<
From version < 38.22 >
edited by Xiaoling
on 2023/05/24 10:08
To version < 32.1 >
edited by David Huang
on 2022/09/08 09:49
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.David
Content
... ... @@ -7,79 +7,89 @@
7 7  
8 8  
9 9  
10 -= 1.  Introduction =
10 += 1. Introduction =
11 11  
12 -== 1.1 ​ What is NLMS01 Leaf Moisture Sensor ==
12 +== 1.1 ​What is NLMS01 Leaf Moisture Sensor ==
13 13  
14 14  
15 -(((
16 -The Dragino NLMS01 is a (% style="color:blue" %)**NB-IOT Leaf Moisture Sensor**(%%) for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
15 +The Dragino NLMS01 is a **NB-IOT Leaf Moisture Sensor** for IoT of Agriculture. It is designed to measure the leaf moisture and temperature, so to send to the platform to analyze the leaf status such as : watering, moisturizing, dew, frozen. The probe is IP67 waterproof.
17 17  
18 -NLMS01 detects leaf's(% style="color:blue" %)** moisture and temperature use FDR method**(%%), it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
17 +NLMS01 detects leaf's** moisture and temperature **use FDR method, it senses the dielectric constant cause by liquid over the leaf surface, and cover the value to leaf moisture. The probe is design in a leaf shape to best simulate the real leaf characterizes. The probe has as density as 15 leaf vein lines per centimeter which make it can senses small drop and more accuracy.
19 19  
20 20  NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
20 +\\NLMS01 supports different uplink methods include **TCP,MQTT,UDP and CoAP  **for different application requirement.
21 +\\NLMS01 is powered by  **8500mAh Li-SOCI2 battery**, It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
22 +\\To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a **NB-IoT SIM card** from local operator and install NLMS01 to get NB-IoT network connection
21 21  
22 -NLMS01 supports different uplink methods include (% style="color:blue" %)**TCP,MQTT,UDP and CoAP  **(%%)for different application requirement.
23 -
24 -NLMS01 is powered by  (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method).
25 -
26 -To use NLMS01, user needs to check if there is NB-IoT coverage in local area and with the bands NLMS01 supports. If the local operate support it, user needs to get a (% style="color:blue" %)**NB-IoT SIM card**(%%) from local operator and install NLMS01 to get NB-IoT network connection.
27 -)))
28 -
29 -
30 30  ​[[image:image-20220907171221-2.png]]
31 31  
32 -
33 33  ​ [[image:image-20220907171221-3.png]]
34 34  
28 +== ​1.2 Features ==
35 35  
36 -== ​1.2  Features ==
30 +* (((
31 +NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
32 +)))
33 +* (((
34 +Monitor Leaf moisture
35 +)))
37 37  
37 +* (((
38 + Monitor Leaf temperature
39 +)))
38 38  
39 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
40 -* Monitor Leaf moisture
41 -* Monitor Leaf temperature
42 -* Moisture and Temperature alarm function
43 -* Monitor Battery Level
44 -* Uplink on periodically
45 -* Downlink to change configure
46 -* IP66 Waterproof Enclosure
47 -* IP67 rate for the Sensor Probe
48 -* Ultra-Low Power consumption
49 -* AT Commands to change parameters
50 -* Micro SIM card slot for NB-IoT SIM
51 -* 8500mAh Battery for long term use
52 -
53 -(((
54 -
55 -
56 -
41 +* (((
42 +Moisture and Temperature alarm function
57 57  )))
44 +* (((
45 +Monitor Battery Level
46 +)))
47 +* (((
48 +Uplink on periodically
49 +)))
50 +* (((
51 +Downlink to change configure
52 +)))
53 +* (((
54 +IP66 Waterproof Enclosure
55 +)))
56 +* (((
57 +IP67 rate for the Sensor Probe
58 +)))
59 +* (((
60 +Ultra-Low Power consumption
61 +)))
62 +* (((
63 +AT Commands to change parameters
64 +)))
65 +* (((
66 +Micro SIM card slot for NB-IoT SIM
67 +)))
68 +* (((
69 +8500mAh Battery for long term use
70 +)))
58 58  
59 59  == 1.3  Specification ==
60 60  
74 +**Common DC Characteristics:**
61 61  
62 -(% style="color:#037691" %)**Common DC Characteristics:**
63 -
64 64  * Supply Voltage: 2.1v ~~ 3.6v
65 65  * Operating Temperature: -40 ~~ 85°C
66 66  
67 -(% style="color:#037691" %)**NB-IoT Spec:**
79 +**NB-IoT Spec:**
68 68  
69 -* B1 @H-FDD: 2100MHz
70 -* B3 @H-FDD: 1800MHz
71 -* B8 @H-FDD: 900MHz
72 -* B5 @H-FDD: 850MHz
73 -* B20 @H-FDD: 800MHz
74 -* B28 @H-FDD: 700MHz
81 +* - B1 @H-FDD: 2100MHz
82 +* - B3 @H-FDD: 1800MHz
83 +* - B8 @H-FDD: 900MHz
84 +* - B5 @H-FDD: 850MHz
85 +* - B20 @H-FDD: 800MHz
86 +* - B28 @H-FDD: 700MHz
75 75  
88 +== 1.4 Probe Specification ==
76 76  
77 77  
78 -== 1.4  Probe Specification ==
91 +**Leaf Moisture: percentage of water drop over total leaf surface**
79 79  
80 -
81 -(% style="color:#037691" %)**Leaf Moisture: percentage of water drop over total leaf surface**
82 -
83 83  * Range 0-100%
84 84  * Resolution: 0.1%
85 85  * Accuracy: ±3%(0-50%);±6%(>50%)
... ... @@ -86,7 +86,7 @@
86 86  * IP67 Protection
87 87  * Length: 3.5 meters
88 88  
89 -(% style="color:#037691" %)**Leaf Temperature:**
99 +**Leaf Temperature:**
90 90  
91 91  * Range -50℃~80℃
92 92  * Resolution: 0.1℃
... ... @@ -94,18 +94,12 @@
94 94  * IP67 Protection
95 95  * Length: 3.5 meters
96 96  
107 +== 1.5 ​Applications ==
97 97  
98 -
99 -== 1.5 ​ Applications ==
100 -
101 -
102 102  * Smart Agriculture
103 103  
111 +== 1.6 Pin mapping and power on ==
104 104  
105 -
106 -== 1.6  Pin mapping and power on ==
107 -
108 -
109 109  ​[[image:image-20220907171221-4.png]]
110 110  
111 111  **~ **
... ... @@ -114,20 +114,16 @@
114 114  
115 115  == 2.1  How it works ==
116 116  
117 -
118 118  The NLMS01 is equipped with a NB-IoT module, the pre-loaded firmware in NLMS01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NLMS01.
119 119  
120 120  The diagram below shows the working flow in default firmware of NLMS01:
121 121  
122 -
123 123  [[image:image-20220907171221-5.png]]
124 124  
125 -
126 126  == 2.2 ​ Configure the NLMS01 ==
127 127  
128 128  === 2.2.1 Test Requirement ===
129 129  
130 -
131 131  To use NLMS01 in your city, make sure meet below requirements:
132 132  
133 133  * Your local operator has already distributed a NB-IoT Network there.
... ... @@ -134,88 +134,72 @@
134 134  * The local NB-IoT network used the band that NLMS01 supports.
135 135  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
136 136  
137 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use(% style="color:#037691" %)** CoAP(120.24.4.116:5683) **(%%)or raw(% style="color:#037691" %)** UDP(120.24.4.116:5601)** or(%%) (% style="color:#037691" %)**MQTT(120.24.4.116:1883)**(%%)or (% style="color:#037691" %)**TCP(120.24.4.116:5600)**(%%)protocol to send data to the test server
137 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NLMS01 will use CoAP(120.24.4.116:5683) or raw UDP(120.24.4.116:5601) or MQTT(120.24.4.116:1883)or TCP(120.24.4.116:5600)protocol to send data to the test server
138 138  
139 -
140 140  [[image:image-20220907171221-6.png]] ​
141 141  
142 -
143 143  === 2.2.2 Insert SIM card ===
144 144  
145 -
146 146  Insert the NB-IoT Card get from your provider.
147 147  
148 148  User need to take out the NB-IoT module and insert the SIM card like below:
149 149  
150 -
151 151  [[image:image-20220907171221-7.png]] ​
152 152  
153 -
154 154  === 2.2.3 Connect USB – TTL to NLMS01 to configure it ===
155 155  
151 +User need to configure NLMS01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
156 156  
157 -User need to configure NLMS01 via serial port to set the (% style="color:#037691" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NLMS01 support AT Commands, user can use a USB to TTL adapter to connect to NLMS01 and use AT Commands to configure it, as below.
153 +**Connection:**
158 158  
155 + USB TTL GND <~-~-~-~-> GND
159 159  
160 -(% style="color:blue" %)**Connection:**
157 + USB TTL TXD <~-~-~-~-> UART_RXD
161 161  
162 -**~ (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND(%%)**
159 + USB TTL RXD <~-~-~-~-> UART_TXD
163 163  
164 -**~ (% style="background-color:yellow" %)USB TTL TXD  <~-~-~-~-> UART_RXD(%%)**
165 -
166 -**~ (% style="background-color:yellow" %)USB TTL RXD  <~-~-~-~-> UART_TXD(%%)**
167 -
168 -
169 169  In the PC, use below serial tool settings:
170 170  
171 -* Baud:  (% style="color:green" %)**9600**
172 -* Data bits:**  (% style="color:green" %)8(%%)**
173 -* Stop bits:  (% style="color:green" %)**1**
174 -* Parity:  (% style="color:green" %)**None**
175 -* Flow Control: (% style="color:green" %)**None**
163 +* Baud:  **9600**
164 +* Data bits:** 8**
165 +* Stop bits: **1**
166 +* Parity:  **None**
167 +* Flow Control: **None**
176 176  
177 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
169 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NLMS01. NLMS01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
178 178  
179 -​[[image:image-20220913090720-1.png]]
171 +​[[image:image-20220907171221-8.png]]
180 180  
173 +**Note: the valid AT Commands can be found at:  **[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
181 181  
182 -(% style="color:red" %)**Note: the valid AT Commands can be found at:  **(%%)[[**https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0**>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
183 -
184 -
185 185  === 2.2.4 Use CoAP protocol to uplink data ===
186 186  
177 +**Note: if you don't have CoAP server, you can refer this link to set up one: **[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
187 187  
188 -(% style="color:red" %)**Note: if you don't have CoAP server, you can refer this link to set up one: **(%%)[[**http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
179 +**Use below commands:**
189 189  
181 +* **AT+PRO=1**   ~/~/ Set to use CoAP protocol to uplink
182 +* **AT+SERVADDR=120.24.4.116,5683   ** ~/~/ to set CoAP server address and port
183 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** ~/~/Set COAP resource path
190 190  
191 -(% style="color:blue" %)**Use below commands:**
192 -
193 -* (% style="color:#037691" %)**AT+PRO=1**          (%%) ~/~/  Set to use CoAP protocol to uplink
194 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%) ~/~/  to set CoAP server address and port
195 -* (% style="color:#037691" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/  Set COAP resource path
196 -
197 197  For parameter description, please refer to AT command set
198 198  
199 199  [[image:image-20220907171221-9.png]]
200 200  
189 +After configure the server address and **reset the device** (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
201 201  
202 -After configure the server address and (% style="color:#037691" %)**reset the device**(%%) (via AT+ATZ ), NLMS01 will start to uplink sensor values to CoAP server.
203 -
204 204  [[image:image-20220907171221-10.png]] ​
205 205  
206 -
207 207  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
208 208  
209 -
210 210  This feature is supported since firmware version v1.0.1
211 211  
212 -* (% style="color:#037691" %)**AT+PRO=2   ** (%%) ~/~/  Set to use UDP protocol to uplink
213 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5601     ** (%%) ~/~/  to set UDP server address and port
214 -* (% style="color:#037691" %)**AT+CFM=1       ** (%%) ~/~/  If the server does not respond, this command is unnecessary
197 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
198 +* **AT+SERVADDR=120.24.4.116,5601   ** ~/~/ to set UDP server address and port
199 +* **AT+CFM=1       ** ~/~/If the server does not respond, this command is unnecessary
215 215  
216 216  ​ [[image:image-20220907171221-11.png]]
217 217  
218 -
219 219  [[image:image-20220907171221-12.png]]
220 220  
221 221  ​
... ... @@ -222,21 +222,18 @@
222 222  
223 223  === 2.2.6 Use MQTT protocol to uplink data ===
224 224  
225 -
226 226  This feature is supported since firmware version v110
227 227  
228 -* (% style="color:#037691" %)**AT+PRO=3   ** (%%) ~/~/  Set to use MQTT protocol to uplink
229 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/  Set MQTT server address and port
230 -* (% style="color:#037691" %)**AT+CLIENT=CLIENT       ** (%%) ~/~/  Set up the CLIENT of MQTT
231 -* (% style="color:#037691" %)**AT+UNAME=UNAME                        **(%%)** **~/~/  Set the username of MQTT
232 -* (% style="color:#037691" %)**AT+PWD=PWD                            **(%%)** **~/~/  Set the password of MQTT
233 -* (% style="color:#037691" %)**AT+PUBTOPIC=PUB                    ** (%%) ~/~/  Set the sending topic of MQTT
234 -* (% style="color:#037691" %)**AT+SUBTOPIC=SUB          ** (%%) ~/~/  Set the subscription topic of MQTT
211 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
212 +* **AT+SERVADDR=120.24.4.116,1883   ** ~/~/Set MQTT server address and port
213 +* **AT+CLIENT=CLIENT       ** ~/~/Set up the CLIENT of MQTT
214 +* **AT+UNAME=UNAME                               **~/~/Set the username of MQTT
215 +* **AT+PWD=PWD                                        **~/~/Set the password of MQTT
216 +* **AT+PUBTOPIC=PUB                    **~/~/Set the sending topic of MQTT
217 +* **AT+SUBTOPIC=SUB          ** ~/~/Set the subscription topic of MQTT
235 235  
236 236  ​ [[image:image-20220907171221-13.png]]
237 237  
238 -
239 -
240 240  [[image:image-20220907171221-14.png]]
241 241  
242 242  ​
... ... @@ -243,110 +243,79 @@
243 243  
244 244  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
245 245  
246 -
247 247  === 2.2.7 Use TCP protocol to uplink data ===
248 248  
249 -
250 250  This feature is supported since firmware version v110
251 251  
252 -* (% style="color:#037691" %)**AT+PRO=4   ** (%%) ~/~/  Set to use TCP protocol to uplink
253 -* (% style="color:#037691" %)**AT+SERVADDR=120.24.4.116,5600   ** (%%) ~/~/  to set TCP server address and port
231 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
232 +* **AT+SERVADDR=120.24.4.116,5600   ** ~/~/ to set TCP server address and port
254 254  
255 255  ​ [[image:image-20220907171221-15.png]]
256 256  
257 -
258 -
259 259  [[image:image-20220907171221-16.png]]
260 260  
261 261  ​
262 262  
263 -
264 264  === 2.2.8 Change Update Interval ===
265 265  
266 -
267 267  User can use below command to change the **uplink interval**.
268 268  
269 -* (% style="color:#037691" %)**AT+TDC=7200      ** (%%) ~/~/ Set Update Interval to 7200s (2 hour)
244 +* **AT+TDC=7200      ** ~/~/ Set Update Interval to 7200s (2 hour)
270 270  
271 -(% style="color:red" %)**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
246 +**NOTE: By default, the device will send an uplink message every 2 hour. Each Uplink Include 8 set of records in this 2 hour (15 minute interval / record).**
272 272  
273 273  
274 274  == 2.3  Uplink Payload ==
275 275  
276 -
277 277  In this mode, uplink payload includes 87 bytes in total by default.
278 278  
279 279  Each time the device uploads a data package, 8 sets of recorded data will be attached. Up to 32 sets of recorded data can be uploaded.
280 280  
255 +|**Size(bytes)**|**8**|**2**|**2**|1|1|1|2|2|4|2|2|4
256 +|**Value**|Device ID|Ver|BAT|Signal Strength|MOD|Interrupt|Leaf moisture|Leaf Temperature|Time stamp|Leaf Temperature|Leaf moisture|Time stamp  .....
281 281  
282 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
283 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**8**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**4**
284 -|(% style="width:96px" %)Value|(% style="width:82px" %)Device ID|(% style="width:42px" %)Ver|(% style="width:48px" %)BAT|(% style="width:124px" %)Signal Strength|(% style="width:58px" %)MOD|(% style="width:82px" %)Interrupt|(% style="width:113px" %)Leaf moisture|(% style="width:134px" %)Leaf Temperature|(% style="width:100px" %)Time stamp|(% style="width:137px" %)Leaf Temperature|(% style="width:110px" %)Leaf moisture|(% style="width:122px" %)Time stamp  .....
285 -
286 286  If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NLMS01 uplink data.
287 287  
288 -
289 289  [[image:image-20220907171221-17.png]]
290 290  
291 -
292 292  The payload is ASCII string, representative same HEX:
293 293  
294 -**0x (% style="color:red" %)__f868411056754138__  (% style="color:blue" %)__0064 __ (% style="color:green" %)__0c78__  (% style="color:#00b0f0" %)__17__  (% style="color:#7030a0" %)__01__  (% style="color:#d60093" %)__00__  (% style="color:#a14d07" %)__0225 __ (% style="color:#0020b0" %) __010b__  (% style="color:#420042" %)__6315537b__  (% style="color:#663300" %)//__010b0226631550fb__  __010e022663154d77  01110225631549f1  011502246315466b  01190223631542e5  011d022163153f62  011e022163153bde 011e022163153859__//(%%)**
264 +0x(% style="color:red" %)f868411056754138(% style="color:blue" %)0064(% style="color:green" %)0c78(% style="color:red" %)17(% style="color:blue" %)01(% style="color:green" %)00(% style="color:blue" %)**0225010b6315537b**010b0226631550fb**010e022663154d77**01110225631549f1**011502246315466b**01190223631542e5**011d022163153f62**011e022163153bde**011e022163153859**(%%)** **where:
295 295  
296 -where:
266 +* (% style="color:red" %)Device ID: 0xf868411056754138 = f868411056754138
267 +* (% style="color:blue" %)Version: 0x0064=100=1.0.0
268 +* (% style="color:green" %)BAT: 0x0c78 = 3192 mV = 3.192V
269 +* (% style="color:red" %)Singal: 0x17 = 23
270 +* (% style="color:blue" %)Mod: 0x01 = 1
271 +* (% style="color:green" %)Interrupt: 0x00= 0
272 +* Leaf moisture: 0x0225= 549 = 54.9%
273 +* Leaf Temperature:0x010B =267=26.7 °C
274 +* Time stamp : 0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
275 +* Leaf Temperature, Leaf moisture,Time stamp : 010b0226631550fb
276 +* (% style="color:blue" %)8 sets of recorded data: Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
297 297  
298 -* (% style="color:#037691" %)**Device ID:**(%%) 0xf868411056754138 = f868411056754138
299 -
300 -* (% style="color:#037691" %)**Version:**(%%) 0x0064=100=1.0.0
301 -
302 -* (% style="color:#037691" %)**BAT:**       (%%)0x0c78 = 3192 mV = 3.192V
303 -
304 -* (% style="color:#037691" %)**Singal:**(%%)  0x17 = 23
305 -
306 -* (% style="color:#037691" %)**Mod:**(%%)  0x01 = 1
307 -
308 -* (% style="color:#037691" %)**Interrupt:**(%%) 0x00= 0
309 -
310 -* (% style="color:#037691" %)**Leaf moisture:**(%%) 0x0225= 549 = 54.9%
311 -
312 -* (% style="color:#037691" %)**Leaf Temperature: **(%%)0x010B =267=26.7 °C
313 -
314 -* (% style="color:#037691" %)**Time stamp :**   (%%)0x6315537b =1662342011 ([[Unix Epoch Time>>https://www.epochconverter.com/]])
315 -
316 -* (% style="color:#037691" %)**Leaf Temperature, Leaf moisture,Time stamp :  **(%%)010b0226631550fb
317 -
318 -* (% style="color:#037691" %)**8 sets of recorded data: **(%%)Leaf Temperature, Leaf moisture,Time stamp : 010e022663154d77,.......
319 -
320 -
321 -
322 322  == 2.4  Payload Explanation and Sensor Interface ==
323 323  
324 324  === 2.4.1  Device ID ===
325 325  
326 -
327 327  By default, the Device ID equal to the last 15 bits of IMEI.
328 328  
329 -User can use (% style="color:#037691" %)**AT+DEUI**(%%) to set Device ID
284 +User can use **AT+DEUI** to set Device ID
330 330  
286 +**Example:**
331 331  
332 -(% style="color:blue" %)**Example**:
333 -
334 334  AT+DEUI=868411056754138
335 335  
336 336  The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
337 337  
338 -
339 339  === 2.4.2  Version Info ===
340 340  
341 -
342 342  Specify the software version: 0x64=100, means firmware version 1.00.
343 343  
344 344  For example: 0x00 64 : this device is NLMS01 with firmware version 1.0.0.
345 345  
346 -
347 347  === 2.4.3  Battery Info ===
348 348  
349 -
350 350  Check the battery voltage for NLMS01.
351 351  
352 352  Ex1: 0x0B45 = 2885mV
... ... @@ -353,15 +353,12 @@
353 353  
354 354  Ex2: 0x0B49 = 2889mV
355 355  
356 -
357 357  === 2.4.4  Signal Strength ===
358 358  
359 -
360 360  NB-IoT Network signal Strength.
361 361  
310 +**Ex1: 0x1d = 29**
362 362  
363 -(% style="color:blue" %)**Ex1: 0x1d = 29**
364 -
365 365  **0**  -113dBm or less
366 366  
367 367  **1**  -111dBm
... ... @@ -372,45 +372,37 @@
372 372  
373 373  **99**    Not known or not detectable
374 374  
375 -
376 376  === 2.4.5  Leaf moisture ===
377 377  
324 +Get the moisture of the **Leaf**. The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the **Leaf**.
378 378  
379 -Get the moisture of the (% style="color:#037691" %)**Leaf**(%%). The value range of the register is 300-1000(Decimal), divide this value by 100 to get the percentage of moisture in the Leaf.
326 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the **Leaf** is
380 380  
381 -For example, if the data you get from the register is (% style="color:#037691" %)**__0x05 0xDC__**(%%), the moisture content in the (% style="color:#037691" %)**Leaf**(%%) is
328 +**0229(H) = 549(D) /100 = 54.9.**
382 382  
383 -(% style="color:blue" %)**0229(H) = 549(D) /100 = 54.9.**
384 -
385 -
386 386  === 2.4.6  Leaf Temperature ===
387 387  
332 +Get the temperature in the **Leaf**. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the **Leaf**. For example, if the data you get from the register is **__0x09 0xEC__**, the temperature content in the **Leaf **is
388 388  
389 -Get the temperature in the Leaf. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the Leaf. For example, if the data you get from the register is (% style="color:#037691" %)**__0x09 0xEC__**(%%), the temperature content in the (% style="color:#037691" %)**Leaf **(%%)is
334 +**Example**:
390 390  
391 -(% style="color:blue" %)**Example**:
336 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
392 392  
393 -If payload is **0105H**: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/10 = 26.1 °C
338 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
394 394  
395 -If payload is **FF7EH**: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/10 = -12.9 °C
396 -
397 -
398 398  === 2.4.7  Timestamp ===
399 399  
400 -
401 401  Time stamp : 0x6315537b =1662342011
402 402  
403 403  Convert Unix timestamp to time 2022-9-5 9:40:11.
404 404  
405 -
406 406  === 2.4.8  Digital Interrupt ===
407 407  
348 +Digital Interrupt refers to pin **GPIO_EXTI**, and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
408 408  
409 -Digital Interrupt refers to pin (% style="color:#037691" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NLMS01 will send a packet to the server.
410 -
411 411  The command is:
412 412  
413 -(% style="color:blue" %)**AT+INTMOD=3 ** (%%) ~/~/  (more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
352 +**AT+INTMOD=3 ** ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
414 414  
415 415  The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
416 416  
... ... @@ -420,15 +420,13 @@
420 420  
421 421  0x(01): Interrupt Uplink Packet.
422 422  
423 -
424 424  === 2.4.9  ​+5V Output ===
425 425  
426 -
427 427  NLMS01 will enable +5V output before all sampling and disable the +5v after all sampling. 
428 428  
429 429  The 5V output time can be controlled by AT Command.
430 430  
431 -(% style="color:blue" %)**AT+5VT=1000**
368 +**AT+5VT=1000**
432 432  
433 433  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.** **
434 434  
... ... @@ -435,22 +435,14 @@
435 435  
436 436  == 2.5  Downlink Payload ==
437 437  
438 -
439 439  By default, NLMS01 prints the downlink payload to console port.
440 440  
441 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:479.818px" %)
442 -|=(% style="width: 183px; background-color:#D9E2F3;color:#0070C0" %)**Downlink Control Type**|=(% style="width: 55px; background-color:#D9E2F3;color:#0070C0" %)FPort|=(% style="width: 93px; background-color:#D9E2F3;color:#0070C0" %)**Type Code**|=(% style="width: 146px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Downlink payload size(bytes)**
443 -|(% style="width:183px" %)TDC (Transmit Time Interval)|(% style="width:55px" %)Any|(% style="width:93px" %)01|(% style="width:146px" %)4
444 -|(% style="width:183px" %)RESET|(% style="width:55px" %)Any|(% style="width:93px" %)04|(% style="width:146px" %)2
445 -|(% style="width:183px" %)INTMOD|(% style="width:55px" %)Any|(% style="width:93px" %)06|(% style="width:146px" %)4
377 +[[image:image-20220907171221-18.png]] ​
446 446  
447 -
379 +**Examples:**
448 448  
449 -(% style="color:blue" %)**Examples:**
381 +* **Set TDC**
450 450  
451 -
452 -* (% style="color:#037691" %)**Set TDC**
453 -
454 454  If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
455 455  
456 456  Payload:    01 00 00 1E    TDC=30S
... ... @@ -457,22 +457,16 @@
457 457  
458 458  Payload:    01 00 00 3C    TDC=60S
459 459  
389 +* **Reset**
460 460  
461 -
462 -* (% style="color:#037691" %)**Reset**
463 -
464 464  If payload = 0x04FF, it will reset the NLMS01
465 465  
393 +* **INTMOD**
466 466  
467 -
468 -* (% style="color:#037691" %)**INTMOD**
469 -
470 470  Downlink Payload: 06000003, Set AT+INTMOD=3
471 471  
472 -
473 473  == 2.6  ​LED Indicator ==
474 474  
475 -
476 476  The NLMS01 has an internal LED which is to show the status of different state.
477 477  
478 478  * When power on, NLMS01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
... ... @@ -480,24 +480,18 @@
480 480  * After NLMS01 join NB-IoT network. The LED will be ON for 3 seconds.
481 481  * For each uplink probe, LED will be on for 500ms.
482 482  
406 +== 2.7 Installation ==
483 483  
484 -
485 -== 2.7  Installation ==
486 -
487 -
488 488  NLMS01 probe has two sides. The side without words are the sense side. Please be ware when install the sensor.
489 489  
490 -
491 491  [[image:image-20220907171221-19.png]]
492 492  
412 +== 2.8 Moisture and Temperature alarm function ==
493 493  
494 -== 2.8  Moisture and Temperature alarm function ==
414 + AT Command:
495 495  
416 +AT+ HUMALARM =min,max
496 496  
497 -(% style="color:blue" %)**➢ AT Command:**
498 -
499 -(% style="color:#037691" %)**AT+ HUMALARM =min,max**
500 -
501 501  ² When min=0, and max≠0, Alarm higher than max
502 502  
503 503  ² When min≠0, and max=0, Alarm lower than min
... ... @@ -504,9 +504,8 @@
504 504  
505 505  ² When min≠0 and max≠0, Alarm higher than max or lower than min
506 506  
424 +Example:
507 507  
508 -(% style="color:blue" %)**Example:**
509 -
510 510  AT+ HUMALARM =50,60 ~/~/ Alarm when moisture lower than 50.
511 511  
512 512  AT+ TEMPALARM=min,max
... ... @@ -517,199 +517,201 @@
517 517  
518 518  ² When min≠0 and max≠0, Alarm higher than max or lower than min
519 519  
436 +Example:
520 520  
521 -(% style="color:blue" %)**Example:**
522 -
523 523  AT+ TEMPALARM=20,30 ~/~/ Alarm when temperature lower than 20.
524 524  
525 525  
526 -== 2.9  Set the number of data to be uploaded and the recording time ==
441 +== 2.9 Set the number of data to be uploaded and the recording time ==
527 527  
443 +➢ AT Command:
528 528  
529 -(% style="color:blue" %)**➢ AT Command:**
445 +AT+TR=900  ~/~/The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
530 530  
531 -* (% style="color:#037691" %)**AT+TR=900**   (%%) ~/~/  The unit is seconds, and the default is to record data once every 900 seconds.( The minimum can be set to 180 seconds)
532 -* (% style="color:#037691" %)**AT+NOUD=8**  (%%)~/~/  The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
447 +AT+NOUD=8  ~/~/The device uploads 8 sets of recorded data by default. Up to 32 sets of record data can be uploaded.
533 533  
534 - The diagram below explains the relationship between TR, NOUD, and TDC more clearly**:**
449 +== 2.10 Read or Clear cached data ==
535 535  
536 -[[image:image-20221009001002-1.png||height="706" width="982"]]
451 +➢ AT Command:
537 537  
453 +AT+CDP    ~/~/ Read cached data
538 538  
539 -== 2.10  Read or Clear cached data ==
455 +[[image:image-20220907171221-20.png]]
540 540  
541 541  
542 -(% style="color:blue" %)**➢ AT Command:**
458 +AT+CDP=0    ~/~/ Clear cached data
543 543  
544 -* (% style="color:#037691" %)**AT+CDP**      (%%) ~/~/  Read cached data
545 -* (% style="color:#037691" %)**AT+CDP=0  ** (%%) ~/~/  Clear cached data
546 546  
547 -[[image:image-20220907171221-20.png]]
461 +== 2.11  ​Firmware Change Log ==
548 548  
463 +Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0>>url:https://www.dropbox.com/sh/1zmcakvbkf24f8x/AACmq2dZ3iRB9F1nVWeEB9Moa?dl=0]]
549 549  
550 -== 2.11  Firmware Change Log ==
465 +Upgrade Instruction: [[Upgrade Firmware>>path:#H5.1200BHowtoUpgradeFirmware]]
551 551  
467 +== 2.12  ​Battery Analysis ==
552 552  
553 -Download URL & Firmware Change log: [[https:~~/~~/www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0>>https://www.dropbox.com/sh/qdc3js2iu1vlipx/AACMHI3CvVb8g7YQMrIHY673a?dl=0]]
469 +=== 2.12.1  ​Battery Type ===
554 554  
555 -Upgrade Instruction: [[Upgrade Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
471 +The NLMS01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
556 556  
473 +The battery is designed to last for several years depends on the actually use environment and update interval. 
557 557  
558 -== 2.12 Battery & Power Consumption ==
475 +The battery related documents as below:
559 559  
477 +* [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
478 +* [[Lithium-Thionyl Chloride Battery datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
479 +* [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
560 560  
561 -NLMS01 uses ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
481 +[[image:image-20220907171221-21.png]]
562 562  
563 -[[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
483 +=== 2.12.2  Power consumption Analyze ===
564 564  
485 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
565 565  
566 -= 3. ​ Access NB-IoT Module =
487 +Instruction to use as below:
567 567  
489 +**Step 1:  **Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
568 568  
569 -Users can directly access the AT command set of the NB-IoT module.
491 +**Step 2: ** Open it and choose
570 570  
571 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
493 +* Product Model
494 +* Uplink Interval
495 +* Working Mode
572 572  
497 +And the Life expectation in difference case will be shown on the right.
573 573  
574 -[[image:image-20220907171221-23.png]] ​
499 +[[image:image-20220907171221-22.jpeg]] ​
575 575  
501 +=== 2.12.3  ​Battery Note ===
576 576  
577 -= 4.  Using the AT Commands =
503 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
578 578  
579 -== 4.1  Access AT Commands ==
505 +=== 2.12.4  Replace the battery ===
580 580  
507 +The default battery pack of NLMS01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
581 581  
582 -See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
509 += 3. Access NB-IoT Module =
583 583  
584 -AT+<CMD>?  Help on <CMD>
511 +Users can directly access the AT command set of the NB-IoT module.
585 585  
586 -AT+<CMD>  Run <CMD>
513 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
587 587  
588 -AT+<CMD>=<value>:  Set the value
515 +[[image:image-20220907171221-23.png]] ​
589 589  
590 -AT+<CMD>= :  Get the value
517 += 4.  Using the AT Commands =
591 591  
519 +== 4.1  Access AT Commands ==
592 592  
593 -(% style="color:#037691" %)**General Commands**      
521 +See this link for detail:  [[https:~~/~~/www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0>>url:https://www.dropbox.com/sh/351dwor6joz8nwh/AADn1BQaAAxLF_QMyU8NkW47a?dl=0]]
594 594  
595 -AT  Attention       
523 +AT+<CMD>?  : Help on <CMD>
596 596  
597 -AT?  :  Short Help     
525 +AT+<CMD>         : Run <CMD>
598 598  
599 -AT MCU Reset    
527 +AT+<CMD>=<value> : Set the value
600 600  
601 -AT+TD Application Data Transmission Interval
529 +AT+<CMD>=?  : Get the value
602 602  
603 -AT+CFG  :  Print all configurations
531 +**General Commands**      
604 604  
605 -AT+CFGMOD  Working mode selection
533 +AT  : Attention       
606 606  
607 -AT+INTMOD  Set the trigger interrupt mode
535 +AT?  : Short Help     
608 608  
609 -AT+5VT  Set extend the time of 5V power  
537 +ATZ  : MCU Reset    
610 610  
611 -AT+PRO :  Choose agreement
539 +AT+TDC  : Application Data Transmission Interval
612 612  
613 -AT+RXDL:  Extend the sending and receiving time
541 +AT+CFG  : Print all configurations
614 614  
615 -AT+SERVADDR :  Server Address
543 +AT+CFGMOD           : Working mode selection
616 616  
617 -AT+APN :  Get or set the APN
545 +AT+INTMOD            : Set the trigger interrupt mode
618 618  
619 -AT+FBAND :  Get or Set whether to automatically modify the frequency band
547 +AT+5VT  : Set extend the time of 5V power  
620 620  
621 -AT+DNSCFG : Get or Set DNS Server
549 +AT+PRO  : Choose agreement
622 622  
623 -AT+GETSENSORVALUE   : Returns the current sensor measurement
551 +AT+RXD : Extend the sending and receiving time
624 624  
625 -AT+TR :  Get or Set record time"
553 +AT+SERVADDR  : Server Address
626 626  
627 -AT+NOUD :  Get or Set the number of data to be uploaded
555 +AT+AP    : Get or set the APN
628 628  
629 -AT+CDP :  Read or Clear cached data
557 +AT+FBAN  : Get or Set whether to automatically modify the frequency band
630 630  
631 -AT+TEMPALARM :  Get or Set alarm of temp
559 +AT+DNSCFG  : Get or Set DNS Server
632 632  
633 -AT+HUMALARM :  Get or Set alarm of humidity
561 +AT+GETSENSORVALUE   : Returns the current sensor measurement
634 634  
563 +AT+TR      : Get or Set record time"
635 635  
636 -(% style="color:#037691" %)**COAP Management**      
565 +AT+NOUD      : Get or Set the number of data to be uploaded
637 637  
638 -AT+URI :  Resource parameters
567 +AT+CDP     : Read or Clear cached data
639 639  
569 +AT+TEMPALARM      : Get or Set alarm of temp
640 640  
641 -(% style="color:#037691" %)**UDP Management**
571 +AT+HUMALARM     : Get or Set alarm of PH
642 642  
643 -AT+CFM :  Upload confirmation mode (only valid for UDP)
644 644  
574 +**COAP Management**      
645 645  
646 -(% style="color:#037691" %)**MQTT Management**
576 +AT+URI            : Resource parameters
647 647  
648 -AT+CLIENT  :  Get or Set MQTT client
578 +**UDP Management**
649 649  
650 -AT+UNAME  : Get or Set MQTT Username
580 +AT+CF         : Upload confirmation mode (only valid for UDP)
651 651  
652 -AT+PWD  :  Get or Set MQTT password
582 +**MQTT Management**
653 653  
654 -AT+PUBTOPIC  :  Get or Set MQTT publish topic
584 +AT+CLIENT               : Get or Set MQTT client
655 655  
656 -AT+SUBTOPIC :  Get or Set MQTT subscription topic
586 +AT+UNAME  : Get or Set MQTT Username
657 657  
588 +AT+PWD                  : Get or Set MQTT password
658 658  
659 -(% style="color:#037691" %)**Information**          
590 +AT+PUBTOPIC  : Get or Set MQTT publish topic
660 660  
661 -AT+FDR :  Factory Data Reset
592 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
662 662  
663 -AT+PWORD :  Serial Access Password
594 +**Information**          
664 664  
596 +AT+FDR  : Factory Data Reset
665 665  
598 +AT+PWORD  : Serial Access Password
599 +
666 666  = ​5.  FAQ =
667 667  
668 668  == 5.1 ​ How to Upgrade Firmware ==
669 669  
670 -
671 671  User can upgrade the firmware for 1) bug fix, 2) new feature release.
672 672  
673 673  Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
674 674  
608 +**Notice, **NLMS01 **and **NLMS01 **share the same mother board. They use the same connection and method to update.**
675 675  
676 -(% style="color:red" %)**Notice, NLMS01 and LLMS01 share the same mother board. They use the same connection and method to update.**
677 -
678 -
679 679  = 6.  Trouble Shooting =
680 680  
681 681  == 6.1  ​Connection problem when uploading firmware ==
682 682  
683 -
684 684  **Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
685 685  
686 -
687 687  == 6.2  AT Command input doesn't work ==
688 688  
618 +In the case if user can see the console output but can't type input to the device. Please check if you already include the **ENTER** while sending out the command. Some serial tool doesn't send **ENTER** while press the send key, user need to add ENTER in their string.
689 689  
690 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
691 -
692 -
693 -== 6.3 Not able to connect to NB-IoT network and keep showing "Signal Strength:99". ==
694 -
695 -
696 -This means sensor is trying to join the NB-IoT network but fail. Please see this link for **//[[trouble shooting for signal strenght:99>>doc:Main.CSQ\:99,99.WebHome]]//**.
697 -
698 -
699 699  = 7. ​ Order Info =
700 700  
701 -
702 702  Part Number**:** NLMS01
703 703  
704 -
705 705  = 8.  Packing Info =
706 706  
626 +**Package Includes**:
707 707  
708 -(% style="color:#037691" %)**Package Includes:**
709 -
710 710  * NLMS01 NB-IoT Leaf Moisture Sensor x 1
711 711  
712 -(% style="color:#037691" %)**Dimension and weight**:
630 +**Dimension and weight**:
713 713  
714 714  * Device Size: cm
715 715  * Device Weight: g
... ... @@ -716,11 +716,8 @@
716 716  * Package Size / pcs : cm
717 717  * Weight / pcs : g
718 718  
719 -
720 -
721 721  = 9.  Support =
722 722  
723 -
724 724  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
725 725  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
726 726  
image-20220913090720-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -224.9 KB
Content
image-20221009001002-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -282.9 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0