 -(% style="color:#037691" %)**Package Includes:**
710 -
711 711  * NLMS01 NB-IoT Leaf Moisture Sensor x 1
712 712  
713 -(% style="color:#037691" %)**Dimension and weight**:
596 +**Dimension and weight**:
714 714  
715 715  * Device Size: cm
716 716  * Device Weight: g
... ... @@ -718,10 +718,11 @@
718 718  * Weight / pcs : g
719 719  
720 720  
721 -= 9.  Support =
604 +**9.  Support**
722 722  
723 -
724 724  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
725 725  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
726 726  
727 727  ​
610 +
611 +
image-20220913090720-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -224.9 KB
Content
image-20221009001002-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -282.9 KB
Content